diff --git a/eda_2023.ipynb b/eda_2023.ipynb new file mode 100644 index 0000000..25be62e --- /dev/null +++ b/eda_2023.ipynb @@ -0,0 +1,1406 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4a7647df-f1c2-414e-9da4-055ae9f67e33", + "metadata": {}, + "source": [ + "### EDA 2023\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "201288da-86ac-4db0-a56b-4d75e26e1753", + "metadata": {}, + "outputs": [], + "source": [ + "from pyspark.sql import SparkSession\n", + "from pyspark.sql import functions as F\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "3443992c-4530-48f2-a133-fb1dacf4b84f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('spark.stage.maxConsecutiveAttempts', '10'),\n", + " ('spark.dynamicAllocation.minExecutors', '1'),\n", + " ('spark.eventLog.enabled', 'true'),\n", + " ('spark.submit.pyFiles',\n", + " '/root/.ivy2/jars/com.johnsnowlabs.nlp_spark-nlp_2.12-4.4.0.jar,/root/.ivy2/jars/graphframes_graphframes-0.8.2-spark3.1-s_2.12.jar,/root/.ivy2/jars/com.typesafe_config-1.4.2.jar,/root/.ivy2/jars/org.rocksdb_rocksdbjni-6.29.5.jar,/root/.ivy2/jars/com.amazonaws_aws-java-sdk-bundle-1.11.828.jar,/root/.ivy2/jars/com.github.universal-automata_liblevenshtein-3.0.0.jar,/root/.ivy2/jars/com.google.cloud_google-cloud-storage-2.16.0.jar,/root/.ivy2/jars/com.navigamez_greex-1.0.jar,/root/.ivy2/jars/com.johnsnowlabs.nlp_tensorflow-cpu_2.12-0.4.4.jar,/root/.ivy2/jars/it.unimi.dsi_fastutil-7.0.12.jar,/root/.ivy2/jars/org.projectlombok_lombok-1.16.8.jar,/root/.ivy2/jars/com.google.guava_guava-31.1-jre.jar,/root/.ivy2/jars/com.google.guava_failureaccess-1.0.1.jar,/root/.ivy2/jars/com.google.guava_listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar,/root/.ivy2/jars/com.google.errorprone_error_prone_annotations-2.16.jar,/root/.ivy2/jars/com.google.j2objc_j2objc-annotations-1.3.jar,/root/.ivy2/jars/com.google.http-client_google-http-client-1.42.3.jar,/root/.ivy2/jars/io.opencensus_opencensus-contrib-http-util-0.31.1.jar,/root/.ivy2/jars/com.google.http-client_google-http-client-jackson2-1.42.3.jar,/root/.ivy2/jars/com.google.http-client_google-http-client-gson-1.42.3.jar,/root/.ivy2/jars/com.google.api-client_google-api-client-2.1.1.jar,/root/.ivy2/jars/commons-codec_commons-codec-1.15.jar,/root/.ivy2/jars/com.google.oauth-client_google-oauth-client-1.34.1.jar,/root/.ivy2/jars/com.google.http-client_google-http-client-apache-v2-1.42.3.jar,/root/.ivy2/jars/com.google.apis_google-api-services-storage-v1-rev20220705-2.0.0.jar,/root/.ivy2/jars/com.google.code.gson_gson-2.10.jar,/root/.ivy2/jars/com.google.cloud_google-cloud-core-2.9.0.jar,/root/.ivy2/jars/com.google.auto.value_auto-value-annotations-1.10.1.jar,/root/.ivy2/jars/com.google.cloud_google-cloud-core-http-2.9.0.jar,/root/.ivy2/jars/com.google.http-client_google-http-client-appengine-1.42.3.jar,/root/.ivy2/jars/com.google.api_gax-httpjson-0.105.1.jar,/root/.ivy2/jars/com.google.cloud_google-cloud-core-grpc-2.9.0.jar,/root/.ivy2/jars/io.grpc_grpc-core-1.51.0.jar,/root/.ivy2/jars/com.google.api_gax-2.20.1.jar,/root/.ivy2/jars/com.google.api_gax-grpc-2.20.1.jar,/root/.ivy2/jars/io.grpc_grpc-alts-1.51.0.jar,/root/.ivy2/jars/io.grpc_grpc-grpclb-1.51.0.jar,/root/.ivy2/jars/org.conscrypt_conscrypt-openjdk-uber-2.5.2.jar,/root/.ivy2/jars/io.grpc_grpc-protobuf-1.51.0.jar,/root/.ivy2/jars/com.google.auth_google-auth-library-credentials-1.13.0.jar,/root/.ivy2/jars/com.google.auth_google-auth-library-oauth2-http-1.13.0.jar,/root/.ivy2/jars/com.google.api_api-common-2.2.2.jar,/root/.ivy2/jars/javax.annotation_javax.annotation-api-1.3.2.jar,/root/.ivy2/jars/io.opencensus_opencensus-api-0.31.1.jar,/root/.ivy2/jars/io.grpc_grpc-context-1.51.0.jar,/root/.ivy2/jars/com.google.api.grpc_proto-google-iam-v1-1.6.22.jar,/root/.ivy2/jars/com.google.protobuf_protobuf-java-3.21.10.jar,/root/.ivy2/jars/com.google.protobuf_protobuf-java-util-3.21.10.jar,/root/.ivy2/jars/com.google.api.grpc_proto-google-common-protos-2.11.0.jar,/root/.ivy2/jars/org.threeten_threetenbp-1.6.4.jar,/root/.ivy2/jars/com.google.api.grpc_proto-google-cloud-storage-v2-2.16.0-alpha.jar,/root/.ivy2/jars/com.google.api.grpc_grpc-google-cloud-storage-v2-2.16.0-alpha.jar,/root/.ivy2/jars/com.google.api.grpc_gapic-google-cloud-storage-v2-2.16.0-alpha.jar,/root/.ivy2/jars/com.fasterxml.jackson.core_jackson-core-2.14.1.jar,/root/.ivy2/jars/com.google.code.findbugs_jsr305-3.0.2.jar,/root/.ivy2/jars/io.grpc_grpc-api-1.51.0.jar,/root/.ivy2/jars/io.grpc_grpc-auth-1.51.0.jar,/root/.ivy2/jars/io.grpc_grpc-stub-1.51.0.jar,/root/.ivy2/jars/org.checkerframework_checker-qual-3.28.0.jar,/root/.ivy2/jars/com.google.api.grpc_grpc-google-iam-v1-1.6.22.jar,/root/.ivy2/jars/io.grpc_grpc-protobuf-lite-1.51.0.jar,/root/.ivy2/jars/com.google.android_annotations-4.1.1.4.jar,/root/.ivy2/jars/org.codehaus.mojo_animal-sniffer-annotations-1.22.jar,/root/.ivy2/jars/io.grpc_grpc-netty-shaded-1.51.0.jar,/root/.ivy2/jars/io.perfmark_perfmark-api-0.26.0.jar,/root/.ivy2/jars/io.grpc_grpc-googleapis-1.51.0.jar,/root/.ivy2/jars/io.grpc_grpc-xds-1.51.0.jar,/root/.ivy2/jars/io.opencensus_opencensus-proto-0.2.0.jar,/root/.ivy2/jars/io.grpc_grpc-services-1.51.0.jar,/root/.ivy2/jars/com.google.re2j_re2j-1.6.jar,/root/.ivy2/jars/dk.brics.automaton_automaton-1.11-8.jar,/root/.ivy2/jars/org.slf4j_slf4j-api-1.7.16.jar'),\n", + " ('spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_URI_BASES',\n", + " 'http://hub-msca-bdp-dphub-students-harshpachisia-m:8088/proxy/application_1700673289776_0002'),\n", + " ('spark.dataproc.sql.joinConditionReorder.enabled', 'true'),\n", + " ('spark.kryoserializer.buffer.max', '2000M'),\n", + " ('spark.serializer', 'org.apache.spark.serializer.KryoSerializer'),\n", + " ('spark.dataproc.sql.local.rank.pushdown.enabled', 'true'),\n", + " ('spark.driver.maxResultSize', '0'),\n", + " ('spark.yarn.unmanagedAM.enabled', 'true'),\n", + " ('spark.ui.filters',\n", + " 'org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter'),\n", + " ('spark.driver.port', '46821'),\n", + " ('spark.metrics.namespace',\n", + " 'app_name:${spark.app.name}.app_id:${spark.app.id}'),\n", + " ('spark.executor.memory', '4g'),\n", + " ('spark.dataproc.sql.optimizer.leftsemijoin.conversion.enabled', 'true'),\n", + " ('spark.hadoop.hive.execution.engine', 'mr'),\n", + " ('spark.executor.id', 'driver'),\n", + " ('spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version', '2'),\n", + " ('spark.dynamicAllocation.maxExecutors', '10000'),\n", + " ('spark.yarn.historyServer.address',\n", + " 'hub-msca-bdp-dphub-students-harshpachisia-m:18080'),\n", + " ('spark.app.id', 'application_1700673289776_0002'),\n", + " ('spark.yarn.dist.pyFiles',\n", + " 'file:///root/.ivy2/jars/com.johnsnowlabs.nlp_spark-nlp_2.12-4.4.0.jar,file:///root/.ivy2/jars/graphframes_graphframes-0.8.2-spark3.1-s_2.12.jar,file:///root/.ivy2/jars/com.typesafe_config-1.4.2.jar,file:///root/.ivy2/jars/org.rocksdb_rocksdbjni-6.29.5.jar,file:///root/.ivy2/jars/com.amazonaws_aws-java-sdk-bundle-1.11.828.jar,file:///root/.ivy2/jars/com.github.universal-automata_liblevenshtein-3.0.0.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-storage-2.16.0.jar,file:///root/.ivy2/jars/com.navigamez_greex-1.0.jar,file:///root/.ivy2/jars/com.johnsnowlabs.nlp_tensorflow-cpu_2.12-0.4.4.jar,file:///root/.ivy2/jars/it.unimi.dsi_fastutil-7.0.12.jar,file:///root/.ivy2/jars/org.projectlombok_lombok-1.16.8.jar,file:///root/.ivy2/jars/com.google.guava_guava-31.1-jre.jar,file:///root/.ivy2/jars/com.google.guava_failureaccess-1.0.1.jar,file:///root/.ivy2/jars/com.google.guava_listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar,file:///root/.ivy2/jars/com.google.errorprone_error_prone_annotations-2.16.jar,file:///root/.ivy2/jars/com.google.j2objc_j2objc-annotations-1.3.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-1.42.3.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-contrib-http-util-0.31.1.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-jackson2-1.42.3.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-gson-1.42.3.jar,file:///root/.ivy2/jars/com.google.api-client_google-api-client-2.1.1.jar,file:///root/.ivy2/jars/commons-codec_commons-codec-1.15.jar,file:///root/.ivy2/jars/com.google.oauth-client_google-oauth-client-1.34.1.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-apache-v2-1.42.3.jar,file:///root/.ivy2/jars/com.google.apis_google-api-services-storage-v1-rev20220705-2.0.0.jar,file:///root/.ivy2/jars/com.google.code.gson_gson-2.10.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-2.9.0.jar,file:///root/.ivy2/jars/com.google.auto.value_auto-value-annotations-1.10.1.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-http-2.9.0.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-appengine-1.42.3.jar,file:///root/.ivy2/jars/com.google.api_gax-httpjson-0.105.1.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-grpc-2.9.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-core-1.51.0.jar,file:///root/.ivy2/jars/com.google.api_gax-2.20.1.jar,file:///root/.ivy2/jars/com.google.api_gax-grpc-2.20.1.jar,file:///root/.ivy2/jars/io.grpc_grpc-alts-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-grpclb-1.51.0.jar,file:///root/.ivy2/jars/org.conscrypt_conscrypt-openjdk-uber-2.5.2.jar,file:///root/.ivy2/jars/io.grpc_grpc-protobuf-1.51.0.jar,file:///root/.ivy2/jars/com.google.auth_google-auth-library-credentials-1.13.0.jar,file:///root/.ivy2/jars/com.google.auth_google-auth-library-oauth2-http-1.13.0.jar,file:///root/.ivy2/jars/com.google.api_api-common-2.2.2.jar,file:///root/.ivy2/jars/javax.annotation_javax.annotation-api-1.3.2.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-api-0.31.1.jar,file:///root/.ivy2/jars/io.grpc_grpc-context-1.51.0.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-iam-v1-1.6.22.jar,file:///root/.ivy2/jars/com.google.protobuf_protobuf-java-3.21.10.jar,file:///root/.ivy2/jars/com.google.protobuf_protobuf-java-util-3.21.10.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-common-protos-2.11.0.jar,file:///root/.ivy2/jars/org.threeten_threetenbp-1.6.4.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.google.api.grpc_grpc-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.google.api.grpc_gapic-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.fasterxml.jackson.core_jackson-core-2.14.1.jar,file:///root/.ivy2/jars/com.google.code.findbugs_jsr305-3.0.2.jar,file:///root/.ivy2/jars/io.grpc_grpc-api-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-auth-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-stub-1.51.0.jar,file:///root/.ivy2/jars/org.checkerframework_checker-qual-3.28.0.jar,file:///root/.ivy2/jars/com.google.api.grpc_grpc-google-iam-v1-1.6.22.jar,file:///root/.ivy2/jars/io.grpc_grpc-protobuf-lite-1.51.0.jar,file:///root/.ivy2/jars/com.google.android_annotations-4.1.1.4.jar,file:///root/.ivy2/jars/org.codehaus.mojo_animal-sniffer-annotations-1.22.jar,file:///root/.ivy2/jars/io.grpc_grpc-netty-shaded-1.51.0.jar,file:///root/.ivy2/jars/io.perfmark_perfmark-api-0.26.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-googleapis-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-xds-1.51.0.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-proto-0.2.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-services-1.51.0.jar,file:///root/.ivy2/jars/com.google.re2j_re2j-1.6.jar,file:///root/.ivy2/jars/dk.brics.automaton_automaton-1.11-8.jar,file:///root/.ivy2/jars/org.slf4j_slf4j-api-1.7.16.jar'),\n", + " ('spark.yarn.am.attemptFailuresValidityInterval', '1h'),\n", + " ('spark.app.name', 'Spark Updated Conf'),\n", + " ('spark.sql.catalogImplementation', 'hive'),\n", + " ('spark.eventLog.dir',\n", + " 'gs://dataproc-temp-us-central1-635155370842-uzamlpgc/82d9ba70-b4ec-4813-be2a-b9d68f92ad04/spark-job-history'),\n", + " ('spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_HOSTS',\n", + " 'hub-msca-bdp-dphub-students-harshpachisia-m'),\n", + " ('spark.executorEnv.OPENBLAS_NUM_THREADS', '1'),\n", + " ('spark.yarn.secondary.jars',\n", + " 'com.johnsnowlabs.nlp_spark-nlp_2.12-4.4.0.jar,graphframes_graphframes-0.8.2-spark3.1-s_2.12.jar,com.typesafe_config-1.4.2.jar,org.rocksdb_rocksdbjni-6.29.5.jar,com.amazonaws_aws-java-sdk-bundle-1.11.828.jar,com.github.universal-automata_liblevenshtein-3.0.0.jar,com.google.cloud_google-cloud-storage-2.16.0.jar,com.navigamez_greex-1.0.jar,com.johnsnowlabs.nlp_tensorflow-cpu_2.12-0.4.4.jar,it.unimi.dsi_fastutil-7.0.12.jar,org.projectlombok_lombok-1.16.8.jar,com.google.guava_guava-31.1-jre.jar,com.google.guava_failureaccess-1.0.1.jar,com.google.guava_listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar,com.google.errorprone_error_prone_annotations-2.16.jar,com.google.j2objc_j2objc-annotations-1.3.jar,com.google.http-client_google-http-client-1.42.3.jar,io.opencensus_opencensus-contrib-http-util-0.31.1.jar,com.google.http-client_google-http-client-jackson2-1.42.3.jar,com.google.http-client_google-http-client-gson-1.42.3.jar,com.google.api-client_google-api-client-2.1.1.jar,commons-codec_commons-codec-1.15.jar,com.google.oauth-client_google-oauth-client-1.34.1.jar,com.google.http-client_google-http-client-apache-v2-1.42.3.jar,com.google.apis_google-api-services-storage-v1-rev20220705-2.0.0.jar,com.google.code.gson_gson-2.10.jar,com.google.cloud_google-cloud-core-2.9.0.jar,com.google.auto.value_auto-value-annotations-1.10.1.jar,com.google.cloud_google-cloud-core-http-2.9.0.jar,com.google.http-client_google-http-client-appengine-1.42.3.jar,com.google.api_gax-httpjson-0.105.1.jar,com.google.cloud_google-cloud-core-grpc-2.9.0.jar,io.grpc_grpc-core-1.51.0.jar,com.google.api_gax-2.20.1.jar,com.google.api_gax-grpc-2.20.1.jar,io.grpc_grpc-alts-1.51.0.jar,io.grpc_grpc-grpclb-1.51.0.jar,org.conscrypt_conscrypt-openjdk-uber-2.5.2.jar,io.grpc_grpc-protobuf-1.51.0.jar,com.google.auth_google-auth-library-credentials-1.13.0.jar,com.google.auth_google-auth-library-oauth2-http-1.13.0.jar,com.google.api_api-common-2.2.2.jar,javax.annotation_javax.annotation-api-1.3.2.jar,io.opencensus_opencensus-api-0.31.1.jar,io.grpc_grpc-context-1.51.0.jar,com.google.api.grpc_proto-google-iam-v1-1.6.22.jar,com.google.protobuf_protobuf-java-3.21.10.jar,com.google.protobuf_protobuf-java-util-3.21.10.jar,com.google.api.grpc_proto-google-common-protos-2.11.0.jar,org.threeten_threetenbp-1.6.4.jar,com.google.api.grpc_proto-google-cloud-storage-v2-2.16.0-alpha.jar,com.google.api.grpc_grpc-google-cloud-storage-v2-2.16.0-alpha.jar,com.google.api.grpc_gapic-google-cloud-storage-v2-2.16.0-alpha.jar,com.fasterxml.jackson.core_jackson-core-2.14.1.jar,com.google.code.findbugs_jsr305-3.0.2.jar,io.grpc_grpc-api-1.51.0.jar,io.grpc_grpc-auth-1.51.0.jar,io.grpc_grpc-stub-1.51.0.jar,org.checkerframework_checker-qual-3.28.0.jar,com.google.api.grpc_grpc-google-iam-v1-1.6.22.jar,io.grpc_grpc-protobuf-lite-1.51.0.jar,com.google.android_annotations-4.1.1.4.jar,org.codehaus.mojo_animal-sniffer-annotations-1.22.jar,io.grpc_grpc-netty-shaded-1.51.0.jar,io.perfmark_perfmark-api-0.26.0.jar,io.grpc_grpc-googleapis-1.51.0.jar,io.grpc_grpc-xds-1.51.0.jar,io.opencensus_opencensus-proto-0.2.0.jar,io.grpc_grpc-services-1.51.0.jar,com.google.re2j_re2j-1.6.jar,dk.brics.automaton_automaton-1.11-8.jar,org.slf4j_slf4j-api-1.7.16.jar'),\n", + " ('spark.repl.local.jars',\n", + " 'file:///root/.ivy2/jars/com.johnsnowlabs.nlp_spark-nlp_2.12-4.4.0.jar,file:///root/.ivy2/jars/graphframes_graphframes-0.8.2-spark3.1-s_2.12.jar,file:///root/.ivy2/jars/com.typesafe_config-1.4.2.jar,file:///root/.ivy2/jars/org.rocksdb_rocksdbjni-6.29.5.jar,file:///root/.ivy2/jars/com.amazonaws_aws-java-sdk-bundle-1.11.828.jar,file:///root/.ivy2/jars/com.github.universal-automata_liblevenshtein-3.0.0.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-storage-2.16.0.jar,file:///root/.ivy2/jars/com.navigamez_greex-1.0.jar,file:///root/.ivy2/jars/com.johnsnowlabs.nlp_tensorflow-cpu_2.12-0.4.4.jar,file:///root/.ivy2/jars/it.unimi.dsi_fastutil-7.0.12.jar,file:///root/.ivy2/jars/org.projectlombok_lombok-1.16.8.jar,file:///root/.ivy2/jars/com.google.guava_guava-31.1-jre.jar,file:///root/.ivy2/jars/com.google.guava_failureaccess-1.0.1.jar,file:///root/.ivy2/jars/com.google.guava_listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar,file:///root/.ivy2/jars/com.google.errorprone_error_prone_annotations-2.16.jar,file:///root/.ivy2/jars/com.google.j2objc_j2objc-annotations-1.3.