-
Notifications
You must be signed in to change notification settings - Fork 23
/
maddpg.py
148 lines (121 loc) · 6.9 KB
/
maddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import tensorflow as tf
import pathlib
import general_utilities
class Actor:
def __init__(self, scope, session, n_actions, action_bound,
eval_states, target_states, learning_rate=0.001, tau=0.01):
self.session = session
self.n_actions = n_actions
self.action_bound = action_bound
self.eval_states = eval_states
self.target_states = target_states
self.learning_rate = learning_rate
self.scope = scope
with tf.variable_scope(self.scope):
self.eval_actions = self.build_network(self.eval_states,
scope='eval', trainable=True)
self.target_actions = self.build_network(self.target_states,
scope='target', trainable=False)
self.eval_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope=scope + '/eval')
self.target_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope=scope + '/target')
self.update_target = [tf.assign(t, (1 - tau) * t + tau * e)
for t, e in zip(self.target_weights, self.eval_weights)]
def build_network(self, x, scope, trainable):
with tf.variable_scope(scope):
W = tf.random_normal_initializer(0.0, 0.1)
b = tf.constant_initializer(0.1)
h1 = tf.layers.dense(x, 50, activation=tf.nn.relu,
kernel_initializer=W, bias_initializer=b,
name='h1', trainable=trainable)
actions = tf.layers.dense(h1, self.n_actions, activation=tf.nn.tanh,
kernel_initializer=W, bias_initializer=b,
name='actions', trainable=trainable)
scaled_actions = tf.multiply(actions, self.action_bound,
name='scaled_actions')
return scaled_actions
def add_gradients(self, action_gradients):
with tf.variable_scope(self.scope):
self.action_gradients = tf.gradients(ys=self.eval_actions,
xs=self.eval_weights,
grad_ys=action_gradients)
optimizer = tf.train.AdamOptimizer(-self.learning_rate)
self.optimize = optimizer.apply_gradients(zip(self.action_gradients,
self.eval_weights))
def learn(self, actors, states):
a = {}
for i in range(len(states)):
a[actors[i].eval_states] = states[i]
self.session.run(self.optimize, feed_dict={**a})
self.session.run(self.update_target)
def choose_action(self, state):
return self.session.run(self.eval_actions,
feed_dict={self.eval_states: state[np.newaxis, :]})[0]
class Critic:
def __init__(self, scope, session, n_actions, actors_eval_actions,
actors_target_actions, eval_states, target_states,
rewards, learning_rate=0.001, gamma=0.9, tau=0.01):
self.session = session
self.n_actions = n_actions
self.actors_eval_actions = actors_eval_actions
self.actors_target_actions = actors_target_actions
self.eval_states = eval_states
self.target_states = target_states
self.rewards = rewards
with tf.variable_scope(scope):
self.eval_values = self.build_network(self.eval_states,
self.actors_eval_actions,
'eval', trainable=True)
self.target_values = self.build_network(self.target_states,
self.actors_target_actions,
'target', trainable=False)
self.eval_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope=scope + '/eval')
self.target_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope=scope + '/target')
self.target = self.rewards + gamma * self.target_values
self.loss = tf.reduce_mean(tf.squared_difference(self.target,
self.eval_values))
self.optimize = tf.train.AdamOptimizer(
learning_rate).minimize(self.loss)
self.action_gradients = []
for i in range(len(self.actors_eval_actions)):
self.action_gradients.append(tf.gradients(ys=self.eval_values,
xs=self.actors_eval_actions[i])[0])
self.update_target = [tf.assign(t, (1 - tau) * t + tau * e)
for t, e in zip(self.target_weights, self.eval_weights)]
def build_network(self, x1, x2, scope, trainable):
with tf.variable_scope(scope):
W = tf.random_normal_initializer(0.0, 0.1)
b = tf.constant_initializer(0.1)
first = True
for i in range(len(x1)):
h1 = tf.layers.dense(x1[i], 50, activation=tf.nn.relu,
kernel_initializer=W, bias_initializer=b,
name='h1-' + str(i), trainable=trainable)
h21 = tf.get_variable('h21-' + str(i), [50, 50],
initializer=W, trainable=trainable)
h22 = tf.get_variable('h22-' + str(i), [self.n_actions[i], 50],
initializer=W, trainable=trainable)
if first == True:
h3 = tf.matmul(h1, h21) + tf.matmul(x2[i], h22)
first = False
else:
h3 = h3 + tf.matmul(h1, h21) + tf.matmul(x2[i], h22)
b2 = tf.get_variable('b2', [1, 50], initializer=b,
trainable=trainable)
h3 = tf.nn.relu(h3 + b2)
values = tf.layers.dense(h3, 1, kernel_initializer=W,
bias_initializer=b, name='values',
trainable=trainable)
return values
def learn(self, states, actions, rewards, states_next):
s = {i: d for i, d in zip(self.eval_states, states)}
a = {i: d for i, d in zip(self.actors_eval_actions, actions)}
sn = {i: d for i, d in zip(self.target_states, states_next)}
loss, _ = self.session.run([self.loss, self.optimize], feed_dict={**s, **a, **sn,
self.rewards: rewards})
self.session.run(self.update_target)
return loss