-
Notifications
You must be signed in to change notification settings - Fork 43
/
circulant_matrix_tracker.py
executable file
·574 lines (437 loc) · 17.9 KB
/
circulant_matrix_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This is a python reimplementation of the open source tracker in
http://www2.isr.uc.pt/~henriques/circulant/index.html
Found http://wiki.scipy.org/NumPy_for_Matlab_Users very useful
Based on the work of João F. Henriques, 2012
http://www.isr.uc.pt/~henriques
Rodrigo Benenson, MPI-Inf 2013
http://rodrigob.github.io
"""
from __future__ import print_function
import os
import os.path
import sys
import glob
import time
from optparse import OptionParser
import scipy.misc
import pylab
debug = False
class CirculantMatrixTracker:
def __init__(self, object_example):
"""
object_example is an image showing the object to track
"""
return
def find(self, image):
"""
Will return the x/y coordinates where the object was found,
and the score
"""
return
def update_template(self, new_example, forget_factor=1):
"""
Update the tracking template,
new_example is expected to match the size of
the example provided to the constructor
"""
return
def load_video_info(video_path):
"""
Loads all the relevant information for the video in the given path:
the list of image files (cell array of strings), initial position
(1x2), target size (1x2), whether to resize the video to half
(boolean), and the ground truth information for precision calculations
(Nx2, for N frames). The ordering of coordinates is always [y, x].
The path to the video is returned, since it may change if the images
are located in a sub-folder (as is the default for MILTrack's videos).
"""
# load ground truth from text file (MILTrack's format)
text_files = glob.glob(os.path.join(video_path, "*_gt.txt"))
assert text_files, \
"No initial position and ground truth (*_gt.txt) to load."
first_file_path = os.path.join(video_path, text_files[0])
#f = open(first_file_path, "r")
#ground_truth = textscan(f, '%f,%f,%f,%f') # [x, y, width, height]
#ground_truth = cat(2, ground_truth{:})
ground_truth = pylab.loadtxt(first_file_path, delimiter=",")
#f.close()
# set initial position and size
first_ground_truth = ground_truth[0, :]
# target_sz contains height, width
target_sz = pylab.array([first_ground_truth[3], first_ground_truth[2]])
# pos contains y, x center
pos = [first_ground_truth[1], first_ground_truth[0]] \
+ pylab.floor(target_sz / 2)
#try:
if True:
# interpolate missing annotations
# 4 out of each 5 frames is filled with zeros
for i in range(4): # x, y, width, height
xp = range(0, ground_truth.shape[0], 5)
fp = ground_truth[xp, i]
x = range(ground_truth.shape[0])
ground_truth[:, i] = pylab.interp(x, xp, fp)
# store positions instead of boxes
ground_truth = ground_truth[:, [1, 0]] + ground_truth[:, [3, 2]] / 2
#except Exception as e:
else:
print("Failed to gather ground truth data")
#print("Error", e)
# ok, wrong format or we just don't have ground truth data.
ground_truth = []
# list all frames. first, try MILTrack's format, where the initial and
# final frame numbers are stored in a text file. if it doesn't work,
# try to load all png/jpg files in the folder.
text_files = glob.glob(os.path.join(video_path, "*_frames.txt"))
if text_files:
first_file_path = os.path.join(video_path, text_files[0])
#f = open(first_file_path, "r")
#frames = textscan(f, '%f,%f')
frames = pylab.loadtxt(first_file_path, delimiter=",", dtype=int)
#f.close()
# see if they are in the 'imgs' subfolder or not
test1_path_to_img = os.path.join(video_path,
"imgs/img%05i.png" % frames[0])
test2_path_to_img = os.path.join(video_path,
"img%05i.png" % frames[0])
if os.path.exists(test1_path_to_img):
video_path = os.path.join(video_path, "imgs/")
elif os.path.exists(test2_path_to_img):
video_path = video_path # no need for change
else:
raise Exception("Failed to find the png images")
# list the files
img_files = ["img%05i.png" % i
for i in range(frames[0], frames[1] + 1)]
#img_files = num2str((frames{1} : frames{2})', 'img%05i.png')
#img_files = cellstr(img_files);
else:
# no text file, just list all images
img_files = glob.glob(os.path.join(video_path, "*.png"))
if len(img_files) == 0:
img_files = glob.glob(os.path.join(video_path, "*.jpg"))
assert len(img_files), "Failed to find png or jpg images"
img_files.sort()
# if the target is too large, use a lower resolution
# no need for so much detail
if pylab.sqrt(pylab.prod(target_sz)) >= 100:
pos = pylab.floor(pos / 2)
target_sz = pylab.floor(target_sz / 2)
resize_image = True
else:
resize_image = False
ret = [img_files, pos, target_sz, resize_image, ground_truth, video_path]
return ret
def rgb2gray(rgb_image):
"Based on http://stackoverflow.com/questions/12201577"
# [0.299, 0.587, 0.144] normalized gives [0.29, 0.57, 0.14]
return pylab.dot(rgb_image[:, :, :3], [0.29, 0.57, 0.14])
def get_subwindow(im, pos, sz, cos_window):
"""
Obtain sub-window from image, with replication-padding.