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-1.42.3.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-contrib-http-util-0.31.1.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-jackson2-1.42.3.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-gson-1.42.3.jar,file:///root/.ivy2/jars/com.google.api-client_google-api-client-2.1.1.jar,file:///root/.ivy2/jars/commons-codec_commons-codec-1.15.jar,file:///root/.ivy2/jars/com.google.oauth-client_google-oauth-client-1.34.1.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-apache-v2-1.42.3.jar,file:///root/.ivy2/jars/com.google.apis_google-api-services-storage-v1-rev20220705-2.0.0.jar,file:///root/.ivy2/jars/com.google.code.gson_gson-2.10.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-2.9.0.jar,file:///root/.ivy2/jars/com.google.auto.value_auto-value-annotations-1.10.1.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-http-2.9.0.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-appengine-1.42.3.jar,file:///root/.ivy2/jars/com.google.api_gax-httpjson-0.105.1.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-grpc-2.9.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-core-1.51.0.jar,file:///root/.ivy2/jars/com.google.api_gax-2.20.1.jar,file:///root/.ivy2/jars/com.google.api_gax-grpc-2.20.1.jar,file:///root/.ivy2/jars/io.grpc_grpc-alts-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-grpclb-1.51.0.jar,file:///root/.ivy2/jars/org.conscrypt_conscrypt-openjdk-uber-2.5.2.jar,file:///root/.ivy2/jars/io.grpc_grpc-protobuf-1.51.0.jar,file:///root/.ivy2/jars/com.google.auth_google-auth-library-credentials-1.13.0.jar,file:///root/.ivy2/jars/com.google.auth_google-auth-library-oauth2-http-1.13.0.jar,file:///root/.ivy2/jars/com.google.api_api-common-2.2.2.jar,file:///root/.ivy2/jars/javax.annotation_javax.annotation-api-1.3.2.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-api-0.31.1.jar,file:///root/.ivy2/jars/io.grpc_grpc-context-1.51.0.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-iam-v1-1.6.22.jar,file:///root/.ivy2/jars/com.google.protobuf_protobuf-java-3.21.10.jar,file:///root/.ivy2/jars/com.google.protobuf_protobuf-java-util-3.21.10.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-common-protos-2.11.0.jar,file:///root/.ivy2/jars/org.threeten_threetenbp-1.6.4.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.google.api.grpc_grpc-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.google.api.grpc_gapic-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.fasterxml.jackson.core_jackson-core-2.14.1.jar,file:///root/.ivy2/jars/com.google.code.findbugs_jsr305-3.0.2.jar,file:///root/.ivy2/jars/io.grpc_grpc-api-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-auth-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-stub-1.51.0.jar,file:///root/.ivy2/jars/org.checkerframework_checker-qual-3.28.0.jar,file:///root/.ivy2/jars/com.google.api.grpc_grpc-google-iam-v1-1.6.22.jar,file:///root/.ivy2/jars/io.grpc_grpc-protobuf-lite-1.51.0.jar,file:///root/.ivy2/jars/com.google.android_annotations-4.1.1.4.jar,file:///root/.ivy2/jars/org.codehaus.mojo_animal-sniffer-annotations-1.22.jar,file:///root/.ivy2/jars/io.grpc_grpc-netty-shaded-1.51.0.jar,file:///root/.ivy2/jars/io.perfmark_perfmark-api-0.26.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-googleapis-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-xds-1.51.0.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-proto-0.2.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-services-1.51.0.jar,file:///root/.ivy2/jars/com.google.re2j_re2j-1.6.jar,file:///root/.ivy2/jars/dk.brics.automaton_automaton-1.11-8.jar,file:///root/.ivy2/jars/org.slf4j_slf4j-api-1.7.16.jar'),\n", + " ('spark.sql.cbo.enabled', 'true'),\n", + " ('spark.executorEnv.PYTHONPATH',\n", + " '/usr/lib/spark/python/lib/py4j-0.10.9-src.zip:/usr/lib/spark/python/:{{PWD}}/pyspark.zip{{PWD}}/py4j-0.10.9-src.zip{{PWD}}/com.johnsnowlabs.nlp_spark-nlp_2.12-4.4.0.jar{{PWD}}/graphframes_graphframes-0.8.2-spark3.1-s_2.12.jar{{PWD}}/com.typesafe_config-1.4.2.jar{{PWD}}/org.rocksdb_rocksdbjni-6.29.5.jar{{PWD}}/com.amazonaws_aws-java-sdk-bundle-1.11.828.jar{{PWD}}/com.github.universal-automata_liblevenshtein-3.0.0.jar{{PWD}}/com.google.cloud_google-cloud-storage-2.16.0.jar{{PWD}}/com.navigamez_greex-1.0.jar{{PWD}}/com.johnsnowlabs.nlp_tensorflow-cpu_2.12-0.4.4.jar{{PWD}}/it.unimi.dsi_fastutil-7.0.12.jar{{PWD}}/org.projectlombok_lombok-1.16.8.jar{{PWD}}/com.google.guava_guava-31.1-jre.jar{{PWD}}/com.google.guava_failureaccess-1.0.1.jar{{PWD}}/com.google.guava_listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar{{PWD}}/com.google.errorprone_error_prone_annotations-2.16.jar{{PWD}}/com.google.j2objc_j2objc-annotations-1.3.jar{{PWD}}/com.google.http-client_google-http-client-1.42.3.jar{{PWD}}/io.opencensus_opencensus-contrib-http-util-0.31.1.jar{{PWD}}/com.google.http-client_google-http-client-jackson2-1.42.3.jar{{PWD}}/com.google.http-client_google-http-client-gson-1.42.3.jar{{PWD}}/com.google.api-client_google-api-client-2.1.1.jar{{PWD}}/commons-codec_commons-codec-1.15.jar{{PWD}}/com.google.oauth-client_google-oauth-client-1.34.1.jar{{PWD}}/com.google.http-client_google-http-client-apache-v2-1.42.3.jar{{PWD}}/com.google.apis_google-api-services-storage-v1-rev20220705-2.0.0.jar{{PWD}}/com.google.code.gson_gson-2.10.jar{{PWD}}/com.google.cloud_google-cloud-core-2.9.0.jar{{PWD}}/com.google.auto.value_auto-value-annotations-1.10.1.jar{{PWD}}/com.google.cloud_google-cloud-core-http-2.9.0.jar{{PWD}}/com.google.http-client_google-http-client-appengine-1.42.3.jar{{PWD}}/com.google.api_gax-httpjson-0.105.1.jar{{PWD}}/com.google.cloud_google-cloud-core-grpc-2.9.0.jar{{PWD}}/io.grpc_grpc-core-1.51.0.jar{{PWD}}/com.google.api_gax-2.20.1.jar{{PWD}}/com.google.api_gax-grpc-2.20.1.jar{{PWD}}/io.grpc_grpc-alts-1.51.0.jar{{PWD}}/io.grpc_grpc-grpclb-1.51.0.jar{{PWD}}/org.conscrypt_conscrypt-openjdk-uber-2.5.2.jar{{PWD}}/io.grpc_grpc-protobuf-1.51.0.jar{{PWD}}/com.google.auth_google-auth-library-credentials-1.13.0.jar{{PWD}}/com.google.auth_google-auth-library-oauth2-http-1.13.0.jar{{PWD}}/com.google.api_api-common-2.2.2.jar{{PWD}}/javax.annotation_javax.annotation-api-1.3.2.jar{{PWD}}/io.opencensus_opencensus-api-0.31.1.jar{{PWD}}/io.grpc_grpc-context-1.51.0.jar{{PWD}}/com.google.api.grpc_proto-google-iam-v1-1.6.22.jar{{PWD}}/com.google.protobuf_protobuf-java-3.21.10.jar{{PWD}}/com.google.protobuf_protobuf-java-util-3.21.10.jar{{PWD}}/com.google.api.grpc_proto-google-common-protos-2.11.0.jar{{PWD}}/org.threeten_threetenbp-1.6.4.jar{{PWD}}/com.google.api.grpc_proto-google-cloud-storage-v2-2.16.0-alpha.jar{{PWD}}/com.google.api.grpc_grpc-google-cloud-storage-v2-2.16.0-alpha.jar{{PWD}}/com.google.api.grpc_gapic-google-cloud-storage-v2-2.16.0-alpha.jar{{PWD}}/com.fasterxml.jackson.core_jackson-core-2.14.1.jar{{PWD}}/com.google.code.findbugs_jsr305-3.0.2.jar{{PWD}}/io.grpc_grpc-api-1.51.0.jar{{PWD}}/io.grpc_grpc-auth-1.51.0.jar{{PWD}}/io.grpc_grpc-stub-1.51.0.jar{{PWD}}/org.checkerframework_checker-qual-3.28.0.jar{{PWD}}/com.google.api.grpc_grpc-google-iam-v1-1.6.22.jar{{PWD}}/io.grpc_grpc-protobuf-lite-1.51.0.jar{{PWD}}/com.google.android_annotations-4.1.1.4.jar{{PWD}}/org.codehaus.mojo_animal-sniffer-annotations-1.22.jar{{PWD}}/io.grpc_grpc-netty-shaded-1.51.0.jar{{PWD}}/io.perfmark_perfmark-api-0.26.0.jar{{PWD}}/io.grpc_grpc-googleapis-1.51.0.jar{{PWD}}/io.grpc_grpc-xds-1.51.0.jar{{PWD}}/io.opencensus_opencensus-proto-0.2.0.jar{{PWD}}/io.grpc_grpc-services-1.51.0.jar{{PWD}}/com.google.re2j_re2j-1.6.jar{{PWD}}/dk.brics.automaton_automaton-1.11-8.jar{{PWD}}/org.slf4j_slf4j-api-1.7.16.jar'),\n", + " ('spark.driver.host',\n", + " 'hub-msca-bdp-dphub-students-harshpachisia-m.c.msca-bdp-student-ap.internal'),\n", + " ('spark.yarn.dist.jars',\n", + " 'file:///root/.ivy2/jars/com.johnsnowlabs.nlp_spark-nlp_2.12-4.4.0.jar,file:///root/.ivy2/jars/graphframes_graphframes-0.8.2-spark3.1-s_2.12.jar,file:///root/.ivy2/jars/com.typesafe_config-1.4.2.jar,file:///root/.ivy2/jars/org.rocksdb_rocksdbjni-6.29.5.jar,file:///root/.ivy2/jars/com.amazonaws_aws-java-sdk-bundle-1.11.828.jar,file:///root/.ivy2/jars/com.github.universal-automata_liblevenshtein-3.0.0.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-storage-2.16.0.jar,file:///root/.ivy2/jars/com.navigamez_greex-1.0.jar,file:///root/.ivy2/jars/com.johnsnowlabs.nlp_tensorflow-cpu_2.12-0.4.4.jar,file:///root/.ivy2/jars/it.unimi.dsi_fastutil-7.0.12.jar,file:///root/.ivy2/jars/org.projectlombok_lombok-1.16.8.jar,file:///root/.ivy2/jars/com.google.guava_guava-31.1-jre.jar,file:///root/.ivy2/jars/com.google.guava_failureaccess-1.0.1.jar,file:///root/.ivy2/jars/com.google.guava_listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar,file:///root/.ivy2/jars/com.google.errorprone_error_prone_annotations-2.16.jar,file:///root/.ivy2/jars/com.google.j2objc_j2objc-annotations-1.3.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-1.42.3.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-contrib-http-util-0.31.1.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-jackson2-1.42.3.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-gson-1.42.3.jar,file:///root/.ivy2/jars/com.google.api-client_google-api-client-2.1.1.jar,file:///root/.ivy2/jars/commons-codec_commons-codec-1.15.jar,file:///root/.ivy2/jars/com.google.oauth-client_google-oauth-client-1.34.1.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-apache-v2-1.42.3.jar,file:///root/.ivy2/jars/com.google.apis_google-api-services-storage-v1-rev20220705-2.0.0.jar,file:///root/.ivy2/jars/com.google.code.gson_gson-2.10.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-2.9.0.jar,file:///root/.ivy2/jars/com.google.auto.value_auto-value-annotations-1.10.1.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-http-2.9.0.jar,file:///root/.ivy2/jars/com.google.http-client_google-http-client-appengine-1.42.3.jar,file:///root/.ivy2/jars/com.google.api_gax-httpjson-0.105.1.jar,file:///root/.ivy2/jars/com.google.cloud_google-cloud-core-grpc-2.9.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-core-1.51.0.jar,file:///root/.ivy2/jars/com.google.api_gax-2.20.1.jar,file:///root/.ivy2/jars/com.google.api_gax-grpc-2.20.1.jar,file:///root/.ivy2/jars/io.grpc_grpc-alts-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-grpclb-1.51.0.jar,file:///root/.ivy2/jars/org.conscrypt_conscrypt-openjdk-uber-2.5.2.jar,file:///root/.ivy2/jars/io.grpc_grpc-protobuf-1.51.0.jar,file:///root/.ivy2/jars/com.google.auth_google-auth-library-credentials-1.13.0.jar,file:///root/.ivy2/jars/com.google.auth_google-auth-library-oauth2-http-1.13.0.jar,file:///root/.ivy2/jars/com.google.api_api-common-2.2.2.jar,file:///root/.ivy2/jars/javax.annotation_javax.annotation-api-1.3.2.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-api-0.31.1.jar,file:///root/.ivy2/jars/io.grpc_grpc-context-1.51.0.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-iam-v1-1.6.22.jar,file:///root/.ivy2/jars/com.google.protobuf_protobuf-java-3.21.10.jar,file:///root/.ivy2/jars/com.google.protobuf_protobuf-java-util-3.21.10.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-common-protos-2.11.0.jar,file:///root/.ivy2/jars/org.threeten_threetenbp-1.6.4.jar,file:///root/.ivy2/jars/com.google.api.grpc_proto-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.google.api.grpc_grpc-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.google.api.grpc_gapic-google-cloud-storage-v2-2.16.0-alpha.jar,file:///root/.ivy2/jars/com.fasterxml.jackson.core_jackson-core-2.14.1.jar,file:///root/.ivy2/jars/com.google.code.findbugs_jsr305-3.0.2.jar,file:///root/.ivy2/jars/io.grpc_grpc-api-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-auth-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-stub-1.51.0.jar,file:///root/.ivy2/jars/org.checkerframework_checker-qual-3.28.0.jar,file:///root/.ivy2/jars/com.google.api.grpc_grpc-google-iam-v1-1.6.22.jar,file:///root/.ivy2/jars/io.grpc_grpc-protobuf-lite-1.51.0.jar,file:///root/.ivy2/jars/com.google.android_annotations-4.1.1.4.jar,file:///root/.ivy2/jars/org.codehaus.mojo_animal-sniffer-annotations-1.22.jar,file:///root/.ivy2/jars/io.grpc_grpc-netty-shaded-1.51.0.jar,file:///root/.ivy2/jars/io.perfmark_perfmark-api-0.26.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-googleapis-1.51.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-xds-1.51.0.jar,file:///root/.ivy2/jars/io.opencensus_opencensus-proto-0.2.0.jar,file:///root/.ivy2/jars/io.grpc_grpc-services-1.51.0.jar,file:///root/.ivy2/jars/com.google.re2j_re2j-1.6.jar,file:///root/.ivy2/jars/dk.brics.automaton_automaton-1.11-8.jar,file:///root/.ivy2/jars/org.slf4j_slf4j-api-1.7.16.jar'),\n", + " ('spark.dataproc.sql.parquet.enableFooterCache', 'true'),\n", + " ('spark.driver.memory', '4g'),\n", + " ('spark.sql.warehouse.dir', 'file:/spark-warehouse'),\n", + " ('spark.yarn.executor.failuresValidityInterval', '1h'),\n", + " ('spark.driver.appUIAddress',\n", + " 'http://hub-msca-bdp-dphub-students-harshpachisia-m.c.msca-bdp-student-ap.internal:45473'),\n", + " ('spark.yarn.am.memory', '640m'),\n", + " ('spark.cores.max', '4'),\n", + " ('spark.executor.cores', '4'),\n", + " ('spark.jars.packages',\n", + " 'com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.0,graphframes:graphframes:0.8.2-spark3.1-s_2.12'),\n", + " ('spark.executor.instances', '2'),\n", + " ('spark.dataproc.listeners',\n", + " 'com.google.cloud.spark.performance.DataprocMetricsListener'),\n", + " ('spark.sql.autoBroadcastJoinThreshold', '90m'),\n", + " ('spark.serializer.objectStreamReset', '100'),\n", + " ('spark.submit.deployMode', 'client'),\n", + " ('spark.app.startTime', '1700675079485'),\n", + " ('spark.sql.cbo.joinReorder.enabled', 'true'),\n", + " ('spark.shuffle.service.enabled', 'true'),\n", + " ('spark.scheduler.mode', 'FAIR'),\n", + " ('spark.sql.adaptive.enabled', 'true'),\n", + " ('spark.yarn.jars', 'local:/usr/lib/spark/jars/*'),\n", + " ('spark.scheduler.minRegisteredResourcesRatio', '0.0'),\n", + " ('spark.ui.proxyBase', '/proxy/application_1700673289776_0002'),\n", + " ('spark.history.fs.logDirectory',\n", + " 'gs://dataproc-temp-us-central1-635155370842-uzamlpgc/82d9ba70-b4ec-4813-be2a-b9d68f92ad04/spark-job-history'),\n", + " ('spark.master', 'yarn'),\n", + " ('spark.ui.port', '0'),\n", + " ('spark.rpc.message.maxSize', '512'),\n", + " ('spark.rdd.compress', 'True'),\n", + " ('spark.dataproc.metrics.listener.metrics.collector.hostname',\n", + " 'hub-msca-bdp-dphub-students-harshpachisia-m'),\n", + " ('spark.task.maxFailures', '10'),\n", + " ('spark.yarn.isPython', 'true'),\n", + " ('spark.dynamicAllocation.enabled', 'true'),\n", + " ('spark.ui.showConsoleProgress', 'true')]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spark = SparkSession.builder.appName('2023EDA').getOrCreate()\n", + "\n", + "#change configuration settings on Spark \n", + "conf = spark.sparkContext._conf.setAll([('spark.executor.memory', '4g'), ('spark.app.name', 'Spark Updated Conf'), ('spark.executor.cores', '4'), ('spark.cores.max', '4'), ('spark.driver.memory','4g')])\n", + "\n", + "#print spark configuration settings\n", + "spark.sparkContext.getConf().getAll()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a10a9fef-7517-4947-a7a5-b17db05dbb79", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 1:========================================================>(90 + 1) / 91]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "root\n", + " |-- Trip ID: string (nullable = true)\n", + " |-- Trip Start Timestamp: string (nullable = true)\n", + " |-- Trip End Timestamp: string (nullable = true)\n", + " |-- Trip Seconds: integer (nullable = true)\n", + " |-- Trip Miles: double (nullable = true)\n", + " |-- Percent Time Chicago: integer (nullable = true)\n", + " |-- Percent Distance Chicago: integer (nullable = true)\n", + " |-- Pickup Census Tract: long (nullable = true)\n", + " |-- Dropoff Census Tract: long (nullable = true)\n", + " |-- Pickup Community Area: integer (nullable = true)\n", + " |-- Dropoff Community Area: integer (nullable = true)\n", + " |-- Fare: double (nullable = true)\n", + " |-- Tip: integer (nullable = true)\n", + " |-- Additional Charges: double (nullable = true)\n", + " |-- Trip Total: double (nullable = true)\n", + " |-- Shared Trip Authorized: boolean (nullable = true)\n", + " |-- Shared Trip Match: boolean (nullable = true)\n", + " |-- Trips Pooled: integer (nullable = true)\n", + " |-- Pickup Centroid Latitude: double (nullable = true)\n", + " |-- Pickup Centroid Longitude: double (nullable = true)\n", + " |-- Pickup Centroid Location: string (nullable = true)\n", + " |-- Dropoff Centroid Latitude: double (nullable = true)\n", + " |-- Dropoff Centroid Longitude: string (nullable = true)\n", + " |-- Dropoff Centroid Location: string (nullable = true)\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "df_2023 = spark.read.csv(\"gs://msca-bdp-student-gcs/bdp-rideshare-project/rideshare/2023\", inferSchema=True, header=True)\n", + "# figure out how to read in shp file msca-bdp-student-gcs/bdp-rideshare-project/neighborhoods/shp files\n", + "#df_weather = spark.read.csv(\"gs://msca-bdp-student-gcs/bdp-rideshare-project/weather/chicago 2020-01-01 to 2023-08-31.csv\", inferSchema=True, header=True)\n", + "df_2023.printSchema()\n", + "#df_weather.printSchema()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8138c57a-26d6-44c4-b765-c7b137277044", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "91" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#display number of records by partition\n", + "def displaypartitions(df):\n", + " #number of records by partition\n", + " num = df.rdd.getNumPartitions()\n", + " print(\"Partitions:\", num)\n", + " df.withColumn(\"partitionId\", F.spark_partition_id())\\\n", + " .groupBy(\"partitionId\")\\\n", + " .count()\\\n", + " .orderBy(F.asc(\"count\"))\\\n", + " .show(num)\n", + "\n", + "df_2023.rdd.getNumPartitions()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e70c86dd-041c-4967-b726-c058e32a76b7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Partitions: 91\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 2:========================================================>(90 + 1) / 91]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----------+------+\n", + "|partitionId| count|\n", + "+-----------+------+\n", + "| 90|193596|\n", + "| 29|492548|\n", + "| 31|492556|\n", + "| 30|492603|\n", + "| 25|492608|\n", + "| 23|492626|\n", + "| 22|492643|\n", + "| 27|492681|\n", + "| 26|492695|\n", + "| 21|492714|\n", + "| 35|492717|\n", + "| 28|492737|\n", + "| 42|492767|\n", + "| 32|492769|\n", + "| 24|492775|\n", + "| 41|492791|\n", + "| 43|492841|\n", + "| 34|492849|\n", + "| 40|492861|\n", + "| 37|492864|\n", + "| 33|492868|\n", + "| 46|492882|\n", + "| 44|492884|\n", + "| 58|492895|\n", + "| 45|492896|\n", + "| 36|492917|\n", + "| 39|492949|\n", + "| 38|492957|\n", + "| 60|492970|\n", + "| 47|493011|\n", + "| 56|493019|\n", + "| 86|493040|\n", + "| 59|493043|\n", + "| 81|493048|\n", + "| 87|493059|\n", + "| 57|493072|\n", + "| 84|493098|\n", + "| 79|493123|\n", + "| 78|493127|\n", + "| 85|493135|\n", + "| 89|493138|\n", + "| 61|493156|\n", + "| 83|493187|\n", + "| 77|493192|\n", + "| 80|493206|\n", + "| 82|493279|\n", + "| 88|493316|\n", + "| 54|493361|\n", + "| 55|493437|\n", + "| 53|493455|\n", + "| 50|493481|\n", + "| 11|493498|\n", + "| 76|493510|\n", + "| 17|493516|\n", + "| 20|493521|\n", + "| 13|493521|\n", + "| 52|493524|\n", + "| 14|493548|\n", + "| 9|493571|\n", + "| 51|493572|\n", + "| 48|493573|\n", + "| 16|493575|\n", + "| 10|493579|\n", + "| 8|493605|\n", + "| 3|493625|\n", + "| 6|493634|\n", + "| 15|493644|\n", + "| 63|493666|\n", + "| 74|493669|\n", + "| 19|493679|\n", + "| 5|493685|\n", + "| 4|493687|\n", + "| 18|493688|\n", + "| 2|493692|\n", + "| 7|493694|\n", + "| 12|493697|\n", + "| 72|493705|\n", + "| 69|493707|\n", + "| 62|493733|\n", + "| 1|493736|\n", + "| 49|493737|\n", + "| 73|493744|\n", + "| 65|493746|\n", + "| 67|493752|\n", + "| 71|493754|\n", + "| 75|493758|\n", + "| 70|493765|\n", + "| 0|493772|\n", + "| 68|493832|\n", + "| 64|493844|\n", + "| 66|493893|\n", + "+-----------+------+\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "displaypartitions(df_2023)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fe004162-5b22-4a11-9fad-665fa5cdecc0", + "metadata": {}, + "outputs": [], + "source": [ + "# df_2023 = df_2023.repartition(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "22a6039e-9848-4717-98b6-bc915540357b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 272:====================================================> (97 + 3) / 100]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-------+--------------------+-----------------+-----------------+--------------------+------------------------+--------------------+--------------------+------------------+------------------+------------------+------------------+------------------+-------------------+-------------------+-------------------+-------------------+-----------------+------------------+------------------+-----------------+\n", + "|summary| ID| seconds| miles|Percent Time Chicago|Percent Distance Chicago| pickup_tract| dropoff_tract| pickup_area| dropoff_area| Fare| Tip| total| pickup_lat| pickup_lon| dropoff_lat| dropoff_lon| month| day_of_month| hour| day|\n", + "+-------+--------------------+-----------------+-----------------+--------------------+------------------------+--------------------+--------------------+------------------+------------------+------------------+------------------+------------------+-------------------+-------------------+-------------------+-------------------+-----------------+------------------+------------------+-----------------+\n", + "| count| 36556678| 36556661| 36556677| 36409415| 36405162| 24822868| 24822868| 36556678| 36556678| 36556678| 36556678| 36556678| 36556678| 36556678| 36556678| 36556678| 36556678| 36556678| 36556678| 36556678|\n", + "| mean|7.955221130148164E39|962.5008680087058|5.129615596625508| 1.0041201705657725| 0.9987594891076161|1.703137471319121...|1.703138564608063...|26.668175237367027|27.318306411758748|14.994629982516464|1.0414800546154659|19.920689847460217| 41.88600304471647| -87.66396572781406| 41.88677536197285| -87.66635237193204|4.117346986506815|15.605703204213468|13.797347669282203|4.285813798507622|\n", + "| stddev| null|676.8635806943441| 4.93904365892972| 1.5518396745284335| 0.03523335491874369| 333829.8237705403| 338679.00736316666| 20.59033707472937|21.022830175661365|10.291053284948758|2.3721826380422106|13.291325588130873|0.06665212680813327|0.06020788153301703|0.06646495174133171|0.06553992066134873|2.295804955678648| 8.704674182355552| 6.28609430961657| 2.07268960641808|\n", + "| min|000001cd69b610c2b...| 0| 0.0| 0| 0| 17031010100| 17031010100| 1| 1| 0.0| 0| 0.0| 41.6502216756| -87.913624596| 41.6502216756| -87.529950466| 1| 1| 0| 1|\n", + "| max|ffffffdba3d3c9f1d...| 40043| 481.9| 4208| 9| 17031980100| 17031980100| 77| 77| 510.0| 100| 520.54| 42.0212235931| -87.529950466| 42.0212235931| -87.913624596| 9| 31| 23| 7|\n", + "+-------+--------------------+-----------------+-----------------+--------------------+------------------------+--------------------+--------------------+------------------+------------------+------------------+------------------+------------------+-------------------+-------------------+-------------------+-------------------+-----------------+------------------+------------------+-----------------+\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "df_2023.describe().show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "c78e4618-8383-4df2-862b-4cb9dbeb20ab", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 5:=======================================================> (89 + 2) / 91]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-------+--------------------+------------------+------------+----------+--------------------+------------------------+-------------------+--------------------+---------------------+----------------------+------+------+------------------+----------+----------------------+-----------------+------------+------------------------+-------------------------+------------------------+-------------------------+--------------------------+-------------------------+\n", + "|Trip ID|Trip Start Timestamp|Trip End Timestamp|Trip Seconds|Trip Miles|Percent Time Chicago|Percent Distance Chicago|Pickup Census Tract|Dropoff Census Tract|Pickup Community Area|Dropoff Community Area| Fare| Tip|Additional Charges|Trip Total|Shared Trip Authorized|Shared Trip Match|Trips Pooled|Pickup Centroid Latitude|Pickup Centroid Longitude|Pickup Centroid Location|Dropoff Centroid Latitude|Dropoff Centroid Longitude|Dropoff Centroid Location|\n", + "+-------+--------------------+------------------+------------+----------+--------------------+------------------------+-------------------+--------------------+---------------------+----------------------+------+------+------------------+----------+----------------------+-----------------+------------+------------------------+-------------------------+------------------------+-------------------------+--------------------------+-------------------------+\n", + "| 0| 4| 4| 24| 5| 179355| 183797| 17646777| 17732882| 3840871| 3999920|282479|282479| 282479| 282479| 4| 4| 4| 3710407| 3710407| 3710407| 3883849| 3883849| 3883850|\n", + "+-------+--------------------+------------------+------------+----------+--------------------+------------------------+-------------------+--------------------+---------------------+----------------------+------+------+------------------+----------+----------------------+-----------------+------------+------------------------+-------------------------+------------------------+-------------------------+--------------------------+-------------------------+\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "#Find the number of missing values for each column\n", + "from pyspark.sql.functions import isnan, when, count, col\n", + "df_2023.select([count(when(df_2023[c].isNull(), c)).alias(c) for c in df_2023.columns]).show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ee6f3669-6fc4-404d-8e91-ba819dec25fe", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACA4AAAQWCAYAAAC+QWhxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXgU19cH8HM37gkWwyUE1+DuVtxdWtylUNwJ7m4huLsHKQ7FtRCcUNxCEmK73/ePvHM7m90g/UHCbs7neXgaZmbTmcvM7JVzzxUAQIwxxhhjjDHGGGOMMcYYY4wxxhhLljRJfQKMMcYYY4wxxhhjjDHGGGOMMcYYSzocOMAYY4wxxhhjjDHGGGOMMcYYY4wlYxw4wBhjjDHGGGOMMcYYY4wxxhhjjCVjHDjAGGOMMcYYY4wxxhhjjDHGGGOMJWMcOMAYY4wxxhhjjDHGGGOMMcYYY4wlYxw4wBhjjDHGGGOMMcYYY4wxxhhjjCVjHDjAGGOMMcYYY4wxxhhjjDHGGGOMJWMcOMAYY4wxxhhjjDHGGGOMMcYYY4wlYxw4wBhjjDHGGGOMMcYYY4wxxhhjjCVjHDjAGGOMMcYYY4wxxhhjjDHGGGOMJWMcOMAYY4wxxhhjjDHGGGOMMcYYY4wlYxw4wBhjjDHGGGOMMcYYY4wxxhhjjCVjHDjAGGOMMcYYY4wxxhhjjDHGGGOMJWMcOMAYY4wxxhhjjDHGGGOMMcYYY4wlYxw4wBhjjDHGGGOMMcYYY4wxxhhjzACApD4Flkgsk/oEGGOMMcYYY4wxxhhjjDHGGGOM/VwAkBCCiIhevXpFHz58oJCQEPLx8SEnJydycnIinU5HGg3PVTcH/K/IGGOMMcYYY4wxxhhjjDHGGGNMUgcNbN26lRo2bEiFCxemChUqULFixahFixZ04cIFDhowIwKcX4IxxhhjjDHGGGOMMcYYY4wxxlg8AQEB1L59eyIiqlmzJhERvXz5kv766y+yt7enVatWUd26dZPwDNn3woEDjDHGGGOMMcYYY4wxxhhjjDHG9Bw8eJBq1qxJjo6ONGvWLGrZsiVFR0eTtbU1NWvWjNavX09ERFeuXKE8efIk8dmy/xXnjmCMMcYYY4wxxhhjjDHGGGOMsWQq/jxzAASAVq9eTbGxsTRlyhRq2bIlERFZW1vTpUuX6Pbt20RE1LdvXw4aMBOccYAxxhhjjDHGGGOMMcYYY4wxxpKRrVu3kpeXFxUtWtTo/g8fPlCOHDnI3d2d/vrrL7K0tCQiojNnzlDnzp3p6tWrNGjQIBo/frz8jJKNAAAJIRLlOtj3wxkHGGOMMcYYY4wxxhhjjDHGGGMsmdi8eTM1aNCARowYQRcvXjR6TFRUFH38+JGsra1Jp9MR0eeDBl6+fEmTJ0+m4OBgDhowUZZJfQKMMcYYY4wxxhhjjDHGGGOMxafMWo4/e5lnMzP2v0mVKhVVqFCBgoKCyNLSkkaNGkWFChUion+fL1tbW3J1daU3b95QdHQ0nT9/nrp27WoQNBAZGUm2trZ0/fp1mj17Nrm6ulK2bNmS8vLYf8SBA4wxxhhjjDHGGGOMMcYYY+ynog4O+PjxI4WGhlJUVBTZ2dmRl5dXEp8dY6atbNmyZG1tTaNGjaI9e/YQEcngASEEabVacnZ2pmrVqtHSpUupT58+dPnyZbp69Sr9/vvvMmggKiqKbG1tCQCNGDGCPn36RH5+fkl5aex/wEsVMMYYY4wxxhhjjDHGGGOMsZ+GOmhg+/btVLduXcqRIwdly5aNsmXLRv369aPDhw8n8VkyZpoAEBFRsWLFaPjw4VSlShXas2cPjRgxgi5cuEBERBYWFkRE1LBhQyIiWrp0KV24cIFGjx5N/v7+REQUHh5ONjY2BIB69uxJJ0+epPr161OuXLmS4KrY98CBA4wxxhhjjDHGGGOMMcYYY+ynoQQNBAQEUL169ejo0aNUtGhRqlatGqVOnZpmzJhBvXr1osWLFyfxmTJmepSMAkIIKl68OI0ePZqqV69Oe/bsoVGjRtG5c+fksVWrVqUZM2bIv6dOnZq0Wi0RETk4OBARUc+ePWnu3LmUL18+8vf3JwcHBxmcwEyLAP/LMcYYY4wxxhhjjDHGGGOMsZ/I/v37qWbNmuTi4kJz586lpk2bEhHR48ePaejQobRq1SqytbWlI0eOUNGiRZP4bBkzHTqdjjSauLnl//zzDz179oyCgoJo0aJF9PLlS6pUqRINGTKEChcuLD8zZcoU+v3334kobpmD7Nmzk0ajoZMnT9K1a9coW7ZsFBQUROnSpSOtViszFpgqddaTb9ln6iyT+gQYY4wxxhhj39+XGjHm3MhhjDHGGGOMMWa6AFB0dDStXr2adDodTZw4UQYNEMUNdF6+fJmIiPr27ctBA8yAus+D+z/0AZBBA6tXr6Zhw4bRw4cPycbGhoQQFBkZSfv27SOtVkvDhw+XwQP9+/entGnT0sSJE+ncuXP0559/EhFR5syZqXXr1uTv708eHh5mFzRw7NgxunfvHgUHB1PFihUpR44c5OXlpRd8YU444wBjjDHGGGNmRt14CQkJoefPn9OjR4/Izc2NfH19ycvLy+A4xhhjjDHGGGMssQQFBVH27NkpXbp0Rve/evWKChcuTKlSpZJrrhMRnT59mrp27UpXrlyhP/74g8aNGyf3xcTEkJWV1Q8/d/Zz4gCBb7Nu3Tpq3rw5ubu708iRI6lixYqk0+lozpw5dODAAbpz5w7VrFmTRo4cSYUKFZKfCwkJobdv39KDBw+IiKhYsWLk7OxMdnZ2ZhE0oBYYGEgdO3YkrVZLWq2WXF1dKXfu3DR//nzKlSuX2V0vEQcOMMYYY4wxZlbUDeVNmzbRmDFj6Pr163Jtubx581LVqlVp4sSJSXmajDHGGGOMMcaSqWXLltGvv/5K7du3p9GjR8vgdrUbN25Q0aJFqWDBgnT48GGytLSkM2fOUOfOnenq1as0aNAgGj9+vDz+6dOndPToUSpXrhx5e3sn5uWwn4B6YsTx48fp6NGjdP78ebK0tKSSJUtS6dKlyc/PL4nP8ufx+PFjqlWrFl2/fp3Wrl1LTZo0kfu0Wi1t27aN5s2bR0eOHKGaNWvSiBEjZOaBhCahmFvgxo4dO6hu3bpERNSlSxd6//49BQcH0/nz58nNzY2CgoKoQIECZjcph5cqYIwxxhhjzIwojbSAgABq3749ERH98ssvZGdnRxcvXqQ7d+7Q1atXKTg4mJYuXUpubm5m17hjjDHGGGOMMfbzSpkyJWXIkIGWLVtGlpaWNGzYMIPB/jRp0pCHhwe9ePGCLC0t6erVq0aDBiIjI8nW1pYuXLhA7du3p9WrV1PDhg2T4rJYElGn3g8MDKTOnTtTZGSk3L9161aytbWlZcuW6S15kZyFhobSo0ePqEyZMjJoQKfTERGRhYUF1a9fn5ycnOj9+/e0b98+0mg0NGTIECpSpAhpNBqj/Uim3q+kBAAo17Z27VpydHSkpUuXUqNGjSgmJobevn1LvXr1og0bNlCZMmXo2LFjZhc8YB5XwRhjjDHGGJOOHDlC3bp1IxcXF9qwYQNt376d1q1bRwcOHKDly5eTs7Mzbdu2jdq2bUs6nY6EELKByBhjjDHGGGOM/Uh16tSh+fPnU7Zs2WjRokU0ZswYevr0qd4xrq6ulCVLFgoODqZmzZpRq1at6OrVqzRw4EAZNBAVFUW2trZERDRt2jSys7OjTJkyJfr1sKSlzrrYtm1bEkLQ9OnT6ebNm3T69GkaNWoURUZGUvPmzTn74v8LCQmhjx8/0tu3b+nt27dERKTRaPQGzitVqkQtWrQgrVZLR44coXHjxtH58+eJyPSDBIxRBv5PnjxJnz59oocPH1Lbtm2pUaNGRBQXUOHu7k7r1q2jVq1aUXh4OJUpU4YuXbpEGo3GbPrVOHCAMcYYY4wxM3PkyBH69OkTjRw5Um+mRcaMGalJkyZ0+PBhcnZ2pp07d1Lnzp2JiMwmMpoxlvTUHSbm0nnCGGOMMca+D2UZvWrVqtGMGTMSDB6wsrKikSNHkru7O61fv56uXbtG/fv3pwkTJhBRXKYBGxsb0mq11K1bNzp27Bg1atSIcuTIkSTXxRJHQquvBwcH0/Dhw4mIaOnSpdSrVy/y9fWlokWLUuPGjSldunRERPTu3btEO9efQfzyUv6eJ08eypAhA717945CQkKIKG6JAqK4oAAli0OvXr0offr0FBYWRvv27aNevXrR1atXE/ciEtHatWupTJky1KBBA/rw4QMVKlSIiOLKRqPRyDJasWKF2QYPcO8gY4wxxhhjZiQ6OpoOHjxIRCTX74uNjZX7dTodFSxYkNauXUv29va0bt06CgoKSpJzZYyZD3WHlFarpcjISIqMjOSgJMYYY4wxpkcIIduo1atXp0WLFsnggdGjR8tBTCKiHDlyUNeuXcnNzY2sra3Jw8ND1juVTAO9e/em+fPnU/78+Wns2LFkb2+f4OCyKTKna/lfPHnyhIj+HdSO79mzZ3T37l3q3r273nIEJ06coKZNm9KTJ09oyJAh5O/vn2jnnNTUywm8evWKiEhmnHRyciIfHx96+vQpzZgxg4jiZtSrgweioqLIwsKC0qZNS/Xq1aMSJUrQgwcPyNPTM0muJzF4eXmRi4sL7du3j+7cuSPvO/UyDsr7K37wwOXLl80ieIBb8IwxxhhjjJkRAGRpaUlEJGdrKH8n+jezQOnSpalWrVoUFhZGV65cSfwTZYyZDWXJEyKigwcPUqdOnahIkSLk5+dHvXv3piNHjshjueOTMcYYYyx50+l0so366NEjypo1K9WoUYM8PT1p8eLFNHHiRDlY5+rqSs2bN6fffvuN7OzsqH///lS2bFkaM2YMDRgwgIoWLUpz586lLFmy0Pbt28nd3Z20Wq1Jp1GPX1825Wv5XqZMmUI1a9aUkx6MBQ9cvHiRYmNjKWfOnHLbmTNnqHv37nTlyhUaNGgQjRkzRu578uQJ3bx5M3EuIIko987SpUupVatWdPr0aSKK6xdydnamESNGkEajoYCAABo8eDARxQ2MA6Do6GiysbEhIqKHDx9S6tSpadq0aXT58mVKnTq1yQ+OJ6Rs2bK0a9cu8vDwIJ1ORzt37qTY2FiysrKSQRWWlpZGgwcKFixI169fN/ngedM+e8YYY4wxxpKp+I00pQFjY2NDRYsWJSKi/fv30/v3741+3tHRUR53/fp1+XnGGPsWSgpLIqKAgACqWbMmBQQE0Lt37ygqKopmzZpFderUoaVLlxJRwjOEGGOMMcaY+VPXHVevXk1Vq1aljBkz0oYNG+jly5dERDR37lyaNGmSDB7IkiUL9ezZk+bMmUM+Pj504sQJGjFiBE2dOpX++ecfat68OR07dozSpUtHWq2WLCwskuz6/lfqGeJnzpyhgIAA8vf3p1OnTtGnT5+S+OySxuvXr+nPP/+k69ev09ixY+nQoUNEZNiuUMrt7du3RBS3Tn3nzp3p6tWrNGjQIBo/fjwREUVFRRER0bp166hXr17yPjNXz58/p4CAADpw4ABNnz6dzp49K/eVKFGCFixYQJaWluTv709du3aliIgIIiKytrYmIqI+ffrQP//8Q6VKlaICBQpQmjRpSKfTmfzguJr6PgJAJUuWpI0bN5K3tzf99ddf1Lx5cwKgl5EhfvBA7dq1iYjIxcUl8S/gO7P88iGMMcYYY4yxn43SSDt16hTlz5+f7O3tKTY2liwtLal48eLk7OxMO3bsoNq1a8sGjCI6Opqsra3J3d2diIicnZ1NunOFMZZ0lA66jRs3Uvv27cnFxYXGjx9PXbp0IZ1OR/Xq1aOdO3fSb7/9Rlqtljp27Cg7+Xj2FGOMMcbMRfy6jbkNrH0vShmtW7eOWrVqRalTp6aJEydS7dq16caNG3Tx4kUaM2YMzZ07l2JjY2nw4MGULl068vLyohYtWlCdOnXoxIkT9PbtWxJCUIkSJShNmjRkZ2dn8kEDRP+WT2BgoN4gLhFRhw4dqGXLllS2bNmkOr0kkSpVKhozZgy5urrS6tWraeTIkUREVLFiRZl2X6PRUMmSJcnR0ZEuXrxIx48fp169ehkNGrCxsaGIiAiaP38+eXl5kZubWxJe3Y/n4eFBo0aNoqlTp9LmzZspNjaWBg4cKCeSNG7cmCIjI6lPnz60YMECunbtGmXPnp1y585NBw4coH379lGePHmoatWq8nea+rst/vva2M8lS5ak9evXU+PGjWnTpk3Utm1bCggIkMEDFhYWMnjA0tKStm3bRm/evKGUKVOa/LuIAwcYY4wxxhgzUevWraPmzZtT+/btadasWWRvb09EJAfqAgMDqUePHuTo6EglSpQgW1tb0ul0MnJ848aNRERUrFixJLsGxpjpu3DhAv3xxx/k4OBACxYsoCZNmhAR0aRJk2jnzp3k4OBA4eHh1LlzZyIiDh5gjDHGmFlRBwkcP36czp07R3/++Sc5OjpS2bJlqUyZMpQjR44kPsufx/3792nEiBFERDRr1ixZd8yaNSvVqVOHcuTIQQMHDqSFCxeShYUFDRw4kNKlS0cAyNHRkapVq2bwO5XZwOZg27Zt1LZtWyKKCxaIjIykP//8k5YvX043b96kwYMHU82aNZP2JBOJ0l7Inz8/9e/fn7RaLa1bt04veEB59tzd3Slr1qy0ZcsWOnPmDP3zzz80ZMgQuTyBEjQAgDp27EgPHz6kTp06kZ2dXVJd3g+nlF+FChVIo9GQVqul7du3ExHR77//TsWKFSNnZ2fq2rUr+fj4UKdOnej8+fN08uRJ+Tvy5s1LO3fulMsTmHrQgPoarl27Rg8ePKA///yTsmbNStmyZaNKlSrJY0uUKCGDB1auXElEZDR4QPk5ZcqUpNPpTP9dBMYYY4wxxphJ0Ol0en/fvHkz3N3d4ejoiI4dOyI8PFzui42NRcWKFSGEgKenJ6ZNm4aLFy8CAD59+oQePXpACIEiRYrg9evXiXodjDHzERsbi+HDh0MIgTlz5sjt48ePhxACTk5OePToERYvXgwhBIQQmD9/vjwu/nuNMcYYY8yUqOsyK1asgKOjo6zzKH8KFiyoV/9J7q5evQoXFxeULVtWbouNjYVWq5V/37p1KywtLSGEQI8ePfDkyRO5T32cOYhfH65Tpw7c3NywadMmuS0oKAhNmzaFEAKFChXCzp07E/s0fwqXLl2S5VCyZEkcOHBAb//Bgwflc1eiRAmjv6N///4QQqBixYpm1ReSULtKvf3IkSOoUqUKNBoN6tWrh9OnT+sd+/DhQ+zevRtDhgzBqFGjsGrVKllGsbGxP+7kE4m6LNasWYMMGTLA2tpa733dqVMn7N+/X+9zJ06cgJeXF4QQaN26tfw9MTExiXr+iUUAvLggY4wxxhhjPzuoZuYeP36cLl++TGfPnqWHDx/SqVOnyNnZmZo1a0bTpk2TEfNarZYaNWpE27ZtI0tLS7KwsKA8efLQmzdv6MGDB5Q5c2Y6cuQIpUuXziwixxljiS8qKor69u1LT548oR07dhAR0dKlS6lPnz4EgA4fPkx+fn4UFhZG/fr1o8WLFxMR0Zw5c6hr165JeeqMMcYYY9/Nhg0bqGnTpmRvb0+jR4+mMmXK0NOnT+n48eO0YMECcnBwoDZt2tCkSZOS+lST3MGDB6lq1apUvHhxOnbsGBGRnKGrbvfOmzePunfvTkREnTt3piFDhpC3t3fSnHQi+Ouvv8jZ2Zlq1qxJzZo1kzPlFTdv3qRp06bRsmXLqFChQjRixAiqVatWEp1t4lGGMJX74syZMzR//nxatWoVlS9fnn7//XeqUqWKPH7FihXUrl07IiJq27YtVa1alXx9fenDhw80ZcoU2rVrF2XKlImOHTtG3t7eZtcXcvv2bXJ3dydXV1e5Tf1cHT16lPz9/engwYNUt25dGjBgwBezUJpbGa1atYpat25NlpaW1LFjR7K1taW3b9/SqlWrKDY2lgoVKkQ9evSg1q1by8+cPHmSGjduTM+ePaO2bdvS0qVLzTZ7Hi9VwBhjjDHGmAlQGiQrVqygbt26UUREBOXLl4+8vb0pVapUFBYWRgsXLiQhBE2dOpXs7OzIwsKCNm3aRNOmTaMTJ07Qjh076Pz585Q9e3Zq2bIlTZw4kTw9PU1+/TXGWNKxsbGhbt26yb+HhITQmjVrKDY2lrZu3Up+fn6k1WrJ3t6eihQpIgMHunfvTjExMdSrV6+kOnXGGGOMse8iODiYhg0bRkRxAZRK6v3ChQuTlZUVrV27lp49e6Y3kJccIIFlqVKmTEk2NjYyTXjWrFnlseo16+vVq0dz586l27dv04IFC+jt27c0Y8YM8vDwSIKr+bE2btxITZo0oX79+lFkZCTlypWLiEivrZ4zZ07q168fEREtW7aMRo0aRURk1sED6nto586dtGvXLjp27BhZWloSADpx4oS8X5QU823atCFXV1e5Jn1AQAA5ODhQREQEAaAyZcrQqlWryNvb2+z6QgIDA6lbt240adIkat68Obm4uBAR6S0TV65cOdJqtRQWFkbbtm0ja2tr0ul0VKJECSLSv+eUz5hT0MC5c+eod+/e5ODgQAEBAdSgQQO5r379+jR79mw6fPgwTZ48mZycnKhevXpERFSyZEnasGEDNW/enAICAsjZ2ZlmzJiRRFfxY3HgAGOMMcYYYyZi9+7d1K5dO3J1daVly5ZR48aNiYjozp07tGPHDpoxYwYtWLCAiEgGD2g0Gurfvz/179+f/v77b4qNjaX06dOTjY0N2djYmF1DmbH/In6n5qdPnygmJoacnZ2T8Kx+TuoZP8r7I2fOnHL/uXPn6MiRI1S3bl2qUKECASCNRkNCCCpfvjx5enpS0aJFadu2bfT777/Tr7/+Svb29mY7W4Mxxhhjpu/9+/efHfS/e/cuBQcHU//+/WXQAFHczOghQ4bQs2fPaNCgQTR48OBEONufg7p+HRsbS5aW/w5FFSxYkCpUqEB79+6l8ePH06RJkyhVqlQGg5SpUqUie3t7KlSoED179owOHjxINjY2SXI9P5JOp6PXr1+Tu7s7zZ8/nyIiIigsLIyIyKCtniNHDoPgAY1GQzVq1Ej0804M6gkU7du3JysrK2rYsCGlSZOG0qZNS6dOnaKjR49SbGwsCSGoYsWKRERUp04dOnr0KB05coT2799PWq2WvL29qVKlSlSjRg1yc3Mzi74QJWhCq9WSTqej69evU3R0NPn7+5OlpSU1btzYaPBAxYoV6enTp3Tq1CnatGkTASALCwsqWrSoXpmYYhstoewIyrX/9ddf9PbtWxo5cqQMGlDeUbVq1SJPT0/y9/enzZs308qVK6lUqVKUOnVq0ul0VLJkSVqxYgX169fPrAPgzSdMhDHGGGOMMTMFgKKjo2nLli1ERDR69GgZNKDT6cjHx4c6d+5Ms2bNorRp09KCBQuoX79+FBERQURxjSAiIl9fX8qdOzc5OzuTjY2NbBwylpzpdDrZIRIUFEQ9e/akEiVKUPny5Wno0KF05coVSu4r/KmvX5kJRvRvR6ZWq5X7X758SURE2bJlIysrKwIg90dERNDr169p+PDhtGbNGvr777/JwcHBJDukGGOMMZY8+Pv7U5MmTSg4ONhgn1JHOnnyJBGRnCVOFBc00LlzZ7py5QoNGjSIxo8fL/e9fPmSHj9+/IPPPGkp9btZs2ZRkyZN6OPHj0T0b72xW7dulDZtWtq+fTstX76c3r17J7MNKMdotVp68+YNNWzYkDZv3kzXrl0jNzc3s6ubazQaateuHY0bN458fHyIiGjBggV0584do8crwQPt27enK1euUPfu3SkoKCgxTzlRHTt2jH799VeytramVatW0apVq2jatGm0d+9eWrhwIVWsWJFOnDhBI0eO1CuHfPnyUe/evWnPnj104MABWr58ObVo0YLc3NxIp9OZVF+Ics8rfTtERDExMXKA/OXLl2RlZUVDhgyhwYMH04cPH2jEiBG0YcMG+vDhg/yMEjxARNS6dWsqWbIkabVa2rZtGw0aNIguXbqUiFf1/Y0ZM4batWtHUVFRBvuU6z506BAREWXMmJGI4voDlAwWRESFChWizp07U4YMGWjbtm20Z88eIiJZ1uXKlaPTp09TpkyZ9P49zAkHDjDGGGOMMfaTUxp3N27cICsrKypdujQRxTUalcaLo6Mj1ahRg0aMGEFubm60YsUK6tOnD0VERJClpaXewJ769zKWnCmz4YmIAgICqFatWjRnzhx6+fIl/fPPPzR+/Hjq1KkTLV68mHQ6XRKfbdJQB1acPn2aJk2aRHXr1qVOnTrRtGnT6MWLF3qdbnZ2dkREtGXLFnr8+DFpNBo5w2zq1KkUGxtLFhYW1LRpU7PubGGMMcaY6Xv+/DktX76cDh48SEOHDjUIHlDqSKlTpyYiInt7eyIiOnHiBHXu3JmuXr2qFzQQHR1NOp2Opk2bRhMmTNAb0DM3AOjVq1c0cuRI2rp1K/Xo0YPCwsJkvbFo0aLUrFkzioqKounTp9OYMWPon3/+IY1GI48ZNGgQPXz4kNzd3cnPz4+8vLxIq9WaTTtWGajUarVka2tLzZs3py5dulCuXLno6tWrNH/+fHr69KnRz+bIkYP69+9PdevWpejoaMqdO3dinnqiUMrn9OnTpNVqaeDAgdSwYUMiihs0JyJq2rQpjRs3jmrXrk0nT56ksWPH0sGDB+XviH+/KL/T1FLvCyEoLCyM5s+fT6tWrSIiIisrKyIimjt3Lnl7e9PJkyfJxcWF+vfvT7169aKIiIgEgweio6OJiMjZ2ZmqVq1KpUqVort371K6dOkS/+K+AwD05MkTGjVqFK1cuZL69+9v0M5U/s2VgIE3b94QEcl2vjqoomLFitS5c2ciItq8eTPpdDq9/gBra2siIr1MKmYFjDHGGGOMsZ/e+/fvUaBAAQghsGnTpgSPe/ToEcqWLQshBFxcXNClSxdEREQAALRabWKdLmMmZf369RBCwNnZGbNnz4ZOp8OdO3dQsWJFCCHg6+uLGTNmJLtnSKfTyZ9XrFgBR0dHCCH0/mTIkAFBQUGIiooCEPeeqVSpEoQQKF26NI4ePYrz58+jffv2EEKgQoUKCA0NTapLYowxxhj7JqdPn0bx4sUhhECDBg1w584duU+pG65btw5CCFSrVg379+9HwYIFIYTAH3/8IY+NjIwEAHz8+BHp0qVDoUKF8PHjx8S9mCRw6tQpZMmSBUIItGzZUq8eGBISgp49eyJ16tSyzj1u3DhMmzYNtWrVghACefPmxatXr5LwCr4fdd06IZ8+fcLixYuRLVs2ODk5YfDgwQgJCUnw+ODgYLx58waA+bX3lfJq3bo1hBBYsWIFACA2NlZvPwDs3r0bOXPmhJWVFSpVqoT9+/cb/B5Td+3aNWTOnBlCCMyaNQsAsHTpUggh4OTkhO3bt8tjP378iOHDh8PFxQWenp5YtGgR3r59CwCIjo6Wx/n4+KB///64ePEiXrx4AcC076MDBw7Ay8sL9evXN9in3Af+/v4QQiBPnjxGnx3l5yNHjkAIgUKFCkGr1ZrNffQ1OHCAMcYYY4wxEzFw4EAIITBo0CAACTeAp02bBktLS9kBM2TIEDmoxxjTd+7cOaRLlw5OTk5YvXq13D516lRoNBpYWVnB3t4enp6emD59ukl3pPxXSmCFvb09pk2bhrNnz+LMmTNo06YNhBBwc3PDkiVL8OnTJwDA5cuXUbJkSQghYGtrC3t7ewghkDlzZjx58gSAaXdIMcZYUtm7dy/u37+f1KfBWLKgbmudPXsWfn5+MnggODhY79iYmBi539PTE0IIjBgxQu5X6kgA0LhxYwghMGXKFLOvDylleObMGaRPn95o8MDz588xf/58FClSxCBANV++fHj8+DEA0687qs//9u3b2LdvHyZPnoyVK1fizJkzesd++vQJS5YsQdasWeHk5IQ//vjDIHggfl+AqZfP5/Tt2xdCCPTt2xfAv4EDgH459O7dG0IIWFlZoXz58tizZ0+in+uPoP63nTZtmnw+mjZtCiEE0qZNi61btxocrw4e8PDwwIQJE+TzBAC9evWCEEKvDWyq95H6Prh586b8+dixY/L9qxzz8eNHOSmnQ4cOePfuHYB/7yslsOLy5cvQaDRo2LBhYlzCT4UDBxhjjDHGGDMRyuCdhYUFDh48CEC/Yac0cObOnQsfHx+sXLkSXl5e8PLywubNmwGYT7Q9Y99DbGwshg0bBiEE5s6dK7ePGzdOztw4ePAg/P39YWNjg0yZMmHq1Kkm26HyX9y4cQNZs2aFEAJr167V23f69Gl4eHhACIGxY8fq7QsJCUGbNm2QL18++Pn5oW3btnj69CkA/c4+xhhjXycgIABCCDRv3hyPHj1K6tNhLNlQ2k8nT55EoUKFIIRA3bp1ZeYBZf+mTZvk4HjJkiXl59X1xgEDBkAIgYoVK8qZruZAuUalLNRtzq8JHtBqtQgNDcXMmTMxdOhQ9OjRA0uWLMHLly8BmH7dUV0e69atkxkYlD+urq5o1KgRXr9+LY+NHzzwpcwDps5Y+yomJgZAXJlpNBoUKVIE4eHhAPTvCeWzp06dgpubGypXriyfUyXThyk6duwYXr9+DQB6M95Xr14t+4VcXV0RFBQEIO4+U8pC+W9YWBhGjhyJNGnSwN7eHn5+fhg8eLDMrJcnTx75nJm6+H1dy5cvhxACv/76q7wPlPtG6StzcnJC7969jb6PlUwX48ePB2C6QRX/BQcOMMYYY4wx9hP43IC+uoHSvXt3GUV/7Ngxo8dXr14dOXPmxOvXrzF58mTZycwY0xcaGoqqVauiWbNmctuiRYvg6OgIR0dHXLx4EQBw5coVVKhQAUII5MyZM1kFD+zduxfW1tZyho/i+PHjMg3v0KFDE/z869evERYWJrOemHrHL2OMJZX9+/cje/bsEEKgdevWePjwYVKfEmNmL34b7cyZMyhdujSEEGjcuDFu374t97169Qrjxo2Dp6cnHBwc0KBBA/z111+4ceMGLly4gDp16kAIgSxZssgBYHOrT6qDmhIKHsiQIYN8jynBA58rB3MqoxUrVshggQ4dOqBPnz6oVq0aUqRIASEESpUqhTNnzsj6cvzggaFDh+rNGDdHu3fvxt69e/W2PX/+HNmyZYMQQm/2txJYoPz31KlTEEJg8eLF6Natm0kH2S1evFhmWVCWGFCsXLlSL/BkyZIlcp+xlPvh4eGYP38+SpUqZbYZPQDD9/Xu3bvlUntdunTRCyJ59eoVxowZgzRp0kAIgTJlyuDYsWO4ceMGnj9/jo4dO8qlUswlsOJbcOAAY4wxxhhjSUzdSLt69So2bdqE8ePHY968eXj79q3eMgOxsbFo2bIlhBCwtLTEwoULcf36dWi1WkRERKBnz54QQqBdu3YAgL///lt2RNy4cSPRr42xn92lS5dketCQkBCUKlUKdnZ2MquHelaC0smSIUMGjB8/3uwyeBi7nkGDBumtKQrEZRrIly+fwdq9QFyHsTnNoGOMsZ/JkSNHkDt3bg4eYCwRqOtFe/bswa+//opatWrJ5eCU4Ozbt2/LY589e4a5c+ciR44cckawhYWFPL5UqVJy2SZzC6ZUUqhv2bJFbjMWPHDq1Cm4uLhACIE2bdrI4AGdTmd2dWu1EydOwNXVFY6Ojti0aZPcHhYWhgsXLiBjxowQQqBYsWJ6S2EowQO+vr4QQsDf398sBnmNOXTokMzYocyiV5w8eRKpUqWCEAKtWrUy+vnmzZsjVapUeP36tSwjU3zOoqOjsXjxYnh7e8PFxQUbNmwAEHctYWFhaN++PfLmzYtff/1VvltmzJghP6++P5RnKjY2Fm/fvsXChQsxdepULFu2DK9evZL7TIn6mpSsm+prCA4OlsEkQUFB8p3dpUsXvWVjnj9/jtmzZyNnzpxyiT1bW1v5fvL19TWrwIpvwYEDjDHGGGOMJSF158iaNWvg7e2tFwXu6+uLqVOn4sWLF/K4iIgIdOjQQWYeSJs2LUqVKiUbPFmzZpWzWHQ6HQoXLgwhBC5cuJDo18fYz8pYx+TmzZshhEDbtm0RExOD2NhY2Ulw5coVuLi4yGevQIEC+PjxY2Kf9g+jLo9nz57Jn0eOHKnXGZVQ0EBUVBR0Oh2GDh2KypUr66WfZYwx9r9Rv6MPHz6MPHnycPAAY4lk+fLl0Gg0sLKyQsuWLdGmTRvUq1dPtteUzAPqFPOPHz9Gnz59UL9+fZQoUQJt27bFypUrZXClqQ3UGRO/Lt2vXz9ZJtu3bzd6nPLznj175LEtWrQwizq1Euyf0ADjzJkzDZb30ul08l549OiRDAyrVq2a3mcjIyMxe/ZslCxZ0qwzDpw9exZ169aFjY0NKlSoIAO5gbjB9FWrViFlypQQQqBSpUrYuHEjrly5gocPH8oZ4tWqVZPLGZiyjx8/YtWqVejfv7/cpsyYf/r0Ka5cuQIgbplK5VmaNWuWPPZrAydMdUA8LCwMAQEB2Lp1q15Ghvnz5yNPnjzYvHmzfN98LnggIiICwcHBaN26NYoXLw4XFxdUqFAB/fr1w/PnzwGYx/v6W3HgAGOMMcYYYz+BwMBA2eD7448/sG/fPkyYMAFOTk7w9vZGr1699AbzgLhZHdWrV4dGo4EQAp6enqhWrZre2oefPn1C5syZkSVLFhlRzlhyYixAIP42pTNg6tSpEEJg4MCBcp/SCXjz5k0IIbBo0SLMmTNHdtqZ28yoBQsWQKPRYN++fQCAffv2wcrKCu3bt8f+/fuNBg0onVgfPnxAlixZUKZMGbPosGOMsZ+JuuP67NmzMnigVatWePDgQdKdGGNm7NChQ7CwsICTk5PeLHEA2LVrFzw9PSGEQKNGjfSWLVCLPyhuagN16tm9yrkrs3kB4O7du/LnESNGfFXwwIcPH+Dn5wdra2sIIVCrVi2EhYX96Ev5YSZNmoRGjRrh/fv3AAzbBzqdDjVr1oQQAuvXrwegX4bK+/3OnTsydfqiRYsA/Hu/REZGyjIy54HMCxcuoHHjxtBoNAbBAxEREdi9ezfc3d1lRg97e3uZYTFLliwyo4c5tNHUqfUXL16M7t27G+3TmTNnjtHgAfXnlXqCcj+ZevmcPn0aBQsWRKpUqbB8+XIAcUFeQgikSpXKYFnPhIIH1OXw6dMnGYxpLJNBcsKBA4wxxhhjjCWxAwcOwMXFBalTp8aaNWvk9nHjxsnUlvb29ujevbtB8EB4eDiuXbuG48ePIzg42KDDpU+fPrIzy5Q7Yxj7L9Qds6dPn8b8+fPRvn17dO7cGdu3b8fff/+td/zGjRshhECFChVw69YtvX0tWrSAnZ2d7IwCzK8jISgoCE5OThBCYOnSpQDiOjALFCgAIQTSp0+fYNCATqdD06ZNIYTAtGnTTK5TnDHGfmbqd+q9e/fw8OFD9OnTB+nSpZNrZXPwAGPf36hRoyCEwPjx4+U2dUr9kydPyhTyyrIF6uOM/dcUhYWFYeXKldi0aZNem3LRokXIlSuX3vIEw4cP/2zwgPLfGjVqoEaNGnBycoJGo8Hr168T6Wq+r4cPH8oU+r/99hsiIiKMHtesWTMIITB9+nSj+5V2hRJ80bNnT7nPlO+dr6W+xvPnz+sFDxw4cEDv2AcPHqBPnz6oUKECUqdOjWLFiqFDhw54+vQpAPNro92+fVtmWhg0aJCcYa+uGyQUPAAAffv2hRACp0+fTtTz/pFCQ0PRp08fODg4IHPmzGjbtq1sr27dulUepy6j+MEDSjtWfYy5BFb8rzhwgDHGGGOMsST05s0bmepSGagDgDFjxkAIAScnJ/j7+8PHxwcODg7o1q0b/vnnHwBfXgdywIABEELA29sb9+7d++HXwtjPRP1sBAYGyrUKlT9WVlbw8/PTmz328OFDlC9fHpaWlujatSv27NmDkJAQuX6kuaXgjz+437NnT1haWup1/gJxKR+VcqtevbrB79HpdDI9baVKlWQaXsYYY/879ffZqlWrkC1bNgghkDZtWlhZWcn386+//srLFjD2nSjPXcWKFSGEQGBgIIB/ByTVz+XBgwflc9i0aVPcuXMn8U/4Bzt9+jQKFSoEb29v2WYNCAiQbc0///xT7/iEggeUumdUVBTSp0+PxYsX4/bt2zJjnikGnsbExGDv3r3IkSMHWrZsqbdPPYCtLFVQunRpBAcHJ/j71q1bByEEypUrh/DwcLMbwIw/wzuhfV8KHoiJiYFWq8X9+/fx6dMnmSXO3IIGgLhB8mXLliFr1qywt7fHgAEDvhg8MHHiRLx58wY9e/aEEAKOjo549OhRUl3Cd6XcJ+/fv8f48eNhZ2cHIQRSpEihNxHHWBBAQsEDTB8HDjDGGGOMMZaELl68CDc3N/Tp00dumzFjBqysrODo6Ijr168DiFtn3N7eHmnSpNELHojfufLu3Tvs2rULpUuXhhACGTNmxI0bNxLvghj7ySidbzY2NpgwYQL+/PNPBAYGonPnzjI4Rz0rY926dXJ9USEE3NzcIIRA5syZzSr1pdqmTZvwzz//oGXLlqhXr57crk6hOnToUFkmgwYNwrZt2/Do0SP89ddfqF+/PoQQyJQpk0l3/DLG2M9M+T5zd3fHjBkz8OjRI+zZswcTJkyQ7+c2bdpw8ABj31GPHj0ghMCcOXMAGE9BD8S11ZTnsGHDhgaZq0zd8+fP0bdvXzg6OiJHjhxo3bq1nN27efNmeZy67qgOHlixYoVM/Q1ADmYqafsB0x7wjYmJke12ADhy5AjevXsn9wFxA+F58uSBvb09Jk2aZLCEhVI+x44dk8vQmLMVK1Zg9OjRch15RfzggYYNG0IIgSpVqmD//v1yn7EgHnOQUBvq48ePCAwMRMaMGT8bPLBgwQL53Lm6usp2rBI0YMrPmZpyzZMmTYIQAtbW1kidOjU2bNhgNNNmQsED3bt3NwhgYRw4wBhjjDHGWJJ6/fo1Bg4cKFOmHzp0CFmyZIGDgwNOnDghj3vy5Aly5swJIQRSp06Nnj17ylR8ak+fPkX79u3h5eWF2rVr6605yVhyc/PmTWTMmNGgYxKImx3m4eEBIQRGjBiht2/v3r3o2bMnXF1dUbRoUTRp0sRsU1/u2rULQgh4eHggT548MohJ6YxRX+/kyZPh6uoKjUYj149UZruWKlUKjx8/NvgMY4yx/92DBw+QI0cOCCGwdu1ag/3bt29H1qxZIYRA+/btedkCxr7B54Idp06dCiEEsmfPrrcMgUIZjFq6dCmEEChYsCCEEOjYsaNJ14euXbtmMPgWEhKiN7vXzc0NGzZskPuVslBftzp4oEGDBujbty+qVKkCIQTy5ctnsssTfM6aNWsghECLFi3w/v17vX2jR4+WA7rz58+XAbdqypIGSmCzuQ2MA3H3l4ODA6ytrTF58mS8ePFCb7/6mo8dOyafq19++QX79u0zepy5CQoKwqlTp/S2fW3wwK5du1C0aFGUKVMGLVq0kJNOTPmdZIxWq5XLFdSrVw+Ojo5Inz49li5dajRLYPzgAS8vL4Nl+FgcDhxgjDHGGGMsEagbKfEbuJGRkXKb0rkybdo0AHGNIaWBN3z4cDg4OMiO4yFDhhjt6Hry5AnOnDkjG5GMJVc7duyAEAKDBw/W23769Gnky5fP6D61p0+fIiYmRs5CMLfOFiBudlORIkUghIBGo0HDhg0RFham925RX3dQUBAmTJiA/Pnzw8/PD82aNcOiRYvk8gTmWEaMMZbUbt26BVdXV5QoUUJui42N1XtX79u3Dw4ODhBCoEOHDhw8wNg32rNnjwwUVZ6tDx8+oFy5ctBoNOjSpYvcr7TdlFnip06dQvr06TFz5kzUqFHDpJ+/GTNmQAiB+fPnIzw8XG/fiBEj5JJfnp6eWLNmjUwRr27jquuDM2bMMFhaJU+ePDLg1NSzVKnPX6fTYffu3UifPj2EEGjbtq1B8ECXLl1k6viOHTti165deP/+PV6/fi335c+fHy9fvkzsS/ku4vd1aLVag3/j2NhYTJw4EenSpYOzszP8/f0/Gzwwe/Zsee9UrlwZu3bt+nEX8BNQArtr1qyJs2fP6u37+PEjVq5cqRc8oG6HKeX2+vVrREdHm3U7Foi7v5T37eDBg+Ho6Ih06dJh2bJlBsED8e/DXbt2IW/evLh//35ina7J4MABxhhjjDHGfjB1A+XixYtYsGABVq1aZXDchw8f4OfnBwsLC5ltQKfTyfSGQ4cOhYeHBxYvXowyZcrIzhbGmPHUsX/88QeEENi4caPcrg4aiD+74MWLF7h37578e/yOQFOiPt+EOmSVd0t0dDRKlCgBIQQ8PT1x7tw5APodTPF/hzrd7Jf+P4wxxv43SupqPz8/xMTE6L2f1e97Zc1xZcCKly1g7Ots3boVQgiUKVMGz549AxD3bMXGxmLRokXw8vKCm5sbBgwYIOuK6npPgwYNkDJlSsTExMhnUp2235QMHjxYZhQ4evQogH/fM/Xq1ZPLMTg5OSFr1qxYtGiRHJxMKHjg1KlTWLVqFfr3749ly5bJQXFTGsxUrk29brr631gJ2o+OjsbBgwfh4+OTYPDA77//Dnd3d/m+zpAhg0ydnj17dpMPqvj48SPOnDkj/678O8+bNw/Lli0DEHdtM2bMgKen5xeDB65du4bUqVOjRo0aEEKgUaNGZrU2ffx25p49e1CrVi3Y2NigefPmOH36tN7+LwUPxP+dptaO/RxjbVzlOXzz5g3++OMPo8ED6mf10qVL8u/KfWSq7+sfhQMHGGOMMcbYf6ZU2o01RMypcfK/UJfD2rVr5eyDpk2b4sqVK3rHfvr0CcWKFYMQAsuXLzf4PaVKlUKxYsUQHR2NiIgIAKbV2cLYj6J+ztQzvJQMHtu2bQMQN/BiLGggKioK0dHRGDlyJPr27Ss7XkyV0ony7t27L76L1cEDpUuXhhACWbNmlZ3mCXWifE1gAmOMse/j2rVrcHR0hLW1Na5duwbA+KDAy5cvkTdvXlhaWkIIgVq1auHJkydJcs6MmZI7d+7IZeEqV64s60EAEBoaimHDhiF16tSwtbVFpUqVcOjQITx8+BBv3ryRs8Rr165tMEPfVE2YMAG//fab/Ls6YPTatWsIDw/H4MGDZfDAkiVLDIIHvlQ/NMX6Y2hoKGbNmqUX5A8As2bNgre3N27dugUgrv584MCBzwYPbNmyBb169UKKFCng5OSEIkWKoGvXrvLeM9V2fmxsLObPn4+0adOiX79+cvuiRYsghECKFCnw6NEjAF8OHlCyWdy6dQvOzs6YO3cuOnbsKD9vDtTf5Xv37kXfvn1RtGhR+Pr6yuweTZs21QvEAIwHDyjBK+bWF6e+nrCwMLx8+RKvX7/Gu3fv5HbleXn//r1B8IB6OYeBAweiUKFC2LRpk8HvZv/iwAHGGGOMMfafqCvYz58/x/379xEUFIS///7brKK/v5cVK1ZACAFbW1tMmDABL168MNpImTdvnuyQOnLkCIC4RlCvXr0ghEC3bt24ccNYApYvX440adJg8eLFAOKCdZT1ni9fvowCBQoYBA0o76t3794hderUqFixokm/w5T3w71795ArVy6ULVsWx44dM1hDVf0eUQcPlClTBkII+Pj44Pnz53r7GWOMJZ2GDRtCCIFmzZrJ9YrjUwJN/fz8kCVLFri6upp8MBxjP5oy4HTv3j1ZV6xcubLec/bhwwdMmTIF+fPnl7PE3dzc5CzxLFmyyCAdU26rGRusXrJkCebMmWMw8P3o0aMEgwfUgQZXr179sSediE6dOgU7OzsIIbBv3z4AwMKFC2U7PygoSB77NcEDQFzGs2fPnkGr1co6t6kGDSj2798vn5MJEybIbDgZM2bE5s2bAegHmKiDB8aPH2+w1Efz5s2ROnVqvSUeTb2M4lu+fDksLS1hZWWFZs2aoVOnTqhVqxaEELCwsEDDhg0TXLYgU6ZMcHFxQefOnfUG082B+n26e/du/PLLL0iVKhVSpkyJIkWK6GUWVMQPHpg0aRJu3bqFPn36QAiBlClT6gWHMUMcOMAYY4wxxr6ZuvK+detWlC9fHh4eHhBCwN3dHaVKlcLRo0fNrtHyXx09ehSOjo5wdXXFhg0b9PbF71i6du2abCCmT58eFSpUgJ+fH4QQyJYtW4IdxYwld/v27YOlpSVSpEiBwMBAAMDjx4/luyldunQQQmDYsGHyM0rnJvDvgMysWbNMcgaUWmhoKFxcXGSHXZo0aVCkSBFs27ZNb71UDh5gjLGfw9cMNB48eBCZM2eGi4sLxowZI2dlarVaOYASGRmJLFmyYNy4cbh27ZqsN5r69xpjP5ryjNy9ezfB4IFPnz7h+vXr6NmzJ3Lnzg1bW1sULlwYzZs3x9OnTwGYx2Cm+n104cIFOXC5ZMkSg4wKISEhBsEDHz9+BBBXdxwyZAgKFCiA7du3J+o1/EhKQL8QQv6cNm1ameFM7XPBA+ZUt1bSwavvnY0bN8LW1laWVbp06bBnzx65X6vVyudOCR7w8vKCvb09mjVrhu3bt+Pvv/9G27ZtIYRAzZo1ZdZFc3Po0CEIIeDk5GQwEL5s2TIUL14cGo0GDRo0MBo8sGrVKvkMmlMfnPp+Wr58ubyX/Pz8ULVqVfn3kSNH4vXr13qfff/+PYYPHy77AlxdXWWfmrKME9eNEsaBA4wxxhhj7D9TV96LFSuGnDlzwtvbWzaex4wZY1Zp5L6V0hBROhRmz55tsM+YM2fOoH379kiRIgWEEHBwcECxYsXkWofm0CHF2P8q/jPUuXNnWFtbGwTnrFu3Dg4ODhBCoHz58kZ/V//+/SGEQNWqVc1mZmbr1q2h0WiQIkUKlCxZUr6rq1atiokTJ+qtka2UpTI7jIMHGGMs8ai/zy5fvoy1a9di6NCh8Pf3x5kzZ2Rn+Js3bzBs2DA4OzsjVapU6Nq1q1xrXdG7d28IIbBo0SK5jeuNjMUx1v5Sb/ua4AHFhw8f8PjxY8TExMhMVeb6rI0YMQKOjo5wdHTEokWLPhs8kCVLFkyaNAkvXryQs3u9vLzMYnav+l4ZO3YshBDQaDRIlSoVjh8/bvQ44PPBA+Zwz0ybNg1NmzY12u/z22+/yTZIw4YN5XZlCQIAesEDCxYskM+e0g9iThk94lOuZdCgQRBCwN/fX+5TZ+04cOAAypUrB41Gg8aNG+P06dN6vyc0NBSbNm2SAUzmVEYAsGnTJrnMhZJZEABatWol75UBAwboLXMB/JuRoUqVKsiVKxdatGhhVkFePxIHDjDGGGOMsf/kwIEDsLCwQJo0abBmzRoAwOvXr/Hw4UM0adIE1tbWcHFxwZAhQ+Sgkznatm0b/vrrrwT3h4eHI3PmzLC3t5eduwkFDagbeC9fvsSVK1ewbNkyHDlyRK7Lxg0c82duDf0fbffu3Th69ChKliyptxar8py9evUKo0aNgr29PTQaDbp06YIbN27g77//xrVr11C/fn0IIZA1a1aZzt8cZh8EBATA1tYWqVKlwvnz5zF16lT4+PjIda/Lli1rNLhL6fyOjo5G2bJlIYRAzpw5OdsJY4z9AOrv/FWrViFNmjSyE1wIAWdnZ1SpUgV37twBAPzzzz/4/fff4enpCSEEMmTIgGHDhmHcuHGoXr06hBDInTu3XnYZxpi+WbNmYcaMGfLvCQUP5M2bF0IIVKtWTdaDlLaYTqfTe37Nof5ubMBbMXbsWNjY2CQYPPD06VMMHz5cLt2gvMuyZs1qVrN7lX//DRs26L2rT548CSCuzIzdC/GDB3799VfZvjdl9+7dQ4YMGSCEQKdOnfQCsM+dOwcXFxc4OzvDysoKQggMGTJE7lf3ayj3hk6nw9mzZzFo0CBky5YNpUuXRps2bcx2sFe57ipVqkAIIbNWqMtDsXnzZnh6esLS0hItWrQwCB5QmFsZXb9+Hblz54adnZ3sdwQAf39/CCHg6Ogo3zuDBg1KsO/x7du3MmDF3MroR+DAAcYYY4wx9k2UdKjt2rWDEAJLliyR+5SGTUREBEaNGgVXV1ekSZMGq1evlp81J0rkc40aNXD58mWjx4SFhSFDhgxImzbtV6WNM7buocLcyi+5U6/rqFB30JlzwM33cuDAAQghUL16dXh4eGDgwIEADGfGh4SEYObMmXB2doYQQnZi2djYQAiB4sWLm11GD51Oh/Lly8v0jUDcGrPLly9H2rRpYWFhITt2p06dimPHjhn8jujoaFSoUAFCCJQuXRpardYsOsYZY+xns3r1ajl7dfjw4di4cSNmzZol3+Np0qTBpUuXAMR1fi9btkwGd6n/5M+fX36fcb2RMX1arRa3bt2Sz8uCBQv09sX/+c6dO0iZMuVnMw+Yoz///FNvuQHFl4IHXr58ibVr1yJv3rzIlSsXGjVqZJYDvm/evEG7du3g6+uL2rVry/tJScMfP6hEoQQP5MyZE0II9OnTx+Tr1ZGRkdi6dSsKFSqE9u3b6+179+4d/P39cejQIezduxfW1tYQQmDw4MHyGPV9Ef8eef78ebLI6AEAHTp0gBACCxcuBKCfbUB9jyhZhSwtLdGwYUNcvHgx0c81Mel0OkyZMgVCCEyfPl