-
Notifications
You must be signed in to change notification settings - Fork 10
/
coordinates.py
63 lines (42 loc) · 1.85 KB
/
coordinates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from scipy import misc
import tensorflow as tf
import numpy as np
import os
import align.detect_face
def embeddings(image_path,image_size,margin,gpu_memory_fraction):
minsize = 10 # minimum size of face
threshold = [0.6,0.7,0.7] # p,r,o nets threshold
factor = 0.709 # Standard Scaling Factor
x = y = w = h = 0
with tf.Graph().as_default():
#creating a tf graph and also setting the gpu options
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
#Defining the session to run
sess= tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,log_device_placement=False))
with sess.as_default():
# Structuring pnet , rnet and onet
pnet , rnet , onet = align.detect_face.create_mtcnn(sess,None)
# Reading the image using misc
img=misc.imread(image_path)
img = img[:,:,0:3]
img_size = np.asarray(img.shape)[0:2]
# detecting the face and getting the coordinates of the bounding box
bounding_boxes , _ = align.detect_face.detect_face(img,minsize,pnet,rnet,onet,threshold,factor)
nrof_faces = bounding_boxes.shape[0]
if nrof_faces > 0:
det = bounding_boxes[:,0:4]
det_arr =[]
det_arr.append(np.squeeze(det))
for i , det in enumerate(det_arr):
det = np.squeeze(det)
if (len(det.shape)==1):
bb = np.zeros(4,dtype=np.int32)
bb[0] = x = np.maximum(det[0]-margin/2,0)
bb[1] = y = np.maximum(det[1]-margin/2,0)
bb[2] = w = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = h = np.minimum(det[3]+margin/2, img_size[0])
else :
x = y = w = h = 0
# Calculating the coordinates
xmin , ymin , xmax , ymax = x , y , w , h
return xmin , ymin , xmax , ymax