Returns sub-window of image IM centered at POS ([y, x] coordinates),
with size SZ ([height, width]). If any pixels are outside of the image,
they will replicate the values at the borders.
The subwindow is also normalized to range -0.5 .. 0.5, and the given
cosine window COS_WINDOW is applied
(though this part could be omitted to make the function more general).
"""
if pylab.isscalar(sz): # square sub-window
sz = [sz, sz]
ys = pylab.floor(pos[0]) \
+ pylab.arange(sz[0], dtype=int) - pylab.floor(sz[0]/2)
xs = pylab.floor(pos[1]) \
+ pylab.arange(sz[1], dtype=int) - pylab.floor(sz[1]/2)
ys = ys.astype(int)
xs = xs.astype(int)
# check for out-of-bounds coordinates,
# and set them to the values at the borders
ys[ys < 0] = 0
ys[ys >= im.shape[0]] = im.shape[0] - 1
xs[xs < 0] = 0
xs[xs >= im.shape[1]] = im.shape[1] - 1
#zs = range(im.shape[2])
# extract image
#out = im[pylab.ix_(ys, xs, zs)]
out = im[pylab.ix_(ys, xs)]
if debug:
print("Out max/min value==", out.max(), "/", out.min())
pylab.figure()
pylab.imshow(out, cmap=pylab.cm.gray)
pylab.title("cropped subwindow")
#pre-process window --
# normalize to range -0.5 .. 0.5
# pixels are already in range 0 to 1
out = out.astype(pylab.float64) - 0.5
# apply cosine window
out = pylab.multiply(cos_window, out)
return out
def dense_gauss_kernel(sigma, x, y=None):
"""
Gaussian Kernel with dense sampling.
Evaluates a gaussian kernel with bandwidth SIGMA for all displacements
between input images X and Y, which must both be MxN. They must also
be periodic (ie., pre-processed with a cosine window). The result is
an MxN map of responses.
If X and Y are the same, ommit the third parameter to re-use some
values, which is faster.
"""
xf = pylab.fft2(x) # x in Fourier domain
x_flat = x.flatten()
xx = pylab.dot(x_flat.transpose(), x_flat) # squared norm of x
if y is not None:
# general case, x and y are different
yf = pylab.fft2(y)
y_flat = y.flatten()
yy = pylab.dot(y_flat.transpose(), y_flat)
else:
# auto-correlation of x, avoid repeating a few operations
yf = xf
yy = xx
# cross-correlation term in Fourier domain
xyf = pylab.multiply(xf, pylab.conj(yf))
# to spatial domain
xyf_ifft = pylab.ifft2(xyf)
#xy_complex = circshift(xyf_ifft, floor(x.shape/2))
row_shift, col_shift = pylab.floor(pylab.array(x.shape)/2).astype(int)
xy_complex = pylab.roll(xyf_ifft, row_shift, axis=0)
xy_complex = pylab.roll(xy_complex, col_shift, axis=1)
xy = pylab.real(xy_complex)
# calculate gaussian response for all positions
scaling = -1 / (sigma**2)
xx_yy = xx + yy
xx_yy_2xy = xx_yy - 2 * xy
k = pylab.exp(scaling * pylab.maximum(0, xx_yy_2xy / x.size))
#print("dense_gauss_kernel x.shape ==", x.shape)
#print("dense_gauss_kernel k.shape ==", k.shape)
return k
def show_precision(positions, ground_truth, video_path, title):
"""
Calculates precision for a series of distance thresholds (percentage of
frames where the distance to the ground truth is within the threshold).
The results are shown in a new figure.