1u9/f3h0ajgZOTE4KDg7F9+3b5HP7xxx96/Sjx60Km/swlFg4cYIyxn1xCX2j8RccYS0rh4eHIli0bHB0dZdpBdYo5IC54oFOnThBCwNfX97MD4qbq8OHDKFeuHCwtLTFz5kwAhu/niIgIZM2aFUIIrFy5MsFOXKUhHBAQIBuMzPyFhYVhy5YtOHv2rF4HweLFi1GrVi2cO3cuCc/u53fq1ClUqlRJDoL36NFD7jNWV7p48SI6dOiAcuXKIX/+/GjcuDEWLlwo00CbS4eUch3bt2+Hk5MTihcvLjuAAeDhw4eYN28eKlasCCGEzEzQv39/nDt3Tq+TOCoqCvXq1UNwcHCiXwdjjCUH58+fh4eHBywtLQ2W2wkKCoKbmxuEEBgzZozcrtPpEBkZiUWLFmHcuHHo27cvAgMD8erVKwDm833G2LcwVvcz1vaaPXu2HGSaN2+e0WOVZ2jJkiVywLNy5coyO5W5WrNmDYQQaNy4McLCwgB8W/CAcvz79+/NesD3zp07uHnzJgBg4MCB8n7at28fAP3gAfX1x8TEYOfOnShVqpTMxGDqoqKiZGAbABw9ehR3794FoD8Avn79+gSDB4zdI+r7zlz7wJV3zoQJE2SgtrHJBcrPhw4dgpOTE0qXLi0zVyhLOJirSZMmoXjx4vLvK1asgKurKxwdHXH27Fm5fcSIEfI5/P333w2WLWDfhgMHGGPsJ6auJISEhODKlSs4deoUbt++rbfPXCtQjLGf16dPn+Dr6ws3NzfZKDTWsAkLC5Nr1C1duhSAeb2zdDodTpw4gcmTJ8ttygAk8G8nweDBg+V6hurBu/jHRUREIHv27KhXrx4+fPjwg8+eJTWdTod9+/bB19cXRYoUweHDhwEAy5cvhxAC6dKl++wyGObsW94TZ8+eRaNGjeTsC2W2T/zfo7yXlM6p+BlAzHFm5sOHD5E9e3YIITB+/HijxygZBZQ/GTJkQP369XHjxg2DDs34mRwYY4z971asWGEQGAAAJ06cQMGCBSGEwLBhw77695nj9xljXys8PByXL19GaGgogH/rghs3bsS0adPkcYsWLfpi8AAQF4Sp0WiQLVs2CCHQrFkzs3rG4te5T506BQ8PDwgh0KpVq2/OPBB/ANhc2v5fCkr5/fffjQYPqAfOlVnQ6ln05la3VpZwaN26tVwOTafTybLauHGj0eAB5bgBAwZg1apViX7eP5py/8S/j5RyefHiBTJlyiQD4ZXnSPmvcp8cO3YMNjY2mD17NooUKQIrKyssW7bM6O82NZ87/+DgYOh0Orx//x61a9eGnZ0dtm/fDgBy+YErV67IpRw0Gg06duyo1zfHvg0HDjDG2E9K/YW5du1a5MiRAxqNRqYvbNasGQIDA40ezxhj30tCDeTQ0FAUKlQIQgj4+/sbPV5p3PTp0wdCCIwdO/bHn3AiMlY28+bNQ6VKlXDhwgW97UePHkWKFClkynB1B4HSaaDVauXyD8OGDTO7TgRmXHBwMGrVqgUhBKpUqYJ+/frJwdvNmzcn9eklCaWDJDw8/LPLe6ifwdOnT8vggdKlS+PUqVNGj/uav5sbZeaYn58fgoOD9d4tM2bMgBACdnZ2GDp0KCpXrgx3d3fZ8dm1a1dERUWZVQc5Y4z9bNq2bQshBP7880+57fTp08iXL59Mu6v24sULmcnL3L/DGPsWMTExWLp0KUqXLo3x48fLeuSCBQsghECFChVw7949efzChQuNBg/odDo5GHX58mUUKlQI27dvR7Vq1fQ+b+rU74+DBw+ib9++6NSpEzJkyCCzebVr1+4/LVtgDtTl8/HjR7x79w7379/XO0ZpywPGgwcUvXv3RubMmWWWAnOhzjoZExODjRs3Inv27LC1tcWvv/6qFzygUAcPDBo0SG4fOnQohBBwc3NDeHi42Xy/qdtRb968wYcPH4wuSbhp0yakTJkSVlZWGDBggNHrb9SoEby9vREVFYXAwEC5lFH8+9LUqK/1+fPnePLkiXwHqx05cgRCCJQrV05mRFF/ztvbGxUqVEDKlCmRJk2ar1oqlBnHgQOMMfaTW7Vqlax4lipVCmXKlIG1tbUMIhg6dKg81lwqVYyxn4+x9GcBAQEQQsDHx0dvhq96Vi8ATJw4EUIIjBo1KnFONok8e/YMxYsXhxAC9evX10vXB/w7m0wIgd69e+ulVYuNjUW3bt0ghEDhwoXx8uXLRD57lpSuX7+OVq1ayfsjderU2LJli9yfnL7flWu9c+cOihQpgmbNmuHgwYN6x6hnMqnL5uzZs6hTp44Mwvhc8EBycu/ePRQpUgQWFhZ6M3iUd7OVlZW83549e4bz58+jYsWKyJ07t1wnmzHG2P/O2ExDnU6HNm3aQAiBAwcOAIjLNGAsaCA6OhoREREYOXIkhg0bhoiIiEQ9f8Z+dlFRUViyZAkcHR3h4eGBJUuWyCBJT09PbN26FYD+s6jOPDBnzhyD39mwYUOkTJnSaIC8uVi+fDmsrKwghEC9evXQtGlTGdgcP2ueseABNzc3zJw506zeSep/7z179qBRo0bImjUrUqVKhRYtWujVqT99+iR/VgcPbNiwASEhIejbty+EELCxscHTp08T9Tq+F2PLLqizKbx58wZAXMbJHTt2IF++fLCwsEgweGDTpk2wsbGBEAK1a9eWy6dlypQJDx48SIQrShzxr7lSpUrw9fVF9uzZMWXKFJm9EwBevXqFKVOmyOWJfvnlF1y5cgUPHjzA69ev0bVrV7ld+XeoUKEC7O3tcezYsUS/tu9FHVixe/duVKxYEVmzZsWePXsMggd27NgBIQTq1q0LIK58lbJ49uwZ0qRJgxUrVuDw4cNyWZnk3A/wv+DAAcYY+8mov9AeP34MHx8fuLu76611ePToUZn2WgiBgQMHJsWpMsaSiVmzZkEIgW3btgH49z318OFD1K1bVzZejhw5Ij+j7lCoUqUKLC0tsWvXLr3PmxudToejR4+iWrVqsgEcP3hgyZIl8t3t4eGBSpUqoUqVKvDx8YEQAtmyZZMDdTzDN3lROpksLCyQK1euZLtEAQB8+PABuXLl0kuf3759ewQEBOgdpzwj8YMHateuLdeh5eCBOMqajz4+PoiMjMS0adMMggaAf8s0MjJSLpdijuvSMsZYYlPX6/755x+9fXPmzIEQAnPnzsXff/9tNGhAmdX67NkzpEiRwuzSpTP2X8UfWHr58iUmTpwIT09PuLi4QAgBLy8vvRng6tTpgH7mgd9//x0HDhzAkydP8Ntvv0EIgQYNGugNDpuTffv2QQgBV1dXbNq0SW4PDw/Hjh074OTkBCEE2rRpYzR4YPz48bKOGX8GsKlStxmWLVsm743cuXOjcOHCsLOzg5OTE3r16iWPU98fgwYNkp9Rsg5mzpxZDqCbat3648ePmDdvnuwXUij9RdevXwcQ90xu3779i8EDBw8eROrUqWVm3eLFi8u+EHMLzlFPIkmZMqX8uXbt2ti/f7887vnz51iyZAm8vb3l/ePq6iqXD8mcObOc1KPValG5cmUIIbBixYqkurT/ifp+WL58uQwmadSokV7/ouL06dNIkSIFPD09cePGDb19HTt2NMj2YarP2s+AAwcYY+wnov7CjIiIwNWrV2UHQnwfP37E0qVLZWVj1qxZiXmqjDEzFn9wrXv37rIzQRn8V+zcuROFChWCRqOBn58fli5dqvd7lGUKypYta9ZpwtRr1h0/fhyVKlVKMHhg586dqFevnl6D0cfHB82bN5cdydzAST50Oh0iIiJQvHhxaDQalChRQj4zQUFByXJQICQkBKVLl4ZGo0GKFCmQLl06OQuqdu3aWLt2LZ49e6b3GfUz87nggeRGeTe9f/8eRYsWhYuLC6pXr/7ZoAH1PZecgy0YY+x7Ub9XFy9ejLJly2LHjh1yW1BQkKwTZs2aNcGgAQCoV68ehBByTWPGkrNp06Zh2LBhRtuZ9evXh6WlJSwtLdGuXTu5XT0gqX42ly1bJuubSrp0IQSyZMkiB+rMsV7Uv39/CCEwdepUve1K2Zw4cUIO7ia0bMHMmTPNMkvVpk2b5ODtwoULAcQFCCjLCwoh0KlTJ3m8Onhg1qxZKFGiBPLly4emTZvKTAOm3M4/f/480qVLpzdQvXjxYgghYG9vr9dXFBkZ+dngAeX+unPnDjZt2oTt27fLrAWmXEbGXLlyBe7u7kiVKhUWLlyIu3fvYuXKlShWrBg0Gg1KliyJnTt3yuNjY2Nx+/ZtNGrUCEWLFoWVlRUKFCiAZs2aGWSsKFCgANKmTYtbt24l9mV9V1u2bJHLLsSfLBBfixYt5NKOS5cuxfbt2+W24sWL4+3bt4l01uaNAwcYY+wnNGPGDPj4+GDp0qXIlCmTrADErzxptVpMmDABQggUKlQIwcHBSXG6jDEzou48OX/+PLZs2YIpU6YgQ4YMEELAyclJb1kCIK6SX6FCBb1lVSpUqIA8efIYjYo2dQl1GKlnP38peEBZH/HgwYPYuXMnnj9/LteFNPWGsjl2qH1v6jJS/r3fvHmDCxcuICQkBA0bNoQQAmXKlMHhw4cNnpvkUMYrV66U9ZvZs2dj4sSJctaYra0tfHx8sH79+gQ7SdTBA9WrV9dbNzo5ioyMlIFcSqpUdQdVcrinGGMsKcQPGlDew+qZqgAwfPhwua9Ro0Zyuzo4tV+/fhBCoFatWmYdkMvY17hy5Yp8ZiZOnCjT5MfGxuLSpUuy7erm5gYvLy9MmzZNDkyq6z3qZ3Tv3r3o0KEDPD09UbBgQTRq1MgsBnwTEhMTgyJFikAIIYOZjC0JdvjwYVnWrVu3lsED6lT18T9r6q5cuQIfHx/Y29tj9erVcruSYcHe3l62TdTBA+pArxcvXuDt27dm084H/s1iZmVlJQMo0qZNq5eFQLlvPhc8oNVqjfYNmWN/kRIcuHLlSr3tZ8+eRatWrWBhYWEQPADEld+nT59w7do1hIaGGiwFomQsrF69ukkPlj958gSFChWCEALr1q2T2+PfC+og9xo1ashMFcq7ibN3fl8cOMAYYz+ZqKgoOdswVapUEELg0KFDCR5/584dmcow/kxgxhj7FuoGTkBAgJwRX7x4caRNmxaZM2eGEALOzs7YvXu33mfPnTuHsWPHwsnJCY6OjhBCIGPGjKhfv75ZdLYoZaNugDx69AiPHj3C1atXjR7/ueCBhMrClAbv4p9rbGysXvnE70hiceIH50yaNMmgE+HKlSsJBg+oy1XpeDEnyn0VHh6O6tWrw9HREWvWrAEA3Lx5E0OGDJEdnDY2NsiTJw8mTpyI58+fG6S0PHPmjJyZ2axZM4NUtsnN3bt34erqajBgZUrvHcYYMyXq73xlHXWlfu3r64uPHz/KOuHbt2/Rvn17GSC3YsUK3Lt3D69evcKjR4/QrFkz2TGu1K25Y5wld3PnzoW7u7teRgHF2LFjsWTJEsyePRtp0qSBh4cHpk6divfv3wMwHsgLxD1XHz58QFRUlBwENuV27JfUr1/fYMBOTXnPDBkyRA7QtWzZUta7zbVspk6dapDd1d/fXwakXLt2DUePHpXBA7/99ps8zlibw5zq23PnzpWDtilSpMDhw4flvvjfS1/KPGDOli9fjiFDhqBv377Ili2b3K5uz1+9ehWtW7eWwQPqfn1j2eAUPXv2hBACnp6eJj+J8MyZM7C0tETjxo3ltoTuDeW9o9PpMHr0aDRq1AiVKlVCnz59OHvnd8aBA4wx9hN68+YNqlSpIivlffr0QWhoaILHK2nEhw8fnohnyRgzV0qaMA8PDzmg+eLFC1y5cgWNGjWSjeX4wQMAcOvWLZw6dQobN27E/fv35WwEU6y879y5E6dPn5Z/V1/DunXrkD9/fnh5ecHW1ha//fYb9u/fb5Di+3PBA+bQUP7w4QNWr14tI9yVhtzMmTNRu3Zt+e/P4qj/zdetWydTPRYrVsxgjb7r168bBA+oOy+HDBmCevXq4dy5c4l6DYlJyaqULVs2PH/+HEBc51NoaCgGDhyIUqVKybpSsWLF0K1bN4SEhOgFEBw/fhxt27Y1qyCL+J1HX/N+VT4zePBgWFpaokWLFjJNqDm8ixhj7GdjLGggbdq0WL58OQoVKoTMmTPLAUxFSEiIHAxQjs+aNatME16oUCE5m84U69aMfS/q50u9DvbFixfx8uVLvWPfv38Pf3//BIMHlGcpoSwE5l5PUmaQlytXDg8fPkzwuPnz50MIAS8vLwgh0LVrV7nP3MooKioKQ4YMQZMmTeS2gIAAuLi4wNHREefPnwcAvH79Gn/88QcsLS0hhECHDh3k8eb8jg4ICJDfUxYWFti0aZPcZ2yQO37wQKdOnfDgwYNEPOPEd+vWLbi6usLS0hLFixdHkSJFEjw2fvCAup9N/WyFhoZixowZKFmypFxG5ebNmz/0On4k5dqUQJTu3bvrbU9I/MAcdXvWnJ+7xMaBA4wx9pNROrvfvHkjU39nyZLFaNYBZQBBiXodOnRoop7rj/a5yoK5NUwY+xkoa61XrVpVb926+JRgJWdnZ7lsgU6nS/C5NMXndePGjRBCoF69erJjQKGkUBdCIEeOHLCwsIAQAjlz5sScOXMM0jvGDx64fPlyYl/OD7N582a5vpzSSbdgwQI5W+6vv/5K4jP8Oa1YsUKW0ZQpU/Du3Tujz0n84IEtW7bg48ePMi1h2rRp8erVqyS4gh9LKYvo6GgULVoUQgjMmzcPWq1WLyggOjpaLkeg/MmQIQP69euH48eP6x0HmF9Hgvoav9a+fftkWalTijLGGPt+Egoa2L59OwAgf/78cHV1xf379wEY1pWXLVuGRo0awcvLCx4eHqhSpQomTJggv/PN7fuMsf8i/gDlsmXLIITA6NGjDdJ2v337FhMnTjQaPADEPYMzZ87E3LlzE+XcfwbKe+TmzZsoUKAAXFxcMG3aNINlUJR6dFBQEAoUKIAVK1bA2dkZQghMnTo1sU870dy7d08Gdr979w7Vq1eHjY2N7P9Q7r8DBw7opUxv3rx5kp3zj6bT6RAaGoqmTZsiZ86caN68uQweWL58uTzOWPBAVFQUtm/fLlPSDxgwwOyz5syePRu+vr6y7fW5pfPUwQNly5bFli1bjB43YcIEeHt7o0WLFrIOYeqU/rW2bdsC+Hzmynfv3uHixYty+Q/243DgAGOMJZHPDaQp0XNv3rxB5cqVIYRAnjx5cO7cOblP/UVavXr1z6YWM0XqCuTZs2exceNGDBo0CCtWrMCFCxeS8MwYM2+vX79GypQpkTJlSjnDV3ke1Z2Ubdq0kcED5rhMyt69e1G2bFlYW1ujUaNGcgD8wYMHyJw5M9zd3REQEIDIyEgcO3YMHTt2hKOjIzw8PDBt2rQEgwcsLS1RpkwZXL9+Paku7buKioqSjf+8efPKlI7p06fnQckEHDt2DM7OznBycsLGjRv19iUUPNC0aVPY2NjAxcVFLhmSOXNmOVPDHDtdlGdo8uTJcj1nhVJOEydOlEsWjBkzRi8DgRAC48ePN8nApa8RGBgIIYSc4fMt19mrVy9ZpvFn5THGGPs2O3fuTDAoVAmmjL/+c7ly5SCEwKlTp/SOjz/j+e3btwYBgub4nc/Yf6E8L8p/p0+fDjs7O1hbW2P8+PEGA+DxgwemTJki1wwfNGgQhBAoX768WWVMU78vIiMjDcpEp9MhKioKo0ePho2NDby9vTFv3jzZD6AO2P3ll1/g6ekJANizZw+EEChatChCQkJ+/IX8IOp3rrIsjDEHDx6EEAIVKlSQS8wonw0NDUWWLFnQpUsXGRhuyuvNf42HDx/KTIrjx4+XwQPqiSfG+pAiIiKwfv16VK5c2ayywcWnfu7mzJmD3LlzQwiBLl26fDarx9WrV9GuXTsIIVC3bl18+vRJ7lPfq7du3cKHDx9+zMkngSNHjsiMp0+ePAGQcIa9Y8eOIVeuXDhx4kSin2dyw4EDjDGWBNRf+FevXsXevXtx6NAhvTTF6rUOleCB7NmzY/HixTKqUKvVonfv3nLAxlw6f9XlExgYCFdXV1hZWcmBAEtLSwwePNigo4Ux9r8LDQ1F+vTp4e3tjdevXwMwvv7j+/fvUaxYMQgh4OjoKIMHzGmQ7tChQ6hYsSI0Gg0aNWqE69ev48aNGxBCYPHixXrHPn78GBMnToSLi0uCwQMnTpxAoUKF4OXlZRbva+X6IiMjUbFiRfmO9vT01EsZyh3ccZRyGDBgAIQQmDFjhsG+hNy5cwejRo2Cp6cnvL29UbNmTdlJp+7QM0dKmsf4ZaZkW7KyspIzMj59+oQlS5agcePGsLW1NdsUmDExMRg1ahSEEBgyZMhXf055PwcFBUEIgfz58yMsLOxHnSZjjJm99evXyw5+dVtep9Ph6tWrEEIgTZo02LFjh97nfvvtN9jY2BjMPuSMe4wZMpaCWl3/VQ/ELVy4EG5ubtBoNAkGD0yaNAkeHh5wcnJC9erVUa1aNZmCX/ld5vC8qa9h8+bNqFWrFry8vFCzZk0MHjxY79jQ0FB06tQJGo0GqVOnRseOHXH+/HmEhYUhLCxMZhxs3LgxwsLCEBoaimLFikGj0eDMmTOJfWnfhbr9tW/fPtSoUQNeXl4yM4zazp07IYRAmzZt5DYlA+yzZ88ghMCqVatw6tQpOfBpDvfQ19BqtRg3bpzR4AF1Snll/fmIiAg5IG5O2XPi/3ur31Hz5s1DxowZYWdnh5EjR+Lp06cJ/p4LFy6gV69eRgMrTL1fJX4Zqf+uLNdcq1YtvHjxAsC/94d64mStWrUghMDevXsT4YyTNw4cYIyxJBQYGChTfAkh4OLigtmzZ8vKlfIlqg4ecHJygpOTEypVqgQXFxeZjUBZ69DUKxJqSgpsIQQ6d+6Mrl27ol69erJCWr58eaOVesbYf/fp0yfkyZMHQgiMGzfO6DHKsgQtWrSQKfkcHR1lMI+pvoeU81af/8GDB2XwQJMmTTB48GB4e3vL2SnqBuHLly8xadIkuLi4wN3d3WjwwNmzZ2VDyFTLSU25/jlz5uitx6s07uKvP5fcRUVFIW/evLC0tMSdO3cAfP4+UDemdTodXr9+jUePHsnUfObU2WKMegaZRqNBgwYNAPybaUAdNBC/LEJDQwGYb2DFsWPH5Hqq37pkwadPn9CyZUvcu3cPQPLp2GSMse9t//79KFGiBCwtLY2mOF+wYAE2bNgg/658J/Xs2RNCCAQEBMh96u+x4ODgH3jWjJmesLAwrF27Frt379ZrXyxevBiFChXCvn375LYFCxZ8Nnjg3bt3WLhwIfLnzy8zV/n5+ck+NXOrOypLpCn9aLa2thBCoEqVKjKzAAB8+PAB/fv3R4YMGeSxmTNnRrp06eQSqsqgeExMjBzoU69vbyrUdd/ly5fLMmnTpo3RPkZlRrSLiwuCgoL09v32228QQuDkyZNymzm00dRlFB4ejlevXsm2g0J9nUrwgKWlpcGSl71794atra3ZZF1UxM8S9OHDB71nSm3+/PlInz497O3tMWrUqM8GDyjvIHO7jz5XRufPn0fOnDllgNKzZ88MjlEmTtaqVcusMi78rDhwgDHGksi2bdtk5b1atWp6szX79OkjvySVL9k3b97oHdO6dWsMHToUq1atkjNXTb1SoQye6HQ6REZGoly5cnBxcTFoiAQGBqJ48eLQaDQoXry4QcWdMfb14lfkASAgIAC2trYoXry43oCUet1xABg7dizKlSuHDh06QAgBb29vg8akKYg/cHv79m0ZGADEzc6tWLEiLCwskCdPHmTIkEGmsIw/4Pby5UtMnjw5weCBhP6fpuzRo0coU6YMPDw8kD17dgghkCNHDqMpLpO7yMhI5MyZEylTppTf3Z+7F9SpUuPfR8lpsPf48eNwd3eHRqNBixYtDIIGAMN0tfF/NkdK9oqRI0cC+Lp6YPxj+PlkjLH/TqvV4ujRo5gwYYLcllCKap1OJ7/zp02bBiEEJk6cCED/Xfz777+jcuXKn10LmbHk5vjx48iXLx+yZs2KNWvWAIhrswohkC5dOoO01erggQkTJhgED0RFReHly5dYuHAhdu3aJTPtmXqfWnyXLl1CypQpkTp1aixZsgTnzp3Dli1bZHBAqVKl9DI2REREYO/evWjfvj1SpEgBIQR8fX1Rr149vYHO2NhYFChQAJ6enrh161ZSXNp3oUxWSpMmDZYvX/7ZY5WsCwULFsTixYtx7NgxtGzZUpZj/HvMlKnbULt370ajRo2QLl06pEiRAvXq1cO6deuMBrIrwQNCCCxcuBChoaFyiTQ7OzsZnGMO1GW0d+9edOzYEVmzZkW6dOlQq1YtjBkzBu/fv9f7zLcED5iDrykj5bkJCwvDmjVr4OPjAyEEsmbNiqVLl2Lbtm3YuXMnatasKbcr5WZOfWo/Iw4cYIyxJKDT6dCgQQOkTJkSmzdvltsDAwPh4eEBIQS6desmUzmpgwcqVKgAIQTy5cunN0BnTg2cc+fO4eXLl8iePTsGDBggt6s7VI4cOYIqVapAo9Ggbdu2HG3I2Ff6moG0v//+W84gaNiwIc6dOyf3qddZK1CgAOrUqQMAaNy4MYQQ6N27t14qsZ+d0th4/fo15s2bh6pVq0Kj0WDKlCl66eGCgoJkmQgh9DoWPhc8kDZtWowZM8asGjXG7qEzZ87g6tWrACDXmc+RI4ccHFe/v819MDchWq0W79+/R65cuQzuofiU7/TJkydj6dKliXSGPzdldqYQAtbW1kaDBpIL5XoPHjwIR0dHZMqUSXZ4M8YYSxzGAtbmzZuHGjVqyDpRQrZu3QohBEaMGKG3/Y8//pDr/JrDslaMfS9PnjxBp06dYGtri0KFCuHXX3+FEALp06fX61NT94stWLAAKVKkMJp5wFjd0Rzaa/GvYdOmTRBCyGALxZMnT+SygyVLljSaFv3p06cIDg5GaGioXlA98G/w6i+//GIwOGoq7t69iwIFCkAIgbVr18rtCd0HV69eRdOmTWV7RMm8mDVrVrPKAKt+NpYtWyavt0CBAihatCjc3Nzg7u6OHj16yH5Y9XOnZIYTQiBVqlQQQiBTpkzyHjOHvuv4ZaTcCylSpICdnZ1emcXPIBQ/eEDp9zc331JGSibG0NBQmclJ2a/+U6xYMfmsmcN99LPjwAHGGEsC79+/R6pUqfDHH38Y7NuxYweyZMny2eABZdmC/Pnz4+bNm4l67j/amjVrIIRAo0aN4OrqKgdM1NkIFFu2bJGBFrt3706S82XMlKgbsrdv38aRI0cwY8YMnDt3Tq6Xrti/fz98fX1lVpTAwEC9/X379oUQAv379wcAnD17Fi4uLihWrJhecMHPTCmPR48eoWzZshBCIHXq1MiVKxcmT55ssD76/v378csvv0AIgdKlS+vNbDEWPDB16lT5rlbSpps69T106dIlLFiwANu2bdPbHh4ejpIlSxoNHlA38JR1IZObKVOmQAiBmjVr6n2Hx1+/NSoqCr6+vihSpEiCsxeTA+XeunbtGnx8fKDRaDB9+nQAcWVlrkED6mdKuSfid0bqdDq5zuOwYcO4A4Wxb2Ts/WGu7xT2Y6jfy//8848chGrSpMlnUzIfOnRIHgfEvecHDRokZ08rM4DNYRCKse/l3r17GDx4MKytreUAlDpoQHl/q5+bLy1bYK6mT58Of39/rFmzBiVLlpTbtVqtrC+GhISgePHiBsEDyv6Evg+VYF4PDw+TXlblyJEjsLe3R6tWreS2L9UBnj59ihkzZqB48eKoUaMGunfvLvtsza0ermRjSJkyJRYuXAggbjmL1q1bQwgBZ2dndOjQwWjwwOrVq5E3b14ULVoUTZo0kTPEza2MlEzCqVKlwuLFi/Ho0SOcPXsWM2bMQN68eWVgSfz6gBI84OLigt9//z3B5Q3MwdeUUZYsWXDt2jX5mU+fPmHy5Mno1KkTqlatio4dO2LlypVmmxnmZ8WBA4wx9oMZ6/iNjIxE5cqVsXr1agBxab/VFdQvBQ+8fftWL3jg77//TqzL+aF0Oh3Wr18PV1dXucbYsGHDAEBvBrO6rJRI5yZNmuilf2SM6VM/Nxs2bECOHDlkp4uDgwNKly6NAwcO6H1m9+7dKFq0qFxHu3Tp0qhZsyYKFy4MIQSyZcsm30/BwcFImTIlHBwcTGLtOuVd8fDhQ5mqsW7durh165Zeenj1sUDcDF91Noa//vpL7ovf0fD8+XPMnz9frgVp6oMR6vNft26dXO+ydevWsqGnvKsjIyONBg8oevXqhYYNG5pNQIXic//Gyn10/vx5FCxYEJaWlhgwYADu3r0rj1FnZmjbti2EEPjjjz/MKp38f30OPn78KAN36tat+53P6ue1detWzJo1y6BDSVnf98SJE0iRIgUqVKggg3FM/V3DWGJQPyf379/H6dOnTXbWJEsa6vqhUnc8cuQIypcvL+uJCdWJHz16JNfxBf7NNODt7S2DBszpu5+x72Xw4MFyHfUMGTJg+/btRrN/JBQ8MHHiRLMOyNXpdLh7966coevr64v8+fMbBGyrgweU2b0JZR4A4gLDly9fjnz58smBvhs3bvzw6/kRlPtkyJAhcqlY4NsGI5X6gtL2NbeBzKtXryJ79uywt7fHqlWr5HYlm4CdnR3Spk0LIQTat28vgwfU31vPnj1DeHi40SUNzMHbt29Rrlw5CCGwbt06g/0PHjyQgTm+vr549eqV3v6FCxfC3t4eWbNmNdsMut9SRtmzZzcoIwAGk5K4zz/xcOAAY4z9QOqGy86dO9GtWzfUrVsXbdq0gbu7u1zT0Njx6uABdRSr8iWpDh4oXLiwyVba44uKisK2bduQPn16CCGQN29ehIWFAdCvaCrlcPDgQQghULx48SQ5X8ZMgfrdsnz5ctmR0KlTJ8yaNQsdOnSQa4Zv3LhR77N//fUXRowYIbN7KFHnpUuXlgPiQFy6wzRp0qBw4cLymf3ZPX/+HIUKFdLLnJAQdRkGBQWhYsWK0Gg0aNSo0WeDB+LPIjcHK1asgBACNjY28Pf3R0hIiN51Kx0G6uABX19fmepSmVFnY2NjtHFoqtSN2MePH+Pq1avYsmULHj9+bPBMLFy4EClTpoSVlRXatm2LvXv3Aogru0+fPqFz584QQqBQoUJmm6r44sWLX91xq9xfFy5cgKurKxwcHPSWKjAn6vto//798r2bOXNmLFiwQO99A8Tda0qq2blz5yb26TJmktTP2Y4dO+Dn54eMGTNi5syZyTYbDvvvli5dipYtW8oggcOHD8tMVgkFD7x58wYuLi4oWLCg/M5XBw2YU72Rse9BeW8rz9Yvv/wCW1tb5MmTB6tWrTI6Sz5+8ECaNGkghMDs2bPNPsgyICBA1iFz586NW7duATA+sUkdPFC2bFncv3/f4Pe9f/8e8+bNg5eXFxo2bKi3bKqpmjVrll7gwOe8fPlSb/lGcx+8nDFjBoQQmDFjhtzm7+8PIQScnJxw7tw5HDx4EJ6enrCwsEC7du0MginUz5g5Pm/37t2DnZ0dChcuLLfFfw+9efNG9je1atUKkZGRevdOYGCgzMbAZfRvGakZCwxjiYMDBxhjLBEogyzx/xQpUkQvHQ9gGGygBA+0atVKzjZTvmjfvn2LGjVqQAiBUqVKydlnpiZ+BSAyMhLbtm1DpkyZZIeLEmWoDEgp/z137hwsLS1Rq1atxD1pxkzQ3r17YW9vD3d3d6xcuVJunzVrFqysrOS7SZ3yUfH06VMEBQVh7dq1uHz5skGaR6XTs0uXLibR6R4TEyNnGTRr1kxu/1xHrfpddejQIVSqVAkajQYNGzbU60gw50bN4cOH4eDgADc3N6xfvz7B45R3dFRUlIwyd3d3l99pmTJlMqs0vOp/882bN8PPzw/Ozs4QQiBDhgxo1aqVwdIXs2fPRpYsWeR6f9WqVUOpUqWQLVs2CCHg4+NjVutlqq1YsQIuLi64ffs2gK+7Pp1Oh9DQUDRr1kwGVZoy5Z5R193UP9+9exfR0dFYs2YN6tatCyEELCws4OzsjGHDhuH8+fOyY05JJVq+fHm8evXKrN9BjP2v1M9HQECAzL7UqVMnXLp0KelOjJkkJQWvhYUFDh48CCDuO+3IkSNygLNBgwZ6bf7Y2Fi8e/cOnp6esu7t5eXFQQOMfYb63X3p0iW8ffsWvXv3hq2tLXLnzo01a9YYDEjFr19OnToVuXLlSnBWvTmIPyipvGPUy6Sq3zHKz0+fPkWZMmUghECdOnWMvoc+ffqEO3fumE12nl27dsmgrbNnzxo9RimHM2fOwMvLC0eOHEnEM0wa0dHR6Nevn14fyfLly+Hi4gJHR0ecP38eQNwkjD59+kAIATc3N7Rp00bOnDe3tqsxFy5ckJk6jFFPdkuVKhVy5cqFFy9eADD8njfX7/3/pYxY0uPAAcYY+8HOnDmDFClSwMXFBZMmTcKOHTvQunVrODk5wcbGBv3795cDAwp1o2jXrl1wdXVFqlSp9GbmKRWLN2/eoH79+rh8+XLiXNB38DUd2krwgJJ5oF27doiIiDA4Tllfq3///tDpdNxZzlgCnj59igoVKkAIgWXLlsntY8aMkZHjXbp0kZ0L6swD6qVCjBk4cCCEEMiYMaPRGQo/o48fP6JIkSLImDGjnNH9NQ22zwUPxJ8JbE6U6+7VqxeEEJgzZ47cl1DHgDp4oH379siQIQM8PT1Rs2ZNhISEADCPRrL6nli2bJl8hho2bIj+/fvLGTyZMmUyWFpo165d6NGjB2xsbGBvby+Xdmjbtq3ZrpcZExMjB/+7dOnyzZ/funWr7KAKDw836e/9sLAwTJkyBaNHj9bbPn/+fAgh5JJWALBlyxb069dPBpqkTZsWDRs2xLVr13Dz5k3Uq1cPFhYWOHToUGJfBmMmae3atRBCIHXq1FixYoXePuV7zZTfL+zHUNd5YmJiUKdOHaRIkQJr1641OO5zwQMA5ICLp6enwdrijLE4xrKaKYKDg9GrVy8ZPLB69Wr5DKnbr+qsH8qyIub0rMWf2a0up9WrV8u2iTrjqbHMA0+ePEGdOnXMIpuAWvzyUa43NDQU9erVg5WVFfr06aOXTTF+OVapUgVWVlbJpp4dEhIi+5g/fvyIGjVqwNbWFrt37wbw7z1z9uxZeX9ZWlqa5VKECblz5w40Gg0sLS0/G1Dy/Plz+Pr6QgghAwyTCy4j08aBA4wx9p3F72DasmWLQecvAMycOROZMmWCra0thg0bpldJjf97Dh48aDR9kVJZM6VoTvX5HzhwAP7+/mjTpg22b98u06cpoqKisHXrVrmOdokSJbB//35cvHgRISEh+PXXX+WszGfPniX2pTBmUo4dOwYhBAYPHiy3TZ06FZaWlnB0dMTVq1cBAF27dpWNP/WM8vjvttDQUOzYsQM1a9aUg1imtGSKMkOsbNmyCAsL+8/v0aCgIFSqVAk2NjaoXLmySQVxfauwsDBkzJgRzs7OskPpS+Wm7I+NjcXff/+N27dvy84Ec+qwA+KyBFlbW8Pd3R0BAQFy+8SJE2VGjzRp0uDOnTsGn71y5QpOnjyJ7du3459//pGBcuZWRoq///4bqVKlgq+vL27evAngy/eS8g6Kjo5Gnz59ZJCSKQ/sPXnyBEWLFoUQAl27dgXw7+ywVKlSYcOGDQafOXnyJIYOHSqzd6RJkwZ16tRB6dKlIYRAxYoV8fr168S+FMZMyrVr1+TavOrnTMn6ET8jiCm/Z9iPcf36dQQHB8PFxQW///673K7VavVmO38ueODWrVsYMGAAZxpgLJ74fV7v3r1DRESEDAZQ1xnv3bunFzywZs0amf0uJiYGQ4cORfHixeWyYPF/v6mKfw2fPn2CVqs1+h5Zs2bNVwcPKNviB2mYmq8tn+XLl8Pd3R329vYYOnSobJeo9e7dG0II1K1bN9kMiqsdOXIEQghUqlQJHz9+RExMjAzAePfuHTJkyICePXsiderUSJ06Nd68eZPUp5woYmNj0aRJE2g0GgwePFgGJakp76yGDRtCCIF9+/Yl9mkmKS4j08aBA4wx9oOsWLECI0aMQKtWreDn5ye3q1N4L1myRAYPDB061CB4IH4nujl1JsRfvsHBwQElSpTAjh079I6LiorSW7bAyckJdnZ2srOvdOnSMmODOZUPY9/bpUuXMHjwYDnYtnPnTqRNmxYODg44deoUgLhn6Nq1a8iZM6d8Njdt2mT0992/fx+NGzeWA1XBwcGJdi3fw5YtW6DRaP7TjGcAeg3iQ4cOoVChQkiXLh1evXr1vU7xp/P27Vt4e3vD29v7q4K1Pn78mOBgsDl02