-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample2.tex
43 lines (36 loc) · 1.83 KB
/
example2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
\begin{questions}
\question{
Formulate and prove DeMorgan's laws for arbitrary unions and intersections
}
\begin{solution}
\begin{proof}
DeMorgan's laws for arbitrary unions can be stated as follows:
\[ A - \union{b \in B}{b} = \inter{b \in B}{(A - b)} \]
\[ A - \inter{b \in B}{b} = \union{b \in B}{(A - b)} \]
Consider an arbitrary $x \in A$. By the definition of a complement, $x \in A - \inter{b \in B}{b}$ if and only if $x \notin \union{b \in B}{b}$. From there the proof follows by unfolding the definition of a union and letting quantifiers propagate out.
\begin{align*}
x \in A \wedge x \notin \union{b \in B}{b}
&= x \in A \wedge \forall b \in B,\ x \notin b \\
&= \forall b \in B,\ x \in A \wedge x \notin b \\
&= \forall b \in B,\ x \in A - b \\
&= x \in \inter{b \in B}{(A - b)} \qedhere
\end{align*}
The second proof is omitted, as it's essentially identical to the first
\end{proof}
\end{solution}
\question{
Prove that $\mathcal{P}(\mathbb{N})$ and $\mathbb{R}$ have the same cardinality
}
\begin{solution}
\begin{proof}
Instead of giving a bijection directly we will put both $\mathcal{P}(\mathbb{N})$ and $\mathbb{R}$ in bijection with $2^{\mathbb{N}}$.
First we'll handle $\mathcal{P}(\mathbb{N})$. For any subset $S$ of $\mathbb{N}$, we give the function
\[ f(x) = \begin{cases}
1 & :\ x \in S \\
0 & :\ x \notin S
\end{cases} \]
Which has as inverse the function $g(f) = \{ n\ |\ n \in \mathbb{N}, \ f(n) = 1 \}$.
For the bijection between $2^{\mathbb{N}}$ and $[0,1)$, we'll make use of the fact that any $r \in [0,1)$ can be written as an infinite binary expansion, $0.r_0r_1r_2$. We can thereby write any real number $r$ as a function $f : \mathbb{N} \to 2$ by taking $f(n) = r_n$. We can go in the other direction by taking $r_n = f(n)$.
\end{proof}
\end{solution}
\end{questions}