Accepts positions and ground truth as Nx2 matrices (for N frames), and
a title string.
"""
print("Evaluating tracking results.")
pylab.ioff() # interactive mode off
max_threshold = 50 # used for graphs in the paper
if positions.shape[0] != ground_truth.shape[0]:
raise Exception(
"Could not plot precisions, because the number of ground"
"truth frames does not match the number of tracked frames.")
# calculate distances to ground truth over all frames
delta = positions - ground_truth
distances = pylab.sqrt((delta[:, 0]**2) + (delta[:, 1]**2))
#distances[pylab.isnan(distances)] = []
# compute precisions
precisions = pylab.zeros((max_threshold, 1), dtype=float)
for p in range(max_threshold):
precisions[p] = pylab.sum(distances <= p, dtype=float) / len(distances)
if False:
pylab.figure()
pylab.plot(distances)
pylab.title("Distances")
pylab.xlabel("Frame number")
pylab.ylabel("Distance")
# plot the precisions
pylab.figure() # 'Number', 'off', 'Name',
pylab.title("Precisions - " + title)
pylab.plot(precisions, "k-", linewidth=2)
pylab.xlabel("Threshold")
pylab.ylabel("Precision")
pylab.show()
return
def plot_tracking(frame, pos, target_sz, im, ground_truth):
global \
tracking_figure, tracking_figure_title, tracking_figure_axes, \
tracking_rectangle, gt_point, \
z_figure_axes, response_figure_axes
timeout = 1e-6
#timeout = 0.05 # uncomment to run slower
if frame == 0:
#pylab.ion() # interactive mode on
tracking_figure = pylab.figure()
gs = pylab.GridSpec(1, 3, width_ratios=[3, 1, 1])
tracking_figure_axes = tracking_figure.add_subplot(gs[0])
tracking_figure_axes.set_title("Tracked object (and ground truth)")
z_figure_axes = tracking_figure.add_subplot(gs[1])
z_figure_axes.set_title("Template")
response_figure_axes = tracking_figure.add_subplot(gs[2])
response_figure_axes.set_title("Response")
tracking_rectangle = pylab.Rectangle((0, 0), 0, 0)
tracking_rectangle.set_color((1, 0, 0, 0.5))
tracking_figure_axes.add_patch(tracking_rectangle)
gt_point = pylab.Circle((0, 0), radius=5)
gt_point.set_color((0, 0, 1, 0.5))
tracking_figure_axes.add_patch(gt_point)
tracking_figure_title = tracking_figure.suptitle("")
pylab.show(block=False)
elif tracking_figure is None:
return # we simply go faster by skipping the drawing
elif not pylab.fignum_exists(tracking_figure.number):
#print("Drawing window closed, end of game. "
# "Have a nice day !")
#sys.exit()
print("From now on drawing will be omitted, "
"so that computation goes faster")
tracking_figure = None
return
global z, response
tracking_figure_axes.imshow(im, cmap=pylab.cm.gray)
rect_y, rect_x = tuple(pos - target_sz/2.0)
rect_height, rect_width = target_sz
tracking_rectangle.set_xy((rect_x, rect_y))
tracking_rectangle.set_width(rect_width)
tracking_rectangle.set_height(rect_height)
if len(ground_truth) > 0:
gt = ground_truth[frame]
gt_y, gt_x = gt
gt_point.center = (gt_x, gt_y)
if z is not None:
z_figure_axes.imshow(z, cmap=pylab.cm.hot)
if response is not None:
response_figure_axes.imshow(response, cmap=pylab.cm.hot)
tracking_figure_title.set_text("Frame %i (out of %i)"
% (frame + 1, len(ground_truth)))
if debug and False and (frame % 1) == 0:
print("Tracked pos ==", pos)
#tracking_figure.canvas.draw() # update
pylab.draw()
pylab.waitforbuttonpress(timeout=timeout)
return
def track(input_video_path):
"""
notation: variables ending with f are in the frequency domain.
"""
# parameters according to the paper --
padding = 1.0 # extra area surrounding the target
#spatial bandwidth (proportional to target)
output_sigma_factor = 1 / float(16)
sigma = 0.2 # gaussian kernel bandwidth
lambda_value = 1e-2 # regularization
# linear interpolation factor for adaptation
interpolation_factor = 0.075
info = load_video_info(input_video_path)
img_files, pos, target_sz, \
should_resize_image, ground_truth, video_path = info
# window size, taking padding into account
sz = pylab.floor(target_sz * (1 + padding))
# desired output (gaussian shaped), bandwidth proportional to target size
output_sigma = pylab.sqrt(pylab.prod(target_sz)) * output_sigma_factor
grid_y = pylab.arange(sz[0]) - pylab.floor(sz[0]/2)
grid_x = pylab.arange(sz[1]) - pylab.floor(sz[1]/2)
#[rs, cs] = ndgrid(grid_x, grid_y)
rs, cs = pylab.meshgrid(grid_x, grid_y)
y = pylab.exp(-0.5 / output_sigma**2 * (rs**2 + cs**2))
yf = pylab.fft2(y)
#print("yf.shape ==", yf.shape)
#print("y.shape ==", y.shape)
# store pre-computed cosine window
cos_window = pylab.outer(pylab.hanning(sz[0]),
pylab.hanning(sz[1]))
total_time = 0 # to calculate FPS
positions = pylab.zeros((len(img_files), 2)) # to calculate precision
global z, response
z = None
alphaf = None
response = None
for frame, image_filename in enumerate(img_files):
if True and ((frame % 10) == 0):
print("Processing frame", frame)
# load image
image_path = os.path.join(video_path, image_filename)
im = pylab.imread(image_path)
if len(im.shape) == 3 and im.shape[2] > 1:
im = rgb2gray(im)
#print("Image max/min value==", im.max(), "/", im.min())
if should_resize_image:
im = scipy.misc.imresize(im, 0.5)
start_time = time.time()
# extract and pre-process subwindow
x = get_subwindow(im, pos, sz, cos_window)
is_first_frame = (frame == 0)
if not is_first_frame:
# calculate response of the classifier at all locations
k = dense_gauss_kernel(sigma, x, z)
kf = pylab.fft2(k)
alphaf_kf = pylab.multiply(alphaf, kf)
response = pylab.real(pylab.ifft2(alphaf_kf)) # Eq. 9
# target location is at the maximum response
r = response
row, col = pylab.unravel_index(r.argmax(), r.shape)
pos = pos - pylab.floor(sz/2) + [row, col]
if debug:
print("Frame ==", frame)
print("Max response", r.max(), "at", [row, col])
pylab.figure()
pylab.imshow(cos_window)
pylab.title("cos_window")
pylab.figure()
pylab.imshow(x)
pylab.title("x")
pylab.figure()
pylab.imshow(response)
pylab.title("response")
pylab.show(block=True)
# end "if not first frame"
# get subwindow at current estimated target position,
# to train classifer
x = get_subwindow(im, pos, sz, cos_window)
# Kernel Regularized Least-Squares,
# calculate alphas (in Fourier domain)
k = dense_gauss_kernel(sigma, x)
new_alphaf = pylab.divide(yf, (pylab.fft2(k) + lambda_value)) # Eq. 7
new_z = x
if is_first_frame:
#first frame, train with a single image
alphaf = new_alphaf
z = x
else:
# subsequent frames, interpolate model
f = interpolation_factor
alphaf = (1 - f) * alphaf + f * new_alphaf
z = (1 - f) * z + f * new_z
# end "first frame or not"
# save position and calculate FPS
positions[frame, :] = pos
total_time += time.time() - start_time
# visualization
plot_tracking(frame, pos, target_sz, im, ground_truth)
# end of "for each image in video"
if should_resize_image:
positions = positions * 2
print("Frames-per-second:", len(img_files) / total_time)
title = os.path.basename(os.path.normpath(input_video_path))
if len(ground_truth) > 0:
# show the precisions plot
show_precision(positions, ground_truth, video_path, title)
return
def parse_arguments():
parser = OptionParser()
parser.description = \
"This program will track objects " \
"on videos in the MILTrack paper format. " \
"See http://goo.gl/pSTo9r"
parser.add_option("-i", "--input", dest="video_path",
metavar="PATH", type="string", default=None,
help="path to a folder o a MILTrack video")
(options, args) = parser.parse_args()
#print (options, args)
if not options.video_path:
parser.error("'input' option is required to run this program")
if not os.path.exists(options.video_path):
parser.error("Could not find the input file %s"
% options.video_path)
return options
def main():
options = parse_arguments()
track(options.video_path)
print("End of game, have a nice day!")
return
if __name__ == "__main__":
main()
# end of file