Kndv38fxYoVg4WFhd7MVXVGj/Lly8uBXiVFv9LxYoy5lZFCq9UiIiICLVu2hBACU6dO/ebfoXQwmHqnJgDs3r0bbm5uEELIZT3SpUuHLVu2yGOM3Qvv3r3D6NGj5WeUP1mzZpXpVrlexJhxyvIevXr10tuu0+nw7NkzdOvWDU2bNkXVqlVx6tQps30fs/9Gacf+8ccf8PX1lXVlYxm6vhQ8YC6DdIx9L+r37d69e9G0aVN4eHggc+bMqFSpkt5STYr79+/rBQ/MnTsXHz58QL9+/WSAu7LspzmIP8moc+fOyJo1K/Lly4eSJUtiw4YNBlkAvyZ4wFx8Tfmo+y7Gjh0LFxcX2NjYoEKFCli8eDHOnTuHI0eOyOXCsmbNKidzmVqZKe2BqKio/1SfUZZ0aNKkidym9Gu/fv0aQgjMmDEDf/75Z7IrI3W/9pIlS/SuW1luFwAKFCgALy8vk8nOaQyXUfLDgQOMMfYDXL9+HU5OTkidOjWKFy+O8uXLAzCeIeBLwQPm6MiRI7C1tYWdnR2GDh2Kvn37onLlyhBCwNnZGevWrdM7XgkeyJAhA4QQKFasGAICAnDr1i05q447xxmL87lKvHrt6169ekGj0chBTvUzVKJECVhaWsoKvpKSTk2r1eLevXvYvXu3SQ6Wr1q1Sg7UhYeHf9M75M2bN1i3bp1c4gAATpw4IddjM7WG8teKjIxE7ty5odFoZCe5sWuNjY2FTqfD6tWrsWLFCrMtDzUlu9C4cePktsmTJ8PCwgKOjo4yy4ASPJA6dWq5bEFyHSzYvn27XFfUlLKV/C92796td63Ks3Hx4kXY29vLDDA7d+4EgASXYFLXJ6OiorBw4ULUrl0bzs7OEEKgTZs2P/5iGDNhM2fONAhcunv3LqZNm4aMGTPKNeuFEHB1dcW2bdsAmG9AF/s2kydPhrW1NWxsbAwG4YxRBw9YWlqiUqVKBpn2GGP679jly5fL5Zny5s0LPz8/CCGQMmVKzJ071yAQ4P79++jXrx9cXFxk/VIIgSxZssisHubQJom/RJqS1czKygqurq4QQsDR0RF16tQxSA2uDh6YNGmS3G4O5aL4lvIJCgqSx86aNQvFihXTC8ZV/hQtWtTkJyvdvn0bjRs3xpkzZ765LnPx4kUIIeDu7o49e/bo7fvtt98ghMDp06fltuRQRur9Q4cOlffKhAkT5AQBhbIsUZ06dRAWFvZDzj2xcBklLxw4wBhjP8CHDx8wdepUZM2aVVZM46cmTih4YMSIEXKNQ3OjVBxGjx4Na2trvTXUnzx5ggEDBkAIARsbG4PggcjISGzduhWenp6wtbVF37599SIeGWP6lfObN29i9erVeP/+vcFx//zzD5ydneHg4IAbN27IzykRv23atEH79u1lWr4HDx4kyvknptOnT8PBwQGZMmWSa8l/bafJgQMHYG9vj4CAAIOGsTl1vKgp90jPnj0hhECrVq3kPnUZKD9/+vQJGTNmRJMmTYympDNl8dc3BuLuiY4dO8pOzE2bNsHd3R0ODg5y9rdOp0NQUBC8vLxkKnql0WyqHSwJSeg5UKdwBoCWLVvCxsZGLotirs8P8O966o0aNTLoLNm4cSOEELKDvE+fPnLf194b79+/x6lTp+Di4gIXFxe9DjzGmD4l2MvDwwN79uxBYGAgChYsCCEEfH190adPH5w5cwatW7eGEAIZM2bEu3fvkvq02U9k5syZMgNelSpVvph5S6vV4ujRo8ibNy+8vLxMMug2IRxQw763DRs2QAgBNzc3LFy4UG6vVasWhBBIkSIFJkyYYJABLSQkRPatZc+eHXXr1pUzoM0tUFf5HkuTJg0WL16M4OBgBAcHo3///siVK5cMuIi/Xrg6eGDEiBFJc/KJ4GvLR72Exa1btzB37lxUqVIFxYoVQ6tWrTBv3jyTnqyk0+kQFRUlM7hWq1YN58+f/+r3tk6nQ0xMDHr06AGNRoNSpUphxowZOHPmjMweV7JkSZOuI/3XMlK3WwcOHCifqzx58qBLly4YPnw4KlasCCEEMmXKZHT5YVPBZZQ8ceAAY4x9Z8oX3IcPHzB9+nSZ8rtbt25yNqoifvBAtmzZZPSvuXSeG/vCr1+/PurXr2+wX6fTYcSIEQkGD0RFRWHr1q2yk6Z79+4yRZa5lBdj/5X6Wdq8eTN8fX0hhED16tUNgmvCw8ORI0cOpEyZUlbOw8PD5f4MGTLIZ1RZx8/cOls+ffqEwoULQwiB1q1byzXlP9dIUToL5syZ81UzzExNQteufr+eO3cOdnZ2EEKgf//+esep38ft2rWDEALDhw832XvH2PeKuoxWrFiBGTNmIDw8HNHR0Xj69Knc3759e1haWsq1s5V75927d0iXLp2c/SKEMOt0fKtWrcLevXvlLB2FUraLFi2CEAL58+c3GuRkLnQ6HXbv3g0/Pz9YWVlhwYIFAOLuC61Wi2HDhqFEiRIYPnw4UqRIASGE3jIqn+uoVO455b8jR46EEALTp0//cRfEmAlRv7fV7/VOnToZzCrs2LEjLl26JNNgv3//Hj4+PnBxcTHrdzX7eur38fTp05E6dWpYWlpi7Nix+PDhw2c/q9VqcerUKbPKUKW+hmfPnuHZs2e4d+9eEp4RM3WXL1+Gj48PHB0dsWbNGrl96tSpconLFClSwMnJCf7+/jIAXC08PBxv3ryRQfGmOOD7Oc+ePUPp0qUhhMDatWv19ul0OuzYsQM1a9aEEAJly5bF5cuX9Y5Zt26d/N4LDQ01u0G6by2fCxcu6B1j7N1s6u/r06dPy2wclStX/qbgAQA4f/48mjRpIu8bJStTlixZZDsvOZaR+t0ya9YsFCpUyGBJ3jJlysjMwqb+LuIySl44cIAxxn4ApcL04cMHzJgxA+nTp4erqyvGjh1rMLtAXbmaPXs2ihUrZtDBbqrU1/bhwwe8ePECWq0WderUQbt27QAYDlTpdDoMHz78i8EDSuq5Hj16cPAAYyrLly/XSwN2/vx5o8/GL7/8AiEE6tatqzcjXMkyMHbsWACGM4TNgVIe69atQ8qUKeHh4YE5c+bIgYLPpQaPjo5GwYIFkT59eoNMMqZMfc2vXr3CrVu3cPbsWaOdccoMDmVwU0m5D8SVbffu3SGEgJ+fn95yDqZEuUeePn2KgwcPGgTfKDPEbWxscOnSJb19t27dgkajgaenJx49eiR/l/I7qlevjh49eqBMmTIQQiAkJOTHX1AiUd9HQUFB8j4pXLgwZs6cibdv3+oFkuh0OhQvXhxCCKxcuRKA+X6Xx8TEICgoSL5bAcjZOZGRkfI5OnjwINzc3CCEQNeuXeWxyjvoS1lO9u7dCyEE8uXLh9evX5vd+5uxr6G+72NiYvD+/XuEhYXpBUkCcYGA3bp1w6BBg7B582aD3/Py5Ut4eXmhSJEiJhsEx/6bz7071e/dmTNnwsXFBZaWlpg6dWqCwQPxf58pftcdOnRIb4kF9ffR+vXrUaxYMXh7e8Pd3R09e/bEpUuXeACAfROtVosxY8bINdMVEyZMgBACTk5OuHDhggziTpkyJSZOnKjXXol/z5ljPejmzZtwc3NDhQoV5DatVqv3Xjl8+DCKFSsGa2tr+Pv7A4Bs6wLA1q1bZVZBcyuj/1o+yve8uv/DFN/V8SnPxF9//QV7e/v/HDxw584dLF68GH5+fqhduza6desmnz1Tf9f/L2WkvvY7d+5g9+7d8Pf3x4QJE3D48GG8ffvW4DhTxGWU/HDgAGOM/UfGGv/Gviw/fPiAmTNnwtvbGylTpsS4ceM+GzygrOdj6l+Y6rLYuHEjSpYsiZQpU6JkyZLImzcvatasidDQ0ARndKqDB5QZmwp15gELCwu0a9dOBg8wlpwdOHAAVlZWSJkypUHQTfzGb3BwMHLnzi1n+3bv3h3lypWDEAI5c+Y0WDfSHD18+FBGzufJkwdLly6Vg7vqAQLlZ51OJ2coduzYUWYpMHXq9/XWrVtRvHhxWFpayqV2Ro4caTA4rk5zmSVLFlSsWBG//PKLzHRhyrMPlPO9f/8+HB0dUbhwYdy8eVPuf/PmDYoVKwZPT0852K32zz//wMPDA7ly5ZLblMEqnU4HFxcXDBw4EABkfcDUvvOVeyY6OtrobK4bN27g48ePmDZtGurXry/vlRIlSqB///549eqV/N5eunQphBBo3Lhx4l9IIlM/C/Pnz0edOnVw/fp1g+MOHDhgNHhAKWudTmewFIHynoqJiYGnpyeKFSvGdSOWLKm/03bv3o3GjRvD09MT3t7eyJkzJ5YvX64X8Ba//aYOSO7QoQOEEBgwYIDJfZex/079b3379m0cOXIE8+bNw9KlS3H//n2DDDmzZs2Cs7MzLC0tMWXKlC9mHjBFK1asgBACnTp1MliWITAwUH7Pp0+fXv5csmRJrF+/noNu2Ddp3bo1ihYtKv++dOlSODs7w9HREefOnQMQV9dp1KiRDB7w9/dPFm1XxdatW2Vgbvz3jfo7bdasWTIF+Js3bwAYtsvM8fn8X8rHXCn/7v9l0Dd+AL3yHajcO6bWjk3I/1JG8dtc8Z8zc6lDchklLxw4wBhj/4H6C+348eOYPHky6tSpg/bt22PLli1y8F8RGhr6xeABc4vyVaxatUp2HqRKlQoODg4QQsDOzg6HDx8GYLyiqQ4eEEJg+/btevujoqKwfft22NnZwdnZ2WB9O8bMlbHnRavVIjw8XK7Fq14L8nMV8GPHjhmkCsuTJ48c8DWXRuDnnD9/HiVKlIAQAj4+Phg5cqQcnIuvR48eBoEVpv7uVp//smXL5H3QsGFDdO7cGUWLFoWVlRVq165tsEbm0aNHUb58eXh4eOgFETRt2tRkZx+ogwa8vLwM1pt//fo1Hj58KJcViv85IC6wwMfHB0IIGSCg6NmzJ4QQMlW9Tqcz2UZyeHg4Fi9ejHnz5unN9FqwYAHSpEmDwMBAedzu3bvxyy+/IE2aNLKDbsCAATh37hxevHghy3r9+vVJdTmJKiQkBHnz5oUQAi1btjQ6iJlQ8ADw7xqRy5cvN/jdSt2pVq1acqkZxpIj9Xdajhw55DNnYWGBRo0a6X2nGfsuV97XhQoVMlhujpkv9b2wbt06ZM2aVQZTCiGQLVs2NG/e3CAdvzp44HOZB0zVmjVr4OvrC2tra3Tr1k1m3QoODka6dOmQJk0aLF++HC9fvkRQUBBq1qwJa2tr5MyZE4GBgXoznRn7EiV1/Js3b1ClShXY29tj9+7dAP4dfDp37pysJ7m6umLw4MEmm+nsW926dQtp0qSBr6+vbJOq21zqCQM5cuSAtbU1/vrrryQ516TA5WPcfxn0VcpNq9WiU6dOess6mHo/iDH/Sxkpk0wuXryYaOebFLiMkg8OHGCMsW+k/iIMDAyEs7OzwfqYv/32G06ePKn3OWPBA69fv07s0//h1OXz+PFjZMuWDe7u7li1ahWePXuGoKAgVK9eHUIIuLm5yZl2CQUP9OvXD46OjkaXb4iKisKuXbtw+/btH3dBjP0kTp06JX829ry8fPkSmTJlQqZMmeTs5q8ZkIyMjMTixYsxa9YsrF+/3mRnQP8vTp8+jSpVqsDGxkbOil67di1OnTqFS5cuYdWqVXKdRB8fHzx69AiAeZXRtm3bYG1tjTRp0mDFihVye69evSCEgJWVFUqXLm0QPKAMpO/Zswd79uzBs2fP5P1nauWjDhrw9PSEEAJDhgyR+6dPnw4HBwfMnj0bOXPmxNWrVwHAIPU+AOzfvx9OTk5yJv348eNRo0YNmULeHDo2r127hvLly8PGxgajR48G8O+MRHd3d+zfv1/v+Hfv3uH27dto1aoVMmfOLOtMo0aNQvXq1aHRaNCzZ08A5j/jICYmBvv27ZPvlWbNmn0xeKB169a4ffs2OnfuLIMx46+5fuzYMaRJkwaurq5cN2LJ2s6dOyGEQIoUKbBy5UrExMRAp9Ph4MGDKFWqFIQQKFCggMHM6QcPHuDPP/9ExYoVIYSAr69vsgqmZP9Svs+EEGjevDl69uyJ/Pnzy2DJTJky6WUjAvSDB6ZPn26QmcDUbdmyBXnz5oVGo0G3bt3w5MkTnDlzxmgg2+3bt9GnTx/Y29sjR44cHDyQzH3tAGP89+y+ffsghECDBg0QExOjVz+8ceMGHB0dUbNmTaRIkQLZs2c36YCdbxmEffnyJXLlygUhBLp37y63q8tHmSVerFgxCCGwb9++73eySYDL5/v4lkFf9WBv06ZNIYRA0aJFzTJLhdr/WkbJYXkrLqPkgQMHGGPsP1LSNNvY2MDf3x9PnjzB7t27kSVLFgghUKdOHRw6dEjvM+rgAQ8PDwwePFiu5WMO1BWEqKgoXLlyBUIILF68WO+46OhomVouRYoUuHHjBoCEO+SUThfusGPJlb+/v8EgZnyXL1+Gra0tfHx8vmqW6deu3ZpcXLt2DQMHDkTGjBkNgsGUlP116tTB06dPAZjX++ju3bsoXLgwrKys9IIGlPVEHR0dUaVKFQghULp0aRw4cEAek1A5mNoMhISCBpTtsbGxclkLR0dHCCGwY8eOBH9fdHQ0AgMD4eLioncfqQehTP05i4iIwLRp05AuXTqkSpUKtWvXlmmKt27dKo+Lf52xsbH4+++/MW7cOKRLlw4WFhayfOzs7HDlypVEvpLEpTwbsbGxOHDgAIoXL/7Z4IHDhw8jZcqUMoBHmfGqBDDF73QZP3683hrUjCU3b968QbVq1fQGM5Xn6dSpU3JJnWHDhhl8duzYsbJ9V69ePZPNnsP+NydPnoSLiwvs7e2xadMmuT00NBT79u1DmTJlIISAp6enQZDWrFmz5DtbnQHMlKm/xzdt2iSDB3r06IGRI0ciXbp08hj1d9LDhw/Rt29fDh5IxpR3p3rt+G+xZMkSCCHQokULuU25hx4/fozUqVNjwYIFWLlyJZ48eQLA9Nog31pGyvXt2bNHBr2rs6DFxsbqPWc5cuRAtmzZ9LKDmRIun6/3tff+1wz6KmWk0+lk323mzJnx4MGDH3LuiYXL6Mu4jJiCAwcYY+w/UGZ0ubm5YfXq1XL7jBkz9DrAK1eujKCgIL3PhoaGYvbs2bCxsUHu3LlNOio6IdOnT0fhwoWxZs0a5M2bF+/evQMQV0lXV/QbN2781cEDptYAZOx72rhxo3yvqAfk1O7duwcPDw+kTJlSVsSNPTdarRYRERGYOnWqfDb5+YoTHh6O+/fvo2fPnmjYsCGyZMmC0qVLo3v37jh48KB8X5vbAMK6desghMDYsWPltkmTJsHCwgJOTk64fPky7ty5gxIlSkCj0aBChQp6szJMfQDc2PIEzZo1k/vV6/G1bdtWDuD+/vvvMrtCQm7duoVhw4Zh4MCBmDt3rkx3bYr30PHjxw3SdX/8+BGrV69GqlSpIISAs7MzAgIC5P4vrV148+ZNrFu3Drly5YK3tzeEEOjSpQsiIyPN4r2U0DWoA1IOHDggl0uJHzygHHfnzh00aNAADRo0QKdOneTyTOr7yNSfQ8a+l3v37iFVqlSoXr263vaTJ08if/78EEJg8ODBRj8bGxuLUaNGYeXKlRy4nAwp7+zp06cb1IvUA+KPHj1CpUqVIIRAhQoVDNZW9/f3h6+vrwzwMgfq77NNmzYhT5480Gg0yJ8/P3x8fIweBxgPHuBZhslLcHAwypUrh2vXrgH4tvrKsWPH4OzsjCJFihgsD6LUyc+fPy+3mer7+r+UUXh4OEaPHg0rKyvY2NgYLI8GAH369JFL0MVfTtWUcPl83n9ZtvVzg75KNgatVisHe9OnTy+D303xHc5l9GVcRiw+DhxgjLFvFBERIdPEqmcRjBkzBkIIODk5ITAwEHXr1oUQAjVr1jRI7fz+/XssXboUISEhAMxn0E6n0yE8PBy5c+eWqYptbGxkUIBCXUH4luABxpKznTt3onnz5gbb1am/KleuLAfelKwD6veLcmxYWBisra3RrFkzHmxSUcpK+W9ERITBMaZeXsbOf9GiRWjYsKG8Z9auXYvUqVPDwcEBZ86ckcfNmzcPQghYW1ujfPnyBoFxpshYpgEbGxuUKlUKR44ckccpDV8AaN26tUwV/7m0lsrvNjbj3tQsXLgQQggMGDBALmeiPCeTJk2CEAK2trZwdHTE5MmT5TEJiV8mr1+/xqpVq5ApUybkyJFDLuVkyvUj9TU+ffoUz549k2tCq30peECpM3369AnAvzM3TPE+Yiwx7N27F0IItGzZUm47ffo08uXLByEE/vjjD73jHz58iD///FPvmVWvf8ySF51Oh4YNG0IIgZ07dwKA0Vnyp0+fRu7cueHm5oYtW7YYHPfx40cA5vWujp95oGDBgjKwecOGDQl+7uHDh+jXrx/s7e2RN29eLFq0iAcMkonw8HAZZJM/f36ZEelr360vXryQ7dvq1atjzZo1OHfuHNq0aQMhBMqUKSMD4U3V/1JGDx8+xODBg2FtbQ0hBKpUqYJ+/fphwYIFcom0zJkzy4x5pliv5vL5vAkTJsDHxwenT5/+5s8aG/StWLEi/v77b8TExMi+WvVgryl+p3EZfRmXETOGAwcYY+wbPX78GJ6enujQoYPcNmfOHNlhfvnyZQDA5s2bkSJFCgghULt2bYPgAYU5fmE+evRIdoA7ODhg4cKFBtdpLHjA3d3d7FMUM/atjDVg/f398fvvv8u/K4Oau3fvhpeXF7y9vTF//ny9Tkt1gIGScn3q1Klm1Sn+vRr76lTiCQ3+/uzU56v+t1cEBATIdemBuJkcyv6WLVvCxsYG69evB6DfEe7r6wsLCwtYWVnB19cXx48f/6HX8SMZCxqoU6cOcufODY1Gg5IlS2Lv3r3yeHXwgDLLyd3dHceOHfvs/yd+QIopWr58ucwqoE7bDACjRo2Cra0tfv31V2TIkAFubm4YOXKkQXaChCj/Dh8+fJCzEUaMGPG9LyFRqf+tN2zYAD8/P2TIkAGurq7o168f/vzzT73jvybzgCnfP4wlpkuXLsHe3h5Vq1YFAJw/f95o0IASjDN//nzY29vjr7/+SpLzZT+X2NhYGTigzjgQX1hYGNq1awchBNq2bSu3GwtAMWXqa4h/PevXr5frgzdq1EjOBjbm4cOHGDBgAIQQKFeu3BczNjHz8OnTJ6xcuRJ+fn4QQiB37txfPfCr3G83b96U2WKUQFUhBLJkyWIWy3/9L2UEAK9evUJgYKDse1T/KVWqlFzCwVT7Hbl8Evbu3Tu5nGDx4sVx9uzZb/4dxgZ9K1WqJAN2TH2wl8voy7iMWEI4cIAxxv6fsY599Rfamzdv5M+bNm3CyZMnAQBXr15F3rx5YWdnpzc7EQD69esnK6XVqlXTG4AwV0qZPXr0CEWKFIEQAn5+fgbrPwL6wQPNmjWDEAK5cuVCTEyMWXS0MPa9xcbG4uHDh/K9MnLkSL39L1++RO/evWFra4vMmTNj1KhRcuYuEFeh79Wrl1yrXr3P1Kk7Dh4/fozLly9j3759OHr0qN5+U+5Y+lrKNT58+BD3798HoP/dpixNIITQyygAxHXOCSGQJ08evHz5Um99uujoaBQoUAD169dH48aN4eXlZZCe11QYW55AWe96/fr1yJUrFzQaDUqVKpVg8IAyYODh4WEwEGyO1q5diz59+si/qzNyPHz4EAAwd+5cpEuXDm5ubhg9erRB8EBCSxco99nJkydhZ2eHunXr/pBrSGyBgYHyWcucObP8uWDBgli2bJnesUrwQPHixWXwgLG6E2Ps89/lr169QqZMmWBlZYXBgwfLoIFBgwbJY5QlaHQ6HYoXLw53d3fcvXv3h583Mw3z58+HhYUFGjduLNNXG2ub7ty5E5aWlqhZs6ZZdoSrn7PLly9j1qxZBkH+GzduRP78+aHRaNC1a1cEBwcn+Pvu3buH0aNHy8EDljxERERgw4YNcvD/WwZ+1Us2DRgwAH5+fihVqhQ6dOgg16Q3h2fvfykjxd27d7F06VL069cPI0aMwLZt2/D27VsApl9GXD4Ju3PnjpyI5efnZ9C2/xpKGZ4/f14O+prTYC+X0ZdxGTFjOHCAMcZUPn78iG3btuH27dt6g9oLFixAs2bNjEbRL1iwQG/AQT2zd+XKlbC2tkatWrUghEDTpk311ko2B+qKuvKzUnaPHz+WsxBKly5ttJNAXc6dO3f+bGcDYyzOli1bZEV8+PDhevsePHiATp06wdXVVQ4ADxw4EN27d0fRokXlAJYSXW8OA+nxZ/fmzp0bVlZWsowqVqyIuXPnytlN5txgUQ+IW1lZwcXFBS9fvpT7nj59ivz588Pd3V1mFFC7fPkyhBDImTOn/JyScSAqKgqenp7o1q0bgoODZTp6U72Hnjx5AgcHBwghMGTIEL3rCAwMlJkHknvwgLF/37lz56JPnz5yLUTlGfzw4QPmzJljNHhA/X1/4sQJvedQ+fnu3btwcXFBnjx58OHDhx92TYnh9u3byJAhA9KkSYNly5YhNDQUe/fuRYsWLWBjY4MMGTLoLXkF6GcesLKyQo0aNXgwk7HPWLBgAaZNmyb/rryvFi1aBDs7O5me2FimAa1Wi19//RVCCPTu3dvs2mgsYcaWolD//Oeff8LR0RFCCMycOdPg88r32Z49eyCEQJMmTX7wGSe++HXrTJkyycC3V69e6e3ftGkT8ubNC41Gg27duhldlkehfN+bc12cGfqvA7/GlglR97eZ0330X8voS8t+mGo7LT4un4TduXMHDRo0+C6Dvn/99ReEEHB0dDSrwV4uoy/jMmLxceAAY4z9P51Oh23btiF9+vQoWbKkjKZfunSpTEd86dIlveOjo6Pl+mqLFy+W+9Rpw62trbFgwQJ06NABjx49StRr+lHUHQXR0dEICwtDdHS03mCK0sh78uTJNwUPGPs7YyyO+tnbvn17gsEDISEhmDt3rpxlp/xJlSoV6tSpI9fxM7fK+4oVK+S1tmzZEn369EGlSpWQIkUKpEiRAp07d8b79++T+jR/GGOp93v06CH3v3r1Ci9fvoSNjQ2mTJkit6vvq8jISBQrVgwODg6YNWuWnIkBAN27d4cQAoGBgQb/T1O0ceNGZMqUCX379pXb1N9j/yV4wJSXbvgcdVam4OBgOaAyZMgQGUCi+PjxI+bMmYP06dPL4AFlVphWq8WgQYOQMWNGLFiwwOD/M2TIEAghUL9+fTm4ZyrUz1FUVBQuXboEIQSWLl2qd9zdu3cxfPhw2NnZJRg8EBQUBF9fX3h7e5tVZhjG/lfqAd+7d+/K7/w5c+boHff333+jcePGsLGxgZeXl9El43r37g0hBIoVKyYD5TjjmXlKKEAgLCwswe+aGTNmyPtr0aJFRo9Rlv6aPXv29z3hn0hAQACEELCyssK0adNw7949g2xBwLcFD7Dk6VsHftVLrQ0ePBibN29O1PNNCv9LGQ0ZMkRvOTFz/D7j8knY7du35TI7fn5+OHXq1Df/DqUML126ZJaDvVxGX8ZlxNQ4cIAxxlTu3bsn15etWbMmhg8fDiEE/o+9sw6rKvv6+LPoDgFBBFtELOzu7hq7x/g5NrbiODrG2OOInQgGYqHY3S3YoojYIioqoYLc+33/4D3bc+693AsGeA/78zw+A6fm7MU+u9Z3r5U/f/50Jyp//vknC38p5BMXaNGiBdzc3PDlyxfWeep7hykeYB88eBDdu3dHoUKF4OnpiW7durGw4MBXAUBGxAMcDkeKpvQpSqVSkutam3gASFsQ3bBhA5YvXw4/Pz9cuXKFtVP63hapcuLECVhYWMDa2lptJ/3UqVNhYGAAIpLtopMm0cDEiRPZ+cWLF8PR0RGDBw9G3rx5ER0dDUC9HigUCixcuBB2dnZwc3NDr169sHr1arRp0wZEhLJlyzIHi74THx+Pa9eusd8FW3xP5AFDQ8NvUufrGwEBAciXLx/byasqHkhMTJSIB4YOHYrw8HAMHTqUiTEFAZPApUuXQESwtLTU6xD9q1evRufOnTF69Gjkz5+f1SuxKPL58+f466+/0hUPfPnyBadOnWKpQPRZoMPh/CjE38G7d++QkpKCAQMGsHCoS5YskVx/8uRJNG/eHIaGhsibNy/69OmD4OBg+Pn5oU6dOiAiFCxYUBY5sjmaOXv2LBv3isfPALBz5040a9YMpUuXRs2aNbFy5Uq1CC/CPJ+IMHbsWISGhuLNmzeIiYnBH3/8IbtxkSrHjh2Dubk5bG1tERwcLDmnKWqDqniARxLkqJJRx6/Y4SvsgG3dunWOiAzDbaQdbp+vqIofbty4gbZt24KIULly5e9y+gLyWC/iNtINtxEnPbhwgMPhcP4fobO8e/cumjdvzhYJnJ2dsXPnTnad6qLSoUOH4OLigty5c8Pf3x+RkZH4/PkzBg8eDCLCb7/9pne75tJDPKBYt24dDA0NWdhz8c5mcd5eYZDAxQMcjnbEA2rV3VBv376VXJOSkqJTPCB2aqoiJ4W9UJZx48Zp3PV18eJF1j6JHelyQpNowNfXl52Pj49H//79QURwc3ODhYUFzp8/D0DzRO7du3eYNGkSChQoIIlY4enpKVsHi2p5vkU80L59e5iamuLZs2c//4WzCbFdNm7cCFdXV63igRUrVqB48eIgIubc8/DwwKNHjwCo17+lS5fixo0bP78gP4knT56gVKlSICKUL18eRYsWZXVEtd3VJR4QkNu3xuF8C+LvZ8uWLahWrRocHR1RpEgRST+1bNkyyX1Xr17FmDFjYG1tLbnOzs5O1hGYOF/TCfr6+iIxMRHA1/ZU2EVPRDAzMwMRwdzcHM2aNcPly5clz5k5c6ak7hQqVIiNtTw8PGQ5LlIoFPjy5QsT+4kjemgqp6bIA6ampujRowcePnyYJe/MyV4yM7fU5fgVhJZKpRIdOnQAESFv3rx6v37EbaQdbp/MIbZXaGgoBg0ahNKlS7PUlKampqhUqVKOELSnB7eRbriNONrgwgEOh8MRIXSaEydOBBHBwMAApUuXZjszNfHlyxeMGzcOxsbGsLCwgIODAwoVKsQWFgQHgpwcdcHBwSAi2NvbSxboWrduzRZVxLt+NIkHSpYsqbbbkMPJiRw9epT9nJqaqrb4Vq9ePbi4uKBmzZoYPXo0+26Sk5N1igdyStqPT58+oWLFinBycpI4L8+fP89EA+L8xgCQlJQki3ZZLBoQnLj/+9//2Hmh/X3x4gULy0xEmDFjBrtGNaoFkBZu/vjx4xg+fDgGDBiA6dOns1z1OcXB8i3iAVWRjz6T3vchzjerSzzw8eNHHD9+HL/99huqVq2Kvn37srQFcrCRJkJCQlC3bl32rYnDoqoiFg8ULlwY//77b9a9KIejh2zYsAFEBAcHB0yaNAnHjh3D0qVL0bNnT41zECBtLHT37l3Mnz8fU6ZMwZw5c3Dp0iXZRmDipPXLixYtgqOjIxwcHDB58mQmHrh48SIcHR2RK1cuLF26FHfu3MG///6LGjVqgIg0LpBv3boVffv2RZ48eWBjY4Ny5cph0KBBePnyJQB51qGEhAR4eXnBzs6OlVObOEJsgx07diBv3rxwd3eXpLziyA/VcV9G0eb4BdLqmuDwzZcvn16Hu+Y20g63z/fh7+8PIyMjmJiYoE2bNvDx8UGlSpXg7Oz8Xbnq5QS3kW64jTia4MIBDofDUeHt27eoXbs2TE1NUbp0aRARGjRogPDwcLVrhclzSkoKZs2axRaKCxYsiIYNGzLRgJwGp2FhYShatCisrKywefNmdnz27NkgIpb3WHXXj1g84OHhAQMDAxaCl8PJqfj5+YGI8Mcff7Bjwreyfv169i1ZWFjAxMQERIRSpUohKioKQMbEA3LaAZUe79+/h5eXF9zd3REfHw8AOHfunEbRgEKhwKtXrzBv3jy1XWX6hqZIA0SEjh074tGjR2rCkRcvXmDUqFHsOnHYWU3iAU3IqT/LCBkVD4id6XL45sRleP/+PZ4/f47379+zY5kRDwh8+vSJ1Uk51CPxd6L6N9+1axcaNmwIIkKjRo1w9erVdJ/z/Plz/P333ywcpODc4nA4Uq5duwYnJycQEbZu3ap2ftasWax/W7p0KTuurU2Wg4CQo5l3795h1apVyJMnD2xtbfHnn38C+DpeDgwMZNcqFAqEhYWhXbt26S6QK5VKxMbGIioqCklJSbLtzwSeP3+OPHnywNnZOUOpGMTjAgDYu3cvExzw70yezJ07Fy1atNC4TpYRVB2/JUqUYOtnQo5tfXf4chtph9snY6TXhp44cQKGhoYwNTWVzOsVCgW2bduG+vXr5xinL7eRbriNOJmFCwc4HE6OR1Pnee/ePdy8eRMvXrxgnWT9+vVx/fp1tWuFSbJCocDnz59x/vx5vHjxgjmv9HVwqonU1FRMmTJFLRy4EMLR2toaUVFRWLZsmdbIAy9evOB5ezkcpC1empubg4gwdOhQdjw8PBzOzs5wdHTE2rVrce/ePYSEhKB27dogIuTJk4flYU1PPDBy5MhsKVNWI7S9jRo1AhHhzp07uHPnjkbRgJA25sqVKyAiTJ8+Pbte+7vRJBro3Lkz+/v/9ttvkl0XAi9evMDIkSNBRChQoABCQkLYOdX+MKNiArmTnnigTp06EvvJBdWQ4DVr1oSdnR28vb3Rs2dPvHv3Tu0ebeIBOY2DNLFlyxYsXbpULS3V7t27UaNGDRgaGqJnz564efNmus948uQJ5s+fzxY2c/L3xuGkx/79+2FiYoLOnTuzY1++fJG00fPnz9coHgCkbTn/xnIG79+/x8qVK5EnTx5YWVlhypQpGDhwIGrWrMmuEYssIyMjWS5s1QVyOfRlQr0XRzgTl//x48fs55iYGBQrVgxEhFOnTqX7zNTUVKSmpuLvv/9GWFiYxvMc+SFOzdS9e3dcu3btm56jadd406ZNZeHw5TbSDrePbtITYwvttyCY1JSuUqFQ4MaNGywNb6VKlViqQjnBbaQbbiPOt8KFAxwOJ0cjXjSKiIjAyZMn1TrVW7dupSseECbaCoWCKerTe74+IiywCeVISUnBiBEjUL9+fXbNmjVrYG1tDSsrK1y8eJEdHzhwIFu4E4sM0svjzuHkVA4cOABbW1sQEQYPHgwAOHjwIIgIAQEBkmsTExPRokULreKB0NBQ9u2JdwjrO+L29MOHD6xswnFB1FSuXDl4eXmBiDB+/Hh2z+fPn9nPjRo1grm5OQ4ePJhFb/9jEdrOqKgoibMWAI4dOyaJPKBJPPDy5UsMGzaMRcjZuXMnO6fv/dbPQlU8ICxOtWnTRs1hLBcCAgJYXbK3t2ftVMWKFXHmzBm1BbiMRh6QE5cvXwYRwc3NDWvXrlWrC6GhoahWrRqMjIzQq1cvreIBoY7p48Imh/Oj0TRHEKI09e7dG0D6kV4EcZzqHISTMxHEAy4uLnB3d0eZMmVQtWpVpKSkaGxv79+/LxEPiOe3ciAxMRGbNm1CaGioZGy8atUqlC1bFocOHWLH/vjjDxARWrdurTE3uGC/lJQU5MqVCzVq1MDHjx9/fiE4vwSHDx9movYuXbp8l+N369atKFu2LGu78+fPr9cOXwFuI+1w+6TPggUL0Lp1a63RGHr37g0iwsaNGwGoR35RKpU4fPgwvL29YWhoiCpVquDcuXM/87WzFG4j3XAbcb4HLhzgcDg5FvECU0hICEqWLAkTExMsW7aMRQsQrrl7966aeEDoTFNTUzF+/Hj07NkTt2/fzvqC/ADEwgABcc5mwTkJpIUtvHPnDvu5QYMGMDc3x759+yT37dixA5aWlmzgPnv27J9eDg5HH9DkmN2/fz9zyo0YMQJLly5FnTp12HmFQiFps1q2bKlVPHDw4EE8evQo3f+fviEu+5EjR9C5c2eUL19e0ubGxsayhQciwsCBA9k5YWFUoVBg+PDhbHFCaOv1kUePHrGcc76+vpK/8969ezMtHhDvnOeiLs2I7bJixQrUq1dPsjtPTkRERMDV1RXOzs4IDAxEdHQ0Ll++jKpVq7JQoMeOHdMqHhgyZAjevn2bTSXIGp4+fYoxY8bA3t4eRYoUwerVqzMlHpBD+8zh/GjE38Xly5fx/PlzAEBQUBCICGXLlmXfmfhaoT0KDw+Hu7s76wdXrFih8dkceaDpb6o6jomLi8OKFStY/+Tq6spE/5rGPOLIA1WrVsWZM2d+zstnA2fOnIG3tzcKFSqEDRs2AEjLbUxEcHd3x+nTp9m1ly9fRokSJWBtbY2//vqLfYtKpZJ9b0qlEt27dwcRYerUqXrpoONkDvE3d+TIEdSoUeOHOH63bdsGNzc32NrasvG1vtYnbiPtcPtoJzo6mqXN7dWrl0bhFvB1s9awYcPSfdbnz5/Rr18/EBFMTExQrVo1STuvr3Ab6YbbiPO9cOEAh8PJkYgHquvWrYOxsTFb5FbNeS1cKxYP1KtXDydOnMC7d+8wfvx4EBFy586NN2/eZGk5fiSJiYlYsGAB/v33X8nxpUuXgoiwY8cOtXuEsOitWrWSCA2AtN0aDg4OLMevo6MjEhISfmYROJxfGtWFSVWHo1g8kC9fPhQqVEitTRGHE9UlHlC9Xl8Rl8ff3x/W1tZsp/euXbvYudTUVGzevJlNjnr06MGEBQqFAp8+fUL//v1ZCEN9z7s6d+5c2NraSlIxpKSksPJ8i3hAbE+5861/d/F3nJSUBEA/F6RUUbXH0aNHNUY9iYmJQZcuXZh44Pjx42rl37x5M4yNjeHs7CyrqCfp8fz5c0ycOBHW1tYZEg/07t0bt27dyqa35XD0h7Vr17JUTikpKYiLi4OXlxeMjIywfPlytR1RAq9fv0b+/PmZ0ImIEBoamsVvz8lKEhIS2IL4ly9fWJ+2ZcsWtsvu3bt3WLlyJQoXLgwiwu+//662WUDM/fv30alTJxARmjVrlm590zeePXuGP/74A+bm5ihbtiz69u3L5h7bt2+XXPvx40fMnj0bDg4OyJUrF/73v/9JxG8pKSkYPHgwiAhVqlTJEZGGOGmIx42HDh1i7W3Hjh2/OV99YmIiQkND2RxN38fX3Eba4fbRzp49e1C3bl38/vvvaueEcoWEhMDc3Bx16tRBbGwsAM1pmU6ePAk7OztmY7n0adxGuuE24nwPXDjA4XByNMLOFWdnZ/j7+2u8RqlUso4yIiICTZo0YTsVhIWHQoUKITo6GoD+7tSMiopiDjfBESXsPsiVKxe2bdumds+qVauY4AJIK7sw+Lh37x7s7Oxw9OhRbN68WVa7nzmczCK0C3FxcQgKCkLHjh1Rrlw5LFu2THLd/v37YWNjAyKCh4cH+27Ek16xGKBVq1Zsh1BEREQWlCT72LJlCxMhrVy5UnJOaFc+fvyItWvXsjCFNjY26NKlC1q0aIHixYuDiFC8eHG9Dlso5tixY+xn8c4vwR779+9nTpMOHTqwaDFiXr58yaIwWFlZYf/+/Vnz8lmEuM+JiYnBw4cPf+gz5caiRYswaNAgBAQEoGTJkuy4uH9/8+YNunXrBiKCl5eXxsgDISEhePbsGQB520tALB4oXLgwVq1apSYe2LNnD6pVqwYzMzO0adNGo5iHw+GkceXKFbi4uMDOzg5r1qwBkOaknDZtGkxMTFCxYkUcPHiQjYnEO6Dfvn2LvHnzYufOnViyZAlziuprZDiOdlJSUjB9+nQUKVIEu3fvZsdXrlwJIkKNGjXw4cMHAGnigVWrVsHd3R3m5uaYNGkSE7ZrmsNHRERgwIABbJ4vF6KjozF58mSYmppqnOuLx5Lx8fGYOnUq8ufPz1IX9ezZE+3atUOZMmVARChcuDAbW+vrWggnc4jrCJAWcr5Zs2ZsZ2tYWNh3PV/f52gAt5EuuH00I7aJWKh15MgRXL16VXLtvXv3UKhQIUnKSzGCDY4dOwYzMzNs27YNAwcO1Ps+jdtIN9xGnB8BFw5wOJwcS0REBHP8BwcHs+OCYk6hUCAlJUVtl/yDBw8wYsQI5MuXD05OTmjWrBlbHNf33b2bN29mCwhNmzZlDklx/msx27dvBxGhaNGiiImJkZzr06cPiEgSwUHf7cPhfAvCAtqTJ0/QtGlTGBgYwNjYGPny5cOkSZPUnEcHDhyAnZ0diAidOnVix9MTD7Rt25aF7k1NTZWlk+727dsoVqyYWnstLqvwc3JyMi5duoQ+ffrAwsICRkZGICKUKlUKQ4YMYW2Vvi4mAOrvrrpIm1nxQExMDH7//Xc4OTmxMLRyQGyXAwcOoEWLFqhatSoOHjyYjW/1a6JUKvH06VMYGBgw4VL+/PnVxkCCTTMiHgD0+zsTELcz2iIoqEYe0CQe2Lt3L4oXL458+fLJPo0Dh5MZVPsxIdrAli1bJMfv37/PRNzVq1dHcHAwEhMTJdcMGjQIRMTEdR06dIChoSHL3SrHcVJOZ/78+Wysc/nyZQQHB7Mc16p16P3791i5ciVcXV1hY2ODP//8U6t4QOjH5DaP9fX1BRHByMiIzfeF8gvfiPDfxMREbNu2DW3atAERwdDQkNm3c+fOePHiBQB59Pkc3aimRxs0aBDq1KnDUoEQEXr37v3Nu8blALeRdrh9tKM6TgkJCWFzedVUDuK5vo+PD0vRKKZr165wdHRETEwMe7a+92ncRrrhNuJ8L1w4wOFwcixCxygo6oSOLyUlBY8ePUK/fv3QoEEDNG/eHH5+fpJ7P336hJcvX+L+/ftssUrfJ8pC+U+cOAFjY2MYGRnBxsaG7T5VKpVqiympqamoW7cuc1oePXoUZ86cQe/evUFEqF27NtvhweHkRIRvJjo6mu3UadSoES5fvsxC6Gni4MGDsLe3V1P9pice6NOnDyIjI39CCX4Ntm/fDkNDQwwdOpQd07S4qzo5un37Nq5cuYITJ07g/fv3TBim7+11RsiseCA2Nhbv3r0DIA/7iOtCYGAgLCws2CIUz8eXPqGhoXBxcWHRPQ4cOKD2XWkSD5QuXRoHDhyQRd1Jj1WrVqFLly5a0ww8f/4c48aNg7m5OTw9PbFy5Up8/PhRcs2RI0eYgInvzORwpKxcuRLLly/H1KlTUaZMGXZc/K2Eh4ez+Yebmxt+++03hIaGIiQkBJ07dwYRoVKlSixs+j///AMiQr9+/bK6OJwsZNy4cWysI0SZEIvfxXUos+IBOSGUr0GDBizloLm5OUqUKIGAgABJFA/xfwWOHDmC0NBQbNiwAffv35dV2iZO5li3bh0MDQ1haGiIbt26oVu3biwaHhGhW7du35yvXi5wG2mH2ydjhIaGolKlSjAzM9Nok/Xr1zObderUCevXr0dkZCSio6MxYMAAFlZedU4iJ7iNdMNtxMksXDjA4XByLEuXLgURYfjw4exYREQEZs2ahXz58kkWHogIU6ZMSfdZctq5IqRvEHYdTp06lZ0TLwgIPz99+hSVK1cGEcHc3BwmJiYgIhQpUgRPnz4FIP8FGA5HE0K78PLlSxbKc9SoURm+Xxx5QEgHAqQvHtD0u74jtB1CBJO5c+cCyPjipJza5m8hs+IB4R45ERAQwELrrl27VnJObmXNDKr9svj30NBQODo6MqGFJgGgWDzQq1cvEBHq1q2rcXeCHHjy5Ak8PT1BROjfv3+63w+QJhRr164diAjlypXDypUr1SIPAHxsxOGocuPGDdZPeXl5oWrVqulee+vWLQwaNAju7u4gIhgbG7N7xSmJgK8h60eMGJEVxeBkMeKxb4MGDdhcdPLkyRqvEVAVD0yePJmJB+Q8PhCX7dq1a3j//j1GjhwJc3NzeHl5YcOGDWriAV3jbjnbi6OZo0ePwsDAADY2Nti6dSuAr/Vg3bp1LLJn165dc+yucW4j7XD7ZI4DBw6gZs2aTGShapMdO3bA2tqajYUcHBzYfE68Nivn9prbSDfcRpzMwIUDHA4nxxIeHg4igqurK+bOnQt/f3+ULFkSRISSJUti4sSJOH78OBYtWsRC9gudpBxRKpVISUnBqFGjULFiRYwZM4alLRg3bhy7TrxwIAwWPnz4gH79+qF69eqoVKkS+vXrx8Jd890HnJzMp0+fWMjcPn36sOMZ/S4yIh7ICYwfPx5EhCVLlgDQPlF59eoVz7MqIj3xQOfOnSX57uTI6dOnYWtrCxMTE0moYiHyBAfYuHEjjh8/DkD6vezdu5dFPRk2bJhGmwnXx8bGYujQoXj06FGWvHN2sWvXLlSpUgVEhN9//12reOD06dPsW/P09MSiRYtkK6rgcH4kM2bMYI7fggULquVhFRMXF4ewsDAMGDAA7du3R/v27TFt2jS19GnC7sXAwEAAfLFTrly4cEFNRCKkJlLNpS0gFg84ODhg5MiRaqkv5IK4/KpCigcPHsDHx0ejeEDc/2vr9zjyIr05lFCPJk2aBCLCrFmz2Dnx/HT//v0oW7YsiH5MvvpfEW4j7XD7/BhUbaLN6Xv58mVMmDAB5cqVg4uLC8qVK4fevXvLfm2W20g33Eacb4ELBzgcTo5APGgV/7x48WK2s174N2jQINy9e5cNaF+/fo3SpUuDiHD79u0sf/efiXgBQVgU+PDhAyvn9u3bmXhgwoQJ7FphoKA6YIiPj8fHjx/ZQgMfUHByOnFxcShevDiKFSvGQnpl9rvg4gHgv//+AxGhYsWKiI6O1niNYI99+/ahZMmSiIqKysI3/LVJTzzwv//9T3ZRKsQIOY9nzpypdu79+/eYM2cOxo0bh3nz5kly9eUUTp48yaIxnDlzBoB0jLRv3z4mHhg+fLhG8YDw3ck5z6HYJnv27EGFChW0igdSU1Px6tUr5MuXD506dQJRWi52uTqjOJwfgXhMM3PmTDY/mzZt2neJACdPnsyifwh52DnyQLVehIeHw9fXFydPnsSUKVPYWEecdi898cDq1athbGwMT09PvH//PkvePytQFQu8e/cOSUlJSE5OBiC1YXR0tJp4QIiW8+XLF/j6+qJy5cpMjMGRL9OmTUOvXr00Ch5VU10EBQVJjovrXFBQEGvLe/fuLSvHL7eRdrh9Mk9G56G6nL5A2uaVx48fIz4+nrX3clg74jbSDbcR50fChQMcDke2iDvMDx8+4PXr14iKikJsbKzkuhMnTuB///sf5syZg927d6vdn5ycjAIFCqBcuXKyWhAX2+fy5cuYPn06zp8/r3bdtm3bNIoHxJMAOQ/gOZzvYcOGDUwlD3y7U00sHujZs+cPfMNfG2Fi8vz5c1SsWBE2NjZYsGCB2qKu2K516tSBlZUVLl++nKXv+qsjXjAPCQmBs7OzrMUVSqUSv/32G4gIhw4dYscfPXqEtWvXolixYhLRYNu2bZloLqcICJRKJbp06QIiQp48eXD69GkAmRcPyIn0/vbiNkabeEAYG719+xb29vZYtGgRZs2aJQmbzuFw0lAqlRJHgfg7mz17NmufV65cqfUZqiQlJSEuLg59+/YFEcHJyQkRERE/vgCcXwKh7wLS0ucIjB07Nl3xgOrC99u3b7Fx40Y8e/aMXafviMuwf/9+dOrUCc7OzihQoADq1q2LixcvqvXpquIBPz8/lsqAiODm5qYW0YMjH5RKJR4/fswctUOHDk137jp48GBJNDjxdeK6N3r0aEm++itXrvzcQvxkuI20w+3zbYjnXnfu3MG+ffswd+5cLFmyBGFhYWpp4/bt2ydx+opz1cvVscttpBtuI86PhgsHOByOLBEPNENDQ9GiRQu4u7vD2toaXl5eGDNmDGJjY9ngVHXHgrDwm5qaigEDBmgN1auPiMu7detWFChQgOUnVhVWAOmLBwBgzJgxICLs2LHjp783h6NvCKlOpk2bBuD7BuAHDx4EEcHCwgJxcXE/6hWzHXF7lJycrCYKSE1NRUpKCqZPnw4zMzO4u7tj+fLlGhcuhw0bxsLw89296ojFA+JdZPqOah8ulGn69OksJ/2LFy+wd+9e1K9fH2ZmZnB1dUWnTp2wcOFCliPbx8cnO14/WxDnL+7VqxcXD0Ba5vDwcJw4cQLbt29HQkKCmhNJLB7o3bs3Lly4IDnft29fmJqaMicUwBdgOBxAt0NWLEyeO3cucxasWrUqQ8//8uULdu3ahTx58oCIUKZMGdy9e/e73pnz6xIYGMjaYQFxHRo3bpyaeEDowxQKBebPn8922Ql1Uw5ttfg7W7duHbOBt7c3KlWqxKINLVq0CC9fvpTcGx0djbFjxzLBsqurK4gIhQsXZimJeCoweXPw4EHkyZMH7dq1Uzsn1K2ZM2eyNvbt27cANEf5DAgIgLGxMWrUqMGie8ph7sFtpB1un4wjbq83b97M1maFf3ny5EHDhg3x+PFjyX2qO8bFTl+5wW2kG24jzs+ACwc4HI6sEU+Uy5Urh8qVK8PMzAxEhMaNG+Pw4cMs5A6gvpg1ZMgQNph99epVVr/+T0FcxrVr1zL7zJkzB0+fPk13QU8sHhg2bBgeP37Mcrfb29unGz6cw8mJCN+RECr9WxyS9+7dY/l4BU6cOIGnT59K/h/6jLgM27dvR6tWreDm5oZWrVph8uTJkms/fPiA/v37w8DAAE5OTujevTtOnjyJyMhI3Lx5k4UEL1asGAtHrO82Er9/bGws3rx588PKpO+20YRqOqHw8HB4eHiAiGBjY8P6u65du+L48ePMubBz504QEcqWLcsWruSE+G8t/lmcZiAz4oHff/9dVgt2qgQEBMDR0ZGNecqWLYslS5aoOVf27NnDHDDVqlXDrFmzcPLkSXTu3BlEhDp16qjt7OBwcjLiNuXs2bOYNWsWGjRogFGjRmHt2rXsnHhu9i3igYcPH2LChAkYP348j/Yhcw4cOABLS0uWfklAEEcCUvHA3r172fE///wTRIQaNWrIVhC3detWNldfsWIFO96qVSsQEezs7DBjxgy1NB7Pnz/HunXrULhwYRQrVgxt27bluY1zAOIxonhMffr0aTZmFq5JSEhg+ef79++Pd+/eAfhaP4Rv6vTp07C1tcXs2bPRqlUrNaeVvsFtpB1un28nICCA9VX9+vXDxIkTUb9+fRQqVAhEBHd3d1y6dElyj9jp27NnT9lHXOQ20g23EedHwoUDHA5Htuzbtw8GBgaws7OTON8ePXrE1KpeXl64d++e5L6nT59ix44dqFu3LogInp6ebNFJThPlkJAQEBFy587N8opl5B5BeGFubg4iQpEiRdjgXc6OBA7nW9i+fTsTLj1+/DhTztojR47Aw8NDkkJFQE5tEQD4+/tLFNGCw6558+aSKCjv3r3D6NGj2cSHiGBiYgJjY2NmZ7m012IHy8GDB9GsWTO0bdtWY/45DrB8+XIQEf7991/J8StXrmDAgAEoX748OnbsqDHk9a1bt2BkZIROnTpl0dtmHZp2BYr76vTEA2fOnFG7/8CBAyAimJmZscU9ubFjxw7WtrRq1QolSpSAiYkJ7OzsMGjQILXFykOHDqFNmzaS9ouIULRoUdYW8Z2ZHI7UmRAYGMh2Mwv9uPDNJSQkAJC2U98aeUAsQODIl2PHjsHBwSHD4oHx48ejRYsWICLkz58fDx8+zI7X/qFoml9cv34dHh4esLS0xMaNG9lxQdRsaWkJBwcHWFlZYebMmUwYIObjx4+Ii4tjttT3sTVHN6p1SdiI079/f0lUTiDNQeXq6gobGxv4+Pgw8a34Ge3atUOePHmQmprK7tP3NSNuI+1w+2Se8+fPI1euXDA3N8e2bdvY8cTERISHh6NmzZosXYzq+vX+/fvZ2vXQoUNlK4TjNtINtxHnR8OFAxwOR3YoFArEx8ezhVzxDhYAuHnzJry8vEBEGD16tOTc58+fsX79elhZWcHAwAAdO3ZkCny5TJSVSiVevXrFBg0bNmxg54TFbYVCgefPnyMyMlJtUH716lU0adIEzZs3x++//y47+3A4P5KIiAgULFgQFhYWCAkJAaDbiSR8S0I+P/E3KkfCwsKQK1cuODo6YvXq1Th//jy2bt2KvHnzgohQu3ZtFmUBSMtdfPbsWQwbNgxly5ZF/vz50aZNG/zzzz94/fo1AP1vj1QdLNbW1iAitGjRQpZ5HX8EwkI4EcHPz09yLjk5GR8/fpQ4kcQ/CzvEFy1aBECe0RjmzJmD9u3bs9/TEw90794dRIS8efNqFA8cO3ZMVlFPBBQKBT59+oSWLVvC0dERwcHBANIiffz3338oXrw4DA0N0bdvXzXxQHR0NDZt2oT69eujQ4cO8PHxYdEJ9L0t4nB+NBs2bGACwdmzZyMyMhI3btyAi4uLWp+vSTxgYGDA2moOR+DIkSM6xQNTp05lIhVVsam+OaGEfjkpKYkdU40uJKRrWrhwITv+zz//gIhgbW2NsLAwLF26lEUk+OeffyTiAdX+S059Pifj7N+/H1ZWVixEvDgVSGxsLKZNm4bcuXODiFCvXj1cuHABkZGRePfuHYtO2bp1a3z8+DEbS/Fz4TbSDrePbgQBvDjiorgN/vz5M3Pqli1bFm/evJHcHxISgnbt2sk2GgPAbZQRuI04PxouHOBwOLLk1atXcHZ2RvXq1SXHz507hzJlyoCIMHHiRI33RkVFISAgANu3b2chZuW28Pvo0SPY29ur2Sc+Ph5Xr15FgwYNWM7n3r17s5yQAsJuIMHxIjf7cDg/kgEDBoCIkCtXLhayLz3xgPAtJSUloVSpUihevDji4uKy7F2zAtWyb9myBUSEzZs3S44/evQIFStW1CgeEPj48SPev38P4OuCppx2965fv56Fkl29erXknFBevpD7lSVLlmgUD4gd44C0jowcORJEhFq1ajHhiZxQKpV4+/Yts4s4D7Qm8QAA1K9fX2vaAtXr5UJiYiKcnJwwZcoUyfGkpCTs2rUL3t7e6YoHgK8OKsGucrQRh/M9nDp1Cs7OznBwcJD0+cuWLZNEHqhbt65G8YAgEHNxcUFiYmKWvz8ne9A0rtM09smIeGDv3r1YuXIlVq1axRbM9a2tFuzx8OFDNG/eHAEBAeyc2C59+vRBpUqV2O9r1qyBjY0NrKysWJji1NRUJp60t7fHzJkz1dLycDhHjhyBo6Mjc/yKv6mYmBj4+fmhePHiLJKFjY0NcwQXKlRIloJTVbiNtMPt8xXVMiiVSnTp0gVExKLDiHd7C33Uw4cP4e3tDSJiEfTE/ZecIsNwG+mG24iTFXDhAIfDkSW3b9+GoaEhWrduzY6JRQMTJkyQXP/w4UON4YsBeTmhBCIiImBiYoKyZcuyxe8bN25g1KhRcHJyYgN0CwsLGBsbo1GjRrh//z6USiX7x+FwtCO0HW/fvmXK3uLFi+Pu3buS88L3JHZu9u7dG0QEHx8f2YbaXbhwIebPn48NGzagRo0a7LhCoWC2ePz4McshLhYPCOcVCoUkUoqcOH36NKysrGBhYSEJNZdefeCTuzT8/Pw0igfE9ePNmzd48OABmjZtylLuCHVLbvVI4OrVq7C3twcRoUePHuy42Ckn/Hz8+HHmfHFzc8PRo0ez/H1/NumNY9zd3TVGh0lOTsauXbtQpkwZNfGAMC5SbdM5HM5XEhMT0adPHxARli1bxo4Lu6JtbGywd+9elCxZku061CQeWLZsGR49epTl78/JfrZs2YLt27ez3zW1tUePHmX914ABA9hx8Q5XMfra5z969Ig51apXr86i5ADS8WBYWBiAtLlI48aNYWFhgT179gD4apMrV64gV65cICLY2tpi/PjxePXqVRaWhvOrIv7GDh8+nK7j9+PHj4iMjET37t1RsWJFGBsbo0KFCujatSuLYiHXeQq3kXa4faSI7SGItBQKBUsXl97mNiBtLDRhwgS1uZzc5h3cRrrhNuJkFVw4wOFwZIdSqWTCgWLFiiE5ORkXL17UKBoQBqu7du0CESEoKCi7XjvLUCgU+PDhA3777TeWT3TAgAEs12itWrWwePFifP78GQcOHEDZsmVhaGiIAwcOZPerczh6iVKpxOHDh1GuXDkQEfLly8d2+mi61sfHB0QEb29vtnAnp4G8UqlEZGQkc+4WL14c5cqVU8ujpks8IFeEv/XUqVNBRJg3b57aNYmJiViyZAlmz56NJUuWID4+HoA8FlS0obrAn953kZ544MuXL0hMTESHDh1gaWkJIkKDBg3w7NkzAPK1n1Cu8PBwlvYiPfEAkCYktLGxQYUKFVg4ZzkJmMT1Zv/+/RgyZAgaNWqEcePGoXTp0li3bh0AqLVJycnJ2L17t0bxAIfD0U5sbCyKFi2Kjh07smOLFy+GqakprKyscPnyZQBpedkFx0J6aQs0/c6RN+fOnQMRwdXVFaGhoey4pnHAzp07YWtrCyJC37592XE55OsVhGo9evQAEbH0imXKlNEqMj148CCICG3btkVKSorEbnfv3oW1tTWaN28OR0dHeHh4sKiLnJyBtnmmuK1Nz/Ervj8pKQn37t3D58+fZbVzldtIO9w+mWP58uWSNdYNGzbAyMgI9erV0yqO3L9/P1uzlXvkJW4j3XAbcX42XDjA4XBkS+vWrWFpaQlfX1+NogHxzoMqVarAzc2N7QSWA7ocjYcOHUKTJk2Yc8XGxga+vr549eqVZGHl999/BxFh+fLlP/uVORzZ8unTJ+zcuRNVqlRhC30TJ07E7t278erVK0RERODw4cNo0KABi/gh5F2V20RZYPXq1az9KVWqFO7duwdA2nZpEg/Ur18/R+w27NSpE4gIFy5cYMeePn2KwMBAFspR+FelShW8e/cu+142i9mzZw+uX78OIP2+bvHixcw+qvmwDx8+jEaNGsHPz4+lApHDd5aeLZRKJVu0E4sHunfvzq5RKBSs73/y5Ak8PDxw/PhxjBkzBlFRUT//5bMBf39/yXck/KtatWq6qU/E4gEzMzN06NCBCU84HE76fPnyBUeOHMGVK1cApO1yLlOmDCwsLHD8+HEAX+dmPj4+MDIyAhGhTp06OaLP52jn+fPn+N///sfGyLt27WLnVPu+9+/fM8e6atoCuRAeHg57e3s4OzujXbt2MDAwQOnSpSXiAXH/tXbtWhARunTpwo4Jff7Tp0/h5OSE5cuXY9OmTbIKCc7Rjbie3L59G0ePHsXs2bOxatUq3Lt3Ty2vvKrjV2i3xeNo8TPlUI+4jbTD7ZM5Dh8+zOZia9euBQBcvnwZRYsWBRFh5syZavcI87hTp06BiPDbb79l6TtnNdxGuuE24mQFXDjA4XD0kowoWleuXAkzMzOYmpqCiDB27Fh2jTB4VSqVGDhwIIgIf/zxh9qgVl8RD7SfPHmCixcvYseOHTh37pwk9OCjR49w4sQJ7N27l4UyFN+vVCpRuXJluLq6IiIiIusKwOHIkJSUFFy5cgUtW7YEEcHQ0JBFILC1tWW/N2nSRNY7oMXtk1g88Ndff2m8RiweqFatGogI7du319vwsqqo9mdCuf744w8QEQYOHIjXr1/j2LFjaN68OczMzODk5IT27dtjypQpKFWqFIgI/fv3l41NtCEo5KtWrYrbt28DSH9MMHv2bBARDAwM8O+//0rOJSYmSlJe6DtiG9y7dw9nz55FeHg4C++pVCo1Rh7o1q2bJFQoAPTu3RsmJiZ48eIFOya33b3nz5+HjY0NbG1tWcqUfv36IU+ePGxMKOzYVG2Hk5OTERoaCnd3d+TLlw9v377NjiJwOL88qm2z+FsSIsP8+eefAKTtsHDO09OTLWzKoZ3mqJPRSEJAWjjeIUOGZEg8sGDBAhARS9Ezbty4H/vi2YhSqURiYiITR4wZMwa9evWCgYEBvL29JeIB4Zs7c+YM7OzsUKFCBTx48EDyPCGFiDgamhznHxx1xN9NUFAQihQpwiJyEREcHR0xYsQInD17VnJfeo5fOcJtpB1uH92o9nPDhg2DsbExduzYITm+aNEiZreFCxfizZs3as/q2rUriAgLFiz4qe+c1XAb6YbbiJMdcOEAh8PRO8SD08uXL2Pfvn3YsmWLmmM7ISGBheN3cHDA8ePH8f79e8lzhg0bBiJCxYoVZRMSXPz+W7ZsYblChX+VKlXSGPpaQBi0i+3ToUMHHsKIw/mBLF68GP3794e7uzvc3NxQqFAhdO3aFYGBgWznuJwW7YTQqkDapEc88Vm3bh1rn8STF03igYcPH6JFixay3AEthGQUePLkCUqXLi1Z+CYidOrUCUeOHGHXhYSEwNzcHA0aNMgRjpVr166hTp06bCfqrVu3AGjuu58+fcqieJiamkrSFsgJcdkDAwNZ3mNzc3MULFgQu3fvZueFOhIeHg4bGxsmVlq1ahXOnj2Lnj17shQOCQkJWV6Wn4Xqt7Fq1Sq1FFUxMTHw9/dn4gEfHx+2I1O1Pf78+TMOHTokySvJ4eR00ptDado52Lp1axAR1q9fz64RxDpbtmxBiRIlsG/fPrRs2VKWfT7na7v65s0bJgQUSK9NffHiRbriAXEd2rx5M2rUqIHg4GCUKlUKDx8+/EmlyD62b98OIkLnzp2xZ88etG3bVqN4AEhLFdK4cWMQERo1aoQNGzbg4sWLLB9yrVq1clTkKo6UgIAANs/o2bMnBgwYgLp168LY2BiGhoaoUKEC9uzZI7lH7PgdOnSomghVbnAbaYfbRzfbtm3Dy5cv0a1bN7Rt25YdF0d7nTx5siRazsaNGxEbG4unT5+yqDtlypRBbGxsdhThp8NtpBtuI05WwoUDHA5HbwkICIClpSWMjY1BRPDw8MCIESMk18TFxaF58+YgIri4uKBhw4b4999/4evri8qVK4OIULhwYVmGBBeH4O3bty9GjhyJzp07s9CfgwYNSvfe1NRU9O3bF0Rp+ceFXYf6LqrgcLIb1TYmJiYGr169Uhu0y8EJpau9EE9uxO2VeGe4JvGAcExOO6D9/f3h4uKClStXMvGAQqFAREQE2rZti9KlS6NFixZYsWKF2r1nz56FoaEh2rVrl9WvnW3cunULjRo1ypB4QIgqJPwT8tfLEcGJIERkKFeuHPt93rx5TDwpfEPXr19nO3qJiI2nihYtKttQxcuWLcO8efPwzz//oFmzZuy4YJPPnz9j27ZtcHFx0SkeEJDT2JHDySjCd6EprUdYWBhCQ0OxevVqREdHaww/PHLkSBARpk+fLnkOADRt2hTOzs6SZ8qpz+d85f79+yhWrBgcHBywaNEiloZIG2LxQOHChbFz5061axo1aoTixYsDABMTyLEOtW/fHvb29rh9+zbu3buH1q1bpyseuHfvHsqXL8/6fCEqY5EiRdhaiBzmH5zMcf78edja2sLKykqtzgQGBqJevXogIpQsWRJHjx6VnD98+DATW06cODErXztL4TbSDrePbkJDQ0FEyJMnD0qXLg0fHx8AX9tc8Thp1qxZsLa2lkSndHBwABGhWLFism2vuY10w23EyWq4cIDD4eglu3btYpPe9u3bo3r16rCzswMRoWXLlpJrP3z4gLFjx6JMmTIS54GLiws6derEwvjKaeH3+PHjsLS0hI2NjWQ3HQDMmTOH2UB1oSU6OhpLly5lUQrKlSsnS1EFh/M9/ExHmlwG7uJynD17FtOnT0fz5s0xePBgbNy4EfHx8QAg2WGfEfGAHElKSsKIESNgaGiI4sWLY82aNWo7LuLj4yXHhEVwpVKJjh07goiwdOlSdkwOiMvx5s0btXpw8+ZNreIBoW4tWLAAbdu2xcyZM+Ho6CjLXNlKpRKfP39Go0aNkDt3brZol5qaimnTpsHMzAxEabkOhR2Fgp2ioqLw999/o169eqhXrx7+97//MbGg3Pr9iIgI1sYULFgQVatW1RgaNTk5GVu3bs2UeIDDyUmsWLECs2fPZn25+LsICAhgOwiJCE5OTvjzzz9ZGy0gLH4SEVatWoXExEQkJiZi6NChIErLxS733Yc5nZSUFFSpUkUyPy9atCiGDRuGZ8+esag3msQpYvGAnZ0dVq1ahdevXyMxMZEdHzhwoN622ZreW9N4WBg7t23bFqmpqbh48SLatWuXrnggKioK48aNQ7Vq1VCzZk30799ftn0+RzvCdzVv3jwQEWbMmMHOicXd58+fZ2n2OnTogGfPnknG6Hv37pVtVA9uI+1w+6SP6nz88+fPTNBtYGCADh06ICkpSeMmCQDYvXs3xo4dC1dXVzg5OaFy5coYPnw4i3Qmh/aa20g33Eac7IYLBzgcjt6hVCrRvXt32NnZYcuWLQCA9+/f49SpU8ibNy8LuysmOTkZT58+xZo1a7B06VIsWrQIN27cYOH35dJhCgOLCRMmgIiwePFiyfkzZ86gQoUKICL4+vqq3b9nzx6ULFkS7u7uGDBgAEvfIBf7cDjfi3jw/vr1a0RFReHUqVOIiYlh7YncHd26UA2bbmtryxaEhYgnDRs2ZFEWuHggLS2Br68vrKysULRoUaxZs0bNoSnYQGyLUaNGgYhQo0YNjfnr9BVxGY8cOYJWrVqhXbt2ak4ksXigbt26uHnzJoCvwgoAqFSpEmrWrAkA7BuV467D2NhYWFhYYObMmWrnli9fjly5cqUrHhCjaceCnBBypxMRqlSpwhxTquVVFQ+MHj1asgjK4eRULly4ACJC7ty54efnx8QDALB161b2fXXo0AF16tSBjY0NTExM0LZtW1y+fFnyLCEPPRHB09MThQoVYjugnz17BkA+YjiOZmbPng1LS0vY29ujY8eOsLCwYBHvevTogfDwcEkdELfVL1++xJgxYySCsPz587M6JGwO0DeEMj548AC9evVCSEgIXr9+rfGa1NRUVK5cGQ4ODixaw+nTp7WKB4CvKcTEz+HIH9X2VKFQoFWrViAiFkZeqAvia3ft2sVy1x88eJDdKyDMWeQwvuY20g63j2aSk5Ml6V6Esl+4cAF3794FkFZGQSzn6urKxkTiMquuecTFxeHVq1f48uWL3rfX3Ea64Tbi/Gpw4QCHw9E74uPjkS9fPgwdOpQdEzrGR48ewd3dXU08oK1TlNuC1KdPn1CmTBm4uLgwxz+QpvQVoi5MmDBBcs+HDx/Yz6dOncLly5eRlJQEgA8oOBwBcVuxY8cO1KlTh+WeL1CgANq1a5ehEKs5hY0bN4IoLc/6nDlzEBUVhdu3b6NAgQIsRJrQRqUnHhDvXJA7T58+xfjx4zWKB8R1Ly4uDg8fPmSLNEWKFGFh5eUgsBCXdcOGDSyaUPXq1XHmzBm168XigVKlSuH8+fNs4jx8+HAQESZNmqTx+fqKpjLEx8ejYsWKOHDgAIC0xQNxfUhPPADkvH5++fLlrI35888/2XHV70cQDwjjyilTpmT1q3I4vxyvXr3C33//DWdnZ+TNmxf//fcfa09q164NJycnBAcHA0hrhzZt2oQ6deqAiNCsWTM18cDKlSvh5uYGAwMDuLi4oF69ekw0kNPappzIhQsXmFhg+fLluHTpEurWrctEWxYWFhg6dCi2bt0quU/cD65atQrFihWDqakp8ubNiwYNGuh9HXrw4AFcXV2ZSKd06dLYuXMnoqOj2TVC2TZt2gQiwuDBg9m5s2fPpise0FfHHOf7EH8z4uhb3bt3BxHhv//+AyCtH+J7hLzYQk5tQXyiep0+w22kHW4fzXz8+BGLFy/Gn3/+yUTsALBkyRKYmJhg2rRpLF3c58+fUb16dRClpdqNiYkBIP92mdtIN9xGnF8RLhzgcDi/NJpC83z+/Bk1atRg0QaEnYXC5Dk98UBO2Sn24cMHeHp6Ik+ePHj8+DGA9EUDCoUCb9++xYwZMxASEqL2LH0ewAuIy/D27Vu2u1AODjZO9rBu3TrmdGratCmaNGmCsmXLgohga2vL1PY5mVOnTsHFxQUODg6SdCn//fcfiIiFTvf09NQoHggICGAh2BISEmTRFmWkzdEmHgDSoutMmDCB5aWVw+J4eggCEhsbGyxfvlzrtbdu3WJCCmNjY1SoUAElSpRgk2khDK8cEH8LBw8ehK+vL/r3748hQ4bAzc0NmzZtklwvrncrVqyQiAeExQe5oS2SgsCqVatYOz5//vx0r0tOTsaGDRtQtmxZNqbicHI6r1+/xowZM+Dg4AA3Nzf4+fnh0aNHcHZ2xj///CO5VqFQ4MyZM2jatCkTD1y6dElyzZMnT3Dz5k08fPhQdtHgOLqZMmUKiAi9evUCkBZB5/jx4+jSpQvLzUtE6NmzJ4KCgiRRLgRiYmIQGRmJJ0+e6H0d+vLlC3r27AkigpWVFVxdXZEvXz4QEby9vbFo0SK8e/eO9Vf37t1D0aJFYWpqihMnTrDnnDt3TiIe2LFjR3YVifMLsW7dOjg7O2P16tUAgKlTp4KI0Lx5c3aNeCwk/Hz48GEYGxujUaNGWfvC2QC3kXa4faRER0ejffv2ICL0798fcXFxWL16NYgIuXLlwr59+wB8deomJyejRo0aamshcnb6chvphtuI8yvChQMcDueXRbzwGxISgv79+6NKlSoYM2YM7O3t4ePjo3aPLvGAvi4gZJZWrVrB1taWLcRpEg0IzqirV6/Czs4Of//9d3a97k9DPGE5evQounTpgqZNmzJHG4eTWQ4ePAgjIyPY29sjMDAQwNdvSRjoExFu376dna+ZrSQmJqJv374gIixbtowdnzFjBogI1tbWOH/+PGrVqqU18kBwcDDbWSUH4YDA6dOntdaPp0+fYsKECbC0tESxYsUk4oH4+Hhs3boVHTt2xLx58/D27VsA8uvbjh8/DjMzM1hbW0t2yaUnAFQqlfjw4QOGDBkCBwcHEBHs7e1RrVo1Fo1BbjYSR+YQ/2vSpImag1uTeMDExAS+vr6SiENyQFzW9+/fqy2iiOvBihUrmN0WLFig8RlAWr37+PGj2v0cTk7m1atXTDzg7u6OqVOnwsnJCcePHweQ9h2J++6zZ89KxAPiyAOqfbyc+nxO+gh/55MnTyJ37tywtrbGlStXJNds27YN48aNg4mJCVs8L1u2LEJDQxEZGanz2frK9evX0aZNGxARChUqhKlTp2LOnDkwMDAAEaFChQqYOHEiS1MVFBQEIlIT7gjiAVNTU+TLlw979+7NjuJwfhEOHDgAIyMj5MqVCwEBAQCAyMhIFkFvzJgx7FrVcdPRo0dBROjUqVPWv3gWwm2kHW4fzWzbtg3lypWDgYEBatasCSKCm5sbQkNDJdflZKcvt5FuuI04vxpcOMDhcH55hJ2nwj9h50GjRo2YQ0CMJvFAlSpVsvq1swRxeC/hdwD466+/QEQoU6YMSpcuDSLCuHHj2HVi51yjRo1gZGTEco3JBdVw1zY2NiAitGvXDseOHcvGN+PoI0qlEgqFgoXiW7NmjeR8eHg4izowatSobHrL7EF1cfbVq1coX768ZFFgyZIlMDMzg5WVFdtpGB4ejuLFi7Nw+0KINdU89nKa+OzcuZPtqouIiEj3uidPnmDQoEFsd9mqVauYXT5//ozExERmFzlFTxHq0siRI0FEWLx4sdo1SUlJCAoKwn///Yfjx4+zeiNw9+5dnDp1Cjdu3GBOcbk5e0+dOgVra2tYWFhgypQpWLNmDerVqwcTExPY29tj7ty5TFQiIK4nwm57Nzc3WQkHxG1RUFAQy/tcuXJl+Pj4sDGjuE0Rpy3QJh7gcHIiwneQnJyMxMREbN++Hffv32ffUGxsLGbMmAE7OzuWVubQoUOSe8Xf5blz5yTiAVUnMSfn0q1bNxAR2rRpgw8fPqiNLQcMGAAiYgICOzs7eHt7w9/fHw8ePMimt/653L59G82aNWMp0SIiIvDw4UP4+vqyNAb58uXDpEmTsGXLFlSuXBn29vZq48vz58+jfv36cHNzw8uXL7OpNN+POHQzJ2OojmX+97//wdTUlKWTEb6ztWvXwsLCAmZmZvjrr780PqtLly6SKE36Ls4R4DbSDrePdsRlOH/+PAoUKAADAwNYWVlJ5rHiuWhOc/pyG+mG24jzq8KFAxwO55fm6tWryJUrF3LlyoXFixdj+/btmDZtGlvkHTp0qMYdiEKH+vjxY5ibm4OIEBsbm9Wv/1PIyAD7w4cP8PLyYnYaPXo0Oyc4nxQKBcv/3LlzZ41hH+WAsCvT1tYWS5cuze7X4egx7969g7OzM8qXLy+ZRKeXCgT4ukNaThNjcdnFExKhbYmPj8eePXtw/fp1AMCVK1fg7e0NCwsLJtr58uULkpKS0L9/f9ZOeXl56fWCZkbYvn07SpQoAWNjY/Tv3x93795N99pbt24x8Zu3tzfWrl2rJqqQG0qlEqmpqahcuTIMDQ1ZHQKA58+fY+vWrShVqhSrMw4ODujYsaPWEPJycACrth+C41+cBiQ5ORkTJ06Eg4MDHB0dsXjxYq3igQ0bNjBHuhzaJzEbN25kdcTe3p6NA728vNgOVS4e4HC0I9T/mJgYTJw4kYkj69Spg7Nnz7Jv6PXr15g+fToKFCgAIkKLFi3YLmhNuYsF8YChoSGqVasmaec5OQ+hnl27dg358+dH4cKFmYNYqDezZs1iooHAwEAMHjwY5cqVY+12p06dkJSUlG1l+Jncvn0bLVu2ZOKBsLAwAMCLFy8wcuRI9l3a2dnBysoKpqammDNnDlJSUiTf3ZUrV/D69WsA+immXLhwIezs7LBy5crsfhW9ZO/evTh58iSqV6+O/v37s+PC9/fq1StMnjyZjZe6deuGS5cuITo6Gq9fv8bAgQPZfESoR3KD20g73D7pI7S1wcHBICJYWFiAiDB48GDcu3dP4z2anL4lS5aU7VoIt5FuuI04vyJcOMDhcH4pVBevt2/fDiLC5s2bJcd37twJW1tbEBF8fHy0igeePXuG58+fA9D/RWCxfQ4dOgRfX1/873//w8qVK9V2XZ46dYot4rVu3Rpv375lkQY+ffrEHHZiZ52+Og/SWwA5evQo2+UsqKKB9MNdczjaiImJgYWFBapWrcrqkDbRQExMDGbOnImoqKjseN2fQkJCAoKCgiQhhgFg2bJlKFu2rEaFs5+fnyTqibgdXr9+PczNzeHp6QkiQq1atdQiqciNPXv2oHz58iAi9OvXT6t4QAjP6+DgABsbG7W+UK706dMHRIR58+bh9evXOHfuHNq3bw9LS0tYWlqiefPm6N69O4oVKwYjIyPMmjULgP738brYtGkT/Pz80LZtW9SvX58dF/r2z58/Y+bMmciVKxccHR3h5+enVTwA6KcDQRtPnz6Fp6cnXFxcsGHDBjx79gwHDhxAgwYNQERwcnJiiy/idkqctmDatGnZ9foczi+B0E5ER0czx2TRokXRr18/rF69Wi3llxB5wM3NDba2tvjnn39YNBNN4oHz58+jatWqyJMnj2yE3Zzv4+3bt2jevDmICH379mXHBdGAsbExS12kUCgQFRWFWbNmoWzZslrFg3Lgzp07aN26NYgI+fPnx6lTpwCkzWffvXuHOXPmoFKlSiwaw/Lly9m9quNpfRwnJSQkYOTIkTAwMEDRokVZXnVOxjh06BCICE2bNoWLiwvGjx8PQH036rNnz/Dvv/+yKI329vZwdHRE7ty5WWq5J0+eANDPeqQNbiPtcPtkjFOnTqF8+fIYM2YMKlWqxPqz9Ob6Yqdv3bp1c8RaCLeRbriNOL8SXDjA4XCyDW07J9esWYN//vkHvr6+KFGiBDsuHpzu2bNHIh7QFIpHvCAup8VxTbmNGzRogMDAQDY4+Pz5M/bv348iRYqwhYamTZuidevW8PDwYKIBYfCuj/ZZvHgx26mk6f1Hjx4NIoKfn5/auYSEBGzcuBFz587FiRMn+MIlRydxcXFwcXFB0aJFkZSUhLNnz2oUDQht25EjR+Ds7Ixly5Zl1yv/cA4dOoT8+fPDw8MDJ0+eBACsXLkSRITcuXPj9OnTavd06tQJRIQNGzYASFsoEIQXmzZtgoeHB27duoUOHTpozVerT4gnae/evVMLBx8aGioRD9y5c0dyr9Cf+fr6olSpUvDx8UHRokWZCE6uCO34vn37UKRIEZiamrKoC0KqmX379rHr582bByJCy5Yts+uVs4wrV66AiODh4YHKlSujXbt2AL4K4YQFOEE8IEQe0CQekDMXL14EEak5Fj5//oy2bduytkqTeECI5ODk5CTbKEwcji6EtuTJkycoWLAgiAg9e/bEu3fvtN73+vVrzJgxA05OTsibNy/+++8/9h1pEg9cuXKFjb3l6EDgZJ5Tp06BiODo6Ihbt25hzpw5TDSwY8cOAOp1RRhzyz0kr6p4QHW8ff/+fezduxdz5szJpjf8uTx58gR//fUXzMzMULBgQS4e0ICmyHAAcPbsWdSvX5+l+xw2bJjaPeLfL126hObNm7NocdWqVcOwYcPYRhN9XDMS4DbSDrfPtyPYQZjz79mzh0XG0bRRQLCx0HcJ8xS5rIVogttIN9xGnF8NLhzgcDjZwtSpU1GnTh2NYapu377NnATly5dHtWrVJOfFg1NV8UBO2El+8uRJWFhYwMLCApMnT8a8efNQs2ZNmJqaokCBAli0aJHERk+fPkWbNm1QuHBhZtfSpUtjyJAhLEqBPg7e9+zZAyKCpaUlbt++DUBajuTkZHh7e8PIyAhXr15lx589e4Zt27ZJwl1bWlpiyJAhss2Ryfk2xN+RMCgXdkIPHDgQFStWBBEx1T3wdeevUqlE9erVYWtrq7Y7X5959uwZ2rdvDyJCxYoVmTjHzc0NO3fu1HjPoEGDQEQYMWKE2rmWLVvCwcFB0nbr++KveLHl2LFj6NOnD7p164bo6GjJdarigVu3bqk9q2rVqmjfvj0+fPjAnDb62F6rokv9/unTJwQHB6Nly5awtbVFvXr1sGjRIrXrTpw4ASJC7969f9ar/jI8e/YM48aNg7OzM4gIBQsWZHVCdaFPVTywZMkS2YUFBTTXo5MnT6JEiRJswSU1NVXyTQrigfQiD2zYsAGPHj1K9/kcTk7gzZs3qF27NogIo0aNYsd1OfgF8YCDg0OGxAMZeSYnZ6BUKpGUlIQOHTqAiFCzZk010YBwnab/5gRUxQNnz55l51TtIIexoipPnz7FpEmTuHjg/xFvFhEQ/3zt2jX284ULF9i3ZWxsLBHhiuuO8HNiYiISExNx+/ZtfPr0ic3T9K1ecRtph9vn29DW7yQnJ7OftW0UENi/f7+aM1jf10IAbqOMwG3E0Qe4cIDD4WQpCoUCb968gaurK4gIbdu2RUJCgtp1CxYsQN68eUFEsLa2VlPVpyceGD16tOzFA3///TdMTEwkofcjIiLg6+sLa2truLq6qokHUlJS8Pr1a1y+fBlXrlzB58+fZTF4FxyY9vb2zOkmLs/AgQNhZGSEFStWIC4uDmfOnEHbtm1hZWUFKysrNG7cGD179oSDgwOMjY2xZs0aADlrEYrzlYz83QXBivBv+vTp7FxiYiJ7zuDBg0FE6NOnj6zyrioUCjx8+BADBgxgNnBycsLRo0fZNap2PHPmDNuh8M8//yAhIQFxcXEYMmQIy02rLQKNPiEu+8aNG1nf1LlzZ9aPiZ0k4ongb7/9hr179wJImywOHz4cRIRJkyZpfL6+Ii7D8ePHMWfOHEycOBF+fn6SSbJw3cuXL/Hx40d2XOi7lEol6wMCAgLUni1Hnj9/jj///BNubm4gIkyZMoW1L+mJBwShwdq1a2VlH3FZLl68iO3btyMwMBBz5syBra2t1sUTXZEHNP3O4eQEhO9q9erVICI0a9aMncvofCEj4gEOJz2EyC9EBDMzM4SGhrJzvP6kLx7IKbZ5/PgxEw8UKFAAK1euzO5XylYSExMxdepUiYgdSEshR0RYsmQJO3b+/Hn89ttvTJhz7tw5di69+iOHesVtpB1un8yR0XmsgLaNAmPHjoW1tTX+/vtvfPnyRTa24jbSDbcRR1/gwgEOh5NliJ0ljx49gre3N1q1aiW5RrxQu2DBAri6usLAwADjxo1T2y2nKh5wdHRkC+lyQdNuilatWqFDhw5q17x8+RL//POPRvGA3AYP4noihEEXiweE8xs3boSjoyNMTU1RqFAhGBsbawx3PX36dBARmjRpwgdbORTx3/zUqVPw9/fHX3/9hfDwcLx580Zy7dy5c9mi5tq1a9V2ywkOcW9vbxbVQ2516p9//mE2KFCgAMLCwgCktfOadh0sWbIEpqamICIUL16chT8uXLgwy5UsJxutW7eOCd80paoQ15k9e/agZs2aMDIygrW1NRo0aMBySnt4eLCwjnJj/fr1MDAwkAhxatasiUOHDjERDgBJfj6x42rUqFEgItSpU0dWofg19dvi+vLs2TP8+eefsLe3h7u7O5YvX86EFZrEA76+vihZsiSePn2aVUXIUgIDA2FhYcHqkKurK2xtbbFq1So1R6cm8YCrqyuLWsThcNJo27YtTE1NceXKFQCZFxmrigf8/Pzw/v37n/GqHJkg7vOaN28OIkKPHj0ApNU/OY0Rvxdt4gE52kl1nnXjxg1MmDABRkZGKFOmDJYvX55Nb5b9vH79moWx7tWrF4C08bWQ8mP79u2S6y9cuIBWrVqBiNCoUSOcP3+enZNj3QG4jXTB7fNtaJvHigXvQJrTt0KFCmzj3Pr169G3b18QEXLlysVSx8oNbiPdcBtxfnW4cIDD4WQJwoQvKioKHTp0wO3btyXOuP3797M8l+LFqf/++w92dnYwMjLC3Llz1fJEiwenO3bsQPHixfHw4cOfWZQsQzxJfvXqFV6/fo0vX75gyJAhaNeuHZRKpdpC3suXLzFz5kyN4gF9jiygCbEDoGPHjkw8cPPmTcl1a9euRevWrWFlZYV69eph4cKF7JxgmzNnzoCIMGjQoKx5ec4vy/r162FiYiLZTf/777/j0qVLkutmzpzJrqlfvz4GDRqEIUOGoEyZMszhKwze5fTtKRQKvHr1Cl5eXsibNy9q1aoFIkKZMmVw/Phxdp3qwkFSUhKCgoKQJ08emJmZwcXFBQ0bNmTOTDnZ6PDhwzA1NYWVlRW2bNnCjmvbwXzq1CmMHDmS1T0LCwtUr15dlvYBgL1797JJ8rBhwzB58mSUKFGCfTsbN26UiAcEEhMT8fz5cxZpoGDBgkx4Iodw1+IyvHnzBomJiRrzir948QKTJk2CjY0NChUqhBUrVqQrHkhOTpaE7ZcTu3fvZtFMunfvjvbt28Pe3h5EhOrVq2vM7yj+DoWQq6VLl+aOKQ4Hae1GVFQUcuXKBScnJ7x48eKbnxUbG4sZM2bAxcUFpqamLKoXh5MeguN70aJFICKUKlWKCU54+yxFLB4oUKCAZOevnBD/3bdt24YWLVrA2dkZ+fLlY/OwEiVKYNWqVdn4ltnLhQsXYGlpCSJC1apVQURwd3eXpPgQjy8vXryIli1b5ijHL7eRdrh9Mse3zGP37duHevXqSZzExYsXx+PHjwHIb47GbaQbbiOOPsCFAxwO56cjDDIfPnzIogKsXbuWnQ8KCgIRoXHjxkxMIF7YXbRoEWxtbTMkHhDCXet7iFlxmYKDg1GpUiW4u7vDzc0NXl5eaNmyJTuv6iyJiYmRiAcWL14sywG8UqmU/J27desGIoKtrS1u3LghufbLly+IiYmRhIwXp7Ro164diAibNm1iz+bkPPbv3w8DAwMYGhpi0KBBaN++PTw8PEBEqFSpEk6dOiW5PiAgAKVKlYKZmRkbuBcqVAg9e/Zki+1yGLxr+h7OnTuHEydO4O3bt+jevTsTD5w8eVLtPvH9z549w40bNxAZGckmQnKwkRghxYA4tKNAUlIStmzZgiVLluD06dNqSvKbN29i165dOHXqFHMYy8E+mqJymJubS1LuxMbGYsCAATAzM0OhQoXUJssvX76Er68vnJycQESoW7cuEw3IwUbi72Tr1q2oWbMmSpcujZIlS2L16tWIiIiQXJ8R8YCm6B/6jGo9GjBgAKysrCT16O7duyhWrBiLRvH8+XO154jHDv369dMoMOBwcioPHjyApaUlPDw8vqltffLkCcuR/Pr1a0ycOBElS5Zk7TWHo4u4uDh4enqCiDBmzJjsfp1fFrF4wNLSkkUIkSPCDmhra2uMGjUK//33H8aMGYMCBQrA0NAQRYoUyZHiAWE88+zZM5iamsLExASWlpbYv38/AGkkONUUT+k5fuUGt5F2uH108yPmsQAQHh6O//77D23btsWff/7JogrKYR7LbaQbbiOOPsKFAxwO56ciFg3kyZMHRIRx48ZJrrlx4wYKFSoEIkLLli1ZSgLxwq6fnx8TD8ybNy9d8YAcFsbFbNiwgTkk3d3dYWRkxH4Xh+VLTzyQK1cumJiYSIQackBc3mvXruHYsWPYvHkzXFxcQESws7NjkQfEAyjV6AtKpZKFu65Xr56swl1zMo5QLwYNGgQrKyts3boVQFobdPLkSba7WdUxDqTl2gwLC8P27duxY8cOvHjxgglU5DB4F7ep9+7dQ2hoqER0A6Q5GQThjqqNxPnoVdtt1efLgU+fPqFUqVKwsLCQOCOfP3+OHTt2sIgURARjY2NMnjwZr169AqB5x7wcdtGLOXnyJO7evQsvLy/07t2bHRdy+b158wajRo2Cubk5ChUqhA0bNrDJckJCAv766y+0atUKM2fOZEJDOXxnYgIDA1kdcXBwYHWldevWkqgeQMbEA3Lk1KlTuHPnDooWLYp+/fqx40I9io6ORsWKFdUEJmJUBab6LjjlcH4Ur1+/hpubG5ycnHDv3j0AGe+Lvnz5goULF+LcuXOsDYqLi5Nt1BOOOtrm5Bnpl4Q6snr1atjY2KBChQqyC7/7vTYSc/fuXdSuXRvm5uYahXJy4NKlS7CysoKhoSG2bdsmOXf27Fn07duXpSXMieIBADhy5AiIiO1C7d+/PzsnHt+k5/ht1qyZmkBebnAbaYfbRzffM48VI45yJrdxEbeRbriNOPoEFw5wOJyfhlg0IDh0J06cyM6npqaya+7cuQMvLy818YC4A9QlHpAD4oWEJ0+ewMvLC05OTggICMCnT5+wfft2lsfI0dERmzdvZvdqEg/4+vrCw8NDVrt8xJOV9evXs7pVqlQpWFpaws7OjqUtuHXrFgD1gdTHjx/x4sULFmlAbuGuOd9GhQoVMHDgQADSb/Hhw4fpOsbTqy9ycNqJy7Zr1y6ULVsWxsbGGD9+vFr5tNlIqVRi3LhxqFy5MktJI1eUSiW6du0KIsLGjRsBAKdPn8Zvv/0GGxsbWFpaol69esxWRCRRmcuZbdu2sZDy1apVY2ljhEmyUKfevHmDkSNHSibL8fHxANLa7tevXzNBitza6wcPHqBo0aJwcnLC6tWr8fLlSyxbtgy1a9dm4fcPHz4suUcsHvDw8MDChQtZ9CU5ItSjrl27okqVKiyyh1CPhDrx6NEjlgcyPfEAh8ORolAoJPmO//vvP3YuI+Oahw8fwsTEBM2aNUNCQoLknBzGRRztiPvkuLg4xMbG4t69exLBaUYXt2/evAkDAwNYWVlpTNmjr/xIGwncv39f49qJXFi3bh2ICMOHD2fHxI7Mhw8fYsSIETA2NkaxYsWwYsWKbHjL7CM1NRVLly5F48aNMWfOHFhZWYGI0LNnT3aNNsdvmzZt2LhKGEvJDW4j7XD76OZ75rGC01fu4yBuI91wG3H0DS4c4HA4PwVNkQamTZvGJrPiSa1w7e3btzWKBzRFHjA3N8fUqVPVFqX0DU274YG0cNYxMTEgIvj5+UnuiY6OxtixY0FEcHNzQ1BQEDun6kSJjY2V7S6frVu3gojg4uICf39/JCQkIDIyEgEBAWjQoEG64oGXL1+if//+LDdinTp1ZBXumqMb8beWkpLCIgRUqVIFU6ZMAaD+LelyjMsNcZnWrVvH8oiPHTsWV65c0VhmsY1Kly6NY8eOAQBGjx4NIoKTkxNiYmKyrAzZxZo1ayR5V01MTEBEaN26NXbv3s36tEmTJoGI0KlTJ6SkpMiyHok5cOAAChUqxOpSt27d1K5Jb7K8adMmWYoFVTl9+jSISG3H3IULF5ggJT3xwF9//cVyk2ralSAXDhw4gMKFC7MITOJFTQGhL1cVD8h1NyaH86P577//QETImzcvTpw4ofN64Zs7evQojIyMJDsVOTkD1Vz0DRs2RIECBWBjY4PGjRtjzJgxkpRxGWHVqlV4+PAhAHkIBX+GjcTIwUZiBHsJ6x6TJ0+WHBcTHh6OevXqgYjg7e2dY8QDgi0+f/7MvpXw8HCWr75Xr17sWmH+obrecfr0afTq1YvlyJYb3Eba4fbJGN87j9X3deuMwG2kG24jjr7BhQMcDueHIxYNuLq6gohQtGhRxMXFAQDLe6npnvTEA+LB6ZIlS0BEyJ8/P9uFqG9cvnyZ/aw6yV+4cCGcnJwwc+ZMlC9fHu/fvwcAyU6E2NjYDIsHAPk5Nj98+IAaNWpIdvWKef36NQsvb29vz9IWCHbw9fVF7dq1MWvWLNmGu+ZoRvwthISEoFWrVihSpAh+++03eHt7Y9iwYQA0h61WFQ+cPn06y977Z6KtfQgKCgIRwdnZGRs2bNB538OHD9GzZ0/mOPfw8GDttbCYoO8LmxlpT5cvX45atWrB1tYW1apVw/z589XuP3DgAIgIPj4+P+1dfzUOHz6MMmXKwNDQEGXKlMGlS5fUrhFPlkeNGgUbGxvY2Nhgx44dWf26PxVN9Wj79u1wd3dnv4t37dy4cYOJB6pVq6YmHnj27BnmzJmDp0+f/ryX/kVQrUfiMZWAWDwgpC3w9vZmeSA5HI46QrsUGRmJunXrwsDAAB07dsT169fVrhEQj5/r1asHMzMzSW5kTs5CyEVPRChUqBAsLCxgZmYGIkKFChVw8eJFnfVCtY7JLZXMj7BRTmL58uUgInTo0AHJycnpztnXrl3L7Orp6YlFixZl8Zv+fLTNQZRKJbPN1atXNTp+xRGpxKIwYZ1JDt8at5F2uH2+HT6P1Q23kW64jTj6BBcOcDicH4qmSAOOjo4gIjRp0oSFqdY04ctM5IG1a9eyxXF9c4oLu3hmzpypdi4lJQWtWrVijjozMzOcO3dO43O0iQf0zSaZ5dmzZ7CyskLBggXZzkrVBZbk5GQ0a9YMRAQ7OzvcuHFDcv7Vq1esTvHFmZxHQEAAW1wSdq4SEXLlyoVHjx4B0NxOicUDbm5uuHDhQla/+g9FUxQYgdu3b6Nw4cIgIkn7IhYxiRcYBOLi4uDr6wszMzMUKVIETZs2lU1UD3Hbevz4cSxduhTDhg3Dnj172C4Ngbi4ODx//lwSYldsO6Gt3759u9qz5YC4POL+++DBgyhVqhRT2Qvfm6Z737x5gwEDBqBw4cKy2i0uts2lS5ewe/durFu3DsHBwfDw8EBUVJTG+65fv87aH03iAaEv0/fvLD3EfXVG6pFYPFCoUCEYGBjg1atXWfa+HI4+s3z5cri4uMDMzAy9e/dWEz2L+3+FQoHhw4eDiNC2bdscESGGo861a9fg6OgIZ2dnrFu3DvHx8QgLC0NwcDCKFi0KIoKXlxdzNuXE+Re3UeY5deoUrK2t4eTkpDENoTCmio6OhouLCzp27AgiQpUqVWQVgSkjc5DU1FQ25k7P8Qt8jeKwePHiLHv/rIDbSDvcPhmHz2N1w22kG24jjr7DhQMcDueHoUk0MHLkSCxbtgwFChQAEaFhw4Ys8sD3igfSe8avirDANn/+fBgaGsLGxgb79u2TnAeA9+/fo0uXLiAiGBgYICAgQHJejFg8UKBAAfj7+2dNYbKZ58+fw97eHkWKFGGqZ7F9hHp08eJFtghja2urFnmAk3MQ/83v3LkDV1dXODo6YvXq1QgPD8eSJUvYrtRy5cqxQbmmNiY6OhotWrSAvb29Xu9enTp1Kho2bKjxGwLS1NAmJibo27ev5HhqaioeP36M3r17o0GDBqhatSo2b96MFy9eSK67desWnj59yiLD6FN7rYv169fD2NgYBgYGICLY2NigfPnyTEiiVCqZPYX/Cv2XUqnEqFGjWJ/49u3b7CnET0C1DimVSo2L3ocPH0aJEiVAROjTp4/G0JbCs+Li4pj4Qk51CEgTMNnb27N0FtbW1jA0NGRjA019lVg8UKtWLezduzerX/uno2s3lEBG6pFQ/54+fcraa+6I4eRUMlL3xd/YlClTYGtrCxMTE9StW5cJ3cQkJyejb9++ICLJoib/zuSPauqvffv2gYiwfv16tWtjY2NRu3ZtFv1FmNvLvZ5wG+kmI/NyIYd60aJFmRhZGFcLotzHjx+DiLBo0SLMnTsXT548+XkvnY3omoOk5/jt1KkTTp06hf79+4OI4ODggOjo6Gwsyc+D20g73D6a4fNY3XAb6YbbiCMnuHCAw+H8EIQO7cGDB3BzcwMRYeLEiQDSUhMsWbKE5ZT/FvFA27ZtWbQCfUQoZ1JSEmJiYrBy5UoMGDBA7TphgP7+/XsWktjc3FzijFIlNjYWEyZMYOENP378+BNL8mvw4cMHVp+WL1+e7oJDYmIiypUrx3aTExHu3buXxW/LyUo01QXVY0IecUGUA6R9ezdv3kT16tVZHnFt4oEnT57odZqL2NhYODg4gIjQsWNHjWEFV6xYoRZKPyIiArNmzYK7uzuIiC0kuLi4YMGCBUhJSdH4LDmJdUJDQ5mwa/jw4ejbty9q1qwJIoKZmRlOnToFQH2h99OnT3j9+jXatWvHwtMKi59yWBQWl+HEiROYNGkSmjRpgqZNm2L69Ok4efKk5PrDhw+zPl7XZFn1Zzmwa9cu1i/17NkTtWvXRrFixZjzTYiSk554QEgJ0rp1a40poPQVcT26evUqtmzZgpEjR2LcuHE4duwYIiMjJdcfOXJEZz0SP1MO3xqHk1lCQ0Mz5dAXXzNnzhzWNgnfma+vLwIDAzF8+HCUKVMGRISSJUsyR50+jos42nn9+nW6/fCaNWswbNgw+Pj4IFeuXGp5sIX/vnnzhrXX7du3l117zG2UecTle/LkCW7fvo2QkBDcvHlTEi0gJiYGlStXBhGhbNmyGp2Vffv2hZmZmSQCmNzaoozOQcSO37CwMJY+VPhXrFgxNl6SW2h5biPtcPtohs9jdcNtpBtuI47c4MIBDofzw3j//j1sbGxARJg0aZLkXFxcHJYvX/5N4oHSpUuDiNC7d2+97CiFsty/fx8eHh5Ys2YN24ELAKtWrcLff//NfheLB4RdhQUKFGAhQjXZICYmBjNmzNAY4khuCPacMWMGjIyM0KpVKxZJQIyQG3rgwIHo1q0b6tatCyLKEfmfczLCjlJN38msWbPQvn177Ny5E9WrV2fHxW3Qo0ePUK1aNRYKXJt4ANBvJ9SVK1fg6emJNm3aSI4LbdCFCxfg4uKCvHnzYsWKFfDz82POgzJlymD8+PG4efMmhg0bBiJC8eLFWbsuJ1T/xj169ICVlRWCg4MBpNWNuLg49OvXjy3EiMUDCoUCMTEx6NixI+sDa9asydoiOSxqir83f39/lqtX2Ekv/Fu5cqXkvow4feWCUI8EW3Xs2BG2trbYunUrgDRB3O7du1G/fn0QEerWrYvbt29L7hFz9epVDBkyRFY2E5dzw4YNcHFxgaGhIas/tra2qFKlCnbt2iW5LyfVIw4nswipmdq2bZupqBvia3bv3o3//e9/kvZc+FewYEH07dsXMTExAOTRp3Gk/PPPP6hQoQLCw8PVzj148IBFGqxYsSIKFCjAxGziNl2oF+Hh4XB2dka+fPlw586dLHn/rIDbKPOIy75161ZUrFgR9vb2rL+vWLEiTp48ydZNzpw5g/Lly4OI4Orqinnz5iE0NBRhYWFMTFmrVi1ZpUr5njmI2PEbERGBIUOGoFu3bvDx8WF9gRzaa24j7XD76IbPY3XDbaQbbiOOHOHCAQ6H80OZMWMGRo8ezX4Xq0+/VTxw/fp11KlTJ92cv78y4vQNQiQGsUjg1q1bbAAxd+5cdlyw24cPH9C5c2e2MKdNPKAaDlufyYhA5Pz58/D09AQRYciQIZLdBULodQAoWLAg+vXrBwAsJLgcJjgcdaZOnQorKyucO3dOclypVCIuLo59a25ubsiTJ0+6OcIyKx7QZ8QTk4MHD0oilnz58gUTJkxggjDh3+DBg3H79m226BkbG8sEBefPn8/yMmQVx44dw4cPH1C3bl388ccf7Lh4QWbIkCFqiy5CezZ+/HiULFkS06dP1+toFdrYtm0bi0SxaNEiREVFISwsDP/++y+rP76+vhKbiSfL/fr1k1XIS00I9ahmzZoYNmyY5Fxqaipu3LiBhg0bZkg8oLpjUS5s2LABRAQjIyOMGDEC8+fPR5cuXZiQVDViDJDz6hGHk1GOHTvGQqF26NDhm8UDQNp3tmTJEnTr1g3jx4/HvHnzEBkZycYOcmuLOGnzdyGVV6NGjTQKsP39/eHt7c3a58DAQI3PEsbjQnQvQTin73AbfR/+/v7MLu3bt0ePHj1QtWpVJhBYtGgRXr16BSAt3ZwgsBT+GRsbg4hQpEgRFvVEn4XdmvjWOUhqaiprl4VNFXIdO3IbaYfbRzd8HqsbbiPdcBtx5AQXDnA4nJ+GpoHkt4oHhMGpPjnFxaIBYZeBaiSGhIQE/Pfff7C2toa5uTlmz57Nzn2LeEAOiMt15MgRzJs3D71790ZQUJBaZIHNmzfD3NwcRIQuXbpg//79kvMjR44EEWHGjBns2XJbSOCk8eXLF0kIeLHQSKhT165dQ65cuUBEcHd3l0yIVRGLB2rVqiX7SBUbN24EEaFFixYS4c2XL1+wa9cujB8/HrNmzcLu3bvV7k1MTESBAgVQsWJFJCUlZeVrZxnBwcEgItSpUweenp5YtmwZgK/tvLgODR48WG3RReDFixcsF6vc2qKoqCiULFkSRITNmzdLzt2/fx8FChQAEWHMmDEA1Nt6Idz1yJEjZWcbAaEe1a5dG0WLFsWqVasAqNeFzIgH5EZ4eDhcXFxgZGSEbdu2Sc7duHEDf/zxB1t0EXZLCeSUesThZAaFQoEzZ84wp2VmxQMZJSe0TzmVO3fuoEmTJujSpUu61/j7+6NChQogIjRp0gRhYWHsnFA3hLGSkB/b39//5754FsJt9G0cO3YMZmZmsLa2xqZNmyTn+vbty/r706dPs+NKpRJ+fn7o378/SpYsiRYtWmD06NGy2gEt5nvnIAqFAkqlUtZtNLeRdrh9dMPnsbrhNtINtxFHbnDhAIfDyXIyKx4A9G8xSpNoYMKECey8uJyJiYlYsmQJzM3NYWFhkSHxwJUrVwDon10yg7+/PwwMDNiCgYWFBTw8PNTEAYGBgczGVlZWaNSoEfr06cN2anh6erLwqRz5IXxLKSkpePv2LQYMGIDWrVtLrlEoFMxZe+3aNbaDXnydJlHSo0ePUKtWLXatXAbvmtqNy5cvs6go7dq1k4gHNCHOqT5gwAAQEYYOHcrsLDcuX77McjsaGhoyEZi4vOktuogXO/UZXf3NuXPnYGJiItnFAkDisFIVz4nZt28f6tatK+uUO6r1aPLkyQCg8btRFQ8I4Yr1vd/X9f6bNm0CEWHUqFHsmLDDCQA+fvyIUaNGgYiQP39+XLx4UXJ/TqhHHE5mUSgUOH369A8TD4jv0fc2iaMd4e8r1BcgLXVFWFiY2t8+ICAAJUqUgKGhIYYMGSIJsy+040qlEtWrV4epqSmOHz/+8wuQBXAbaUdTGyMcE8SAK1askJwPDw9nDhRxNEvV8ZLqGpLcRAPAj5mDyL2d5jbSDrcPn8dmBG4j3XAbcXIaXDjA4XCyhW8RD+gLYtGAMEAfO3YsO6+pfJkVD1hbW+P69es/uSTZx759+1jowXHjxmHEiBFo3rw5ExHs3LlTcv3BgwfRq1cv2NnZsWssLS1RqVIlWeUR50gRvrXIyEi0bt0aBw8elOx4DwwMxJkzZ9i1wrd0/fp12NraskgVAprEA1FRUWjdurVepkoR0OUUEM6Hh4ejcOHCauIBbZFehg4dCiJCuXLlZC/QCQsLY/YpWbIkEhISAEjbFvHPQrhHIlJzbuoTqvXn1atXGuvUsmXLQERYuHAhO3b+/Hm28CsWzwHAkydPJLvtgK+CFH2KLpRZVOtRYmIiAM19lFg84O3tjfv372f16/4wMlqPBFGAn58fAM11ITo6Gq1atYKJiQkWLFgAQGq/nFCPOJzM8qPFA5ycSWhoKIgI1atX1zgXDQwMRLFixWBkZIROnTqpCb59fHxARKhatSrevXuXRW+dtXAbpbFt2zZEREQA0Oxs+fTpE4oUKYICBQogISGBXaNt7Ci0VarRu/TdqamLnDoHyQzcRtrJqfbh81jdcBvphtuIk1PhwgEOh5NtyFE8oEk0kCdPHqxcuZJdk97ENqPigaZNm8LQ0DDd/Oz6iOqga8CAAbCwsJDkdfz48SPGjx+frnggPj4e9+7dw6ZNm7B8+XKcOnVK7+sTJ33E35qLiwuISPKdHT16FEQEJycnXLhwgd0jfEs3btzIsHhAqD/6NnhXXUw7cOAAtmzZAj8/P5w/f16iZBauES8qiMUD4m/o8ePHOHjwIIvq4eXlxXKKyvVbE2wZFhYGDw8PEBGaNWum0T7in3v27AkiwuPHj7P2hX8QQrnfvXuHoKAgdOzYEZUqVUJwcLBaVIoVK1aAiPDnn38CSFPWa5okC5PhBQsWoFatWoiKipL1gq+4bOLvTFc9Erh58yYqVKgAOzs7luNX38hMPZo4cSKICD179ky3XigUCsyaNQtEhPLly0t2aXI4nPTh4gFOZlGtF9euXUONGjVARKhXr166jnEvLy8YGBjAzMwMrVu3Rs+ePVG2bFkQEYoVK8aE3XKod9xG6gQFBYGIUL9+fTx48ACAeh/96dMn5MuXD6VKlWLHzp07p3HsqFAo8OLFC/j4+OD169dZU4hfhJw6B8kM3Ebayan24fNY3XAb6YbbiJOT4cIBDoeTv8ghVAABAABJREFUraiKBypUqID3799n92t9E5ocmUIOo1KlSmH58uVsYPE94oH4+Hi8efMGgPycdPv378fLly/RqlUr9O3blx0XL5hMmTJFo3ggPaeuPi62cLSjKRXIxIkTJdfEx8ejU6dOICK4u7vj/Pnz7