-
Notifications
You must be signed in to change notification settings - Fork 10
/
main.py
111 lines (87 loc) · 3.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import sys
import os
import argparse
import csv
from PIL import Image
from coordinates import embeddings
from generate_tfrecord import generate_tf
from cascade import detect_face
import cv2
import numpy as np
from check import export
def writeCsvFile(file_name,data,*args,**kwargs):
# Opening and writing the csv file
with open(file_name,"w") as f:
writer =csv.writer(f)
writer.writerows(data)
print ("****** Successfully CSV File Generated *************")
def standard_size(image_dir):
for dirs in os.listdir(image_dir):
dir_path=os.path.join(image_dir,dirs)
for f in os.listdir(dir_path):
img_p = os.path.join(image_dir,dirs,f)
im = Image.open(img_p)
image_data = np.asarray(im)
file_name=f
imResize = cv2.resize(image_data, (500, 500))
try:
im = Image.fromarray(imResize, 'RGB')
except ValueError:
os.remove(img_p)
print("Bad Image Format, Removing")
continue
im.save(dir_path+'/'+f, 'JPEG', quality=90)
def image_process(image_dir,data_list,method):
margin = 44 # Default Margin Value of the image
counter = 0 # To count how many faces detected
gpu_memory_fraction =1.0 # if we use GPU ,we define the upper bound of the GPU Memory
standard_size(image_dir) # Converting all the image to standard size
for dirs in os.listdir(image_dir):
dir_path=os.path.join(image_dir,dirs)
for f in os.listdir(dir_path):
img_p = os.path.join(image_dir,dirs,f)
label=img_p.split('/')[-2]
file_name=f
im = Image.open(img_p) # Opening the image using PILLOW
w,h = im.size # getting the width and the height of the image
size = im.size # for passing the face embeddings parameters
if method == "harr":
xmin,ymin,xmax,ymax=detect_face(im) # Using opencv method
if method == "facenet":
xmin,ymin,xmax,ymax = embeddings(img_p,size,margin,gpu_memory_fraction) # Calling the facenet embedding function
if xmin == ymin == xmax == ymax == 0:
# It will remove the undetected and error image
os.remove(img_p)
print("*"+img_p+"*")
print("********** Error With the Image , So Removing **********")
else:
# It will add the detected image
counter += 1
print("Face Detected and Processed : {}".format(counter))
data_list.append([file_name,w,h,label,xmin,ymin,xmax,ymax]) # Appending in a list format
print("**** Successfully image processed *********")
return data_list
def parse_arguments(argv):
# Defining the parser
parser = argparse.ArgumentParser()
parser.add_argument('csv_name',type=str,help='Name of the csv')
parser.add_argument('tfrecord_name',type=str,help='Name of the tfrecord')
parser.add_argument('method',type=str,help='Method to use to detect Face')
return parser.parse_args(argv)
# image directory
image_dir = os.path.join(os.getcwd(),"images")
# parsing the arguments
args=parse_arguments(sys.argv[1:])
# defining the list structure to convert to csv
data_list = [['filename','width','height','class','xmin','ymin','xmax','ymax']]
# process the images and getting the coordinate values as list
coordinate_list = image_process(image_dir,data_list,args.method)
# writing into csv file
writeCsvFile(args.csv_name, coordinate_list)
# conversion to tfrecord
generate_tf(args.csv_name,args.tfrecord_name,image_dir)
# Exporting the output
class_labels=[]
for dirs in os.listdir(image_dir):
class_labels.append(dirs)
export(args.csv_name,class_labels) # Calling the export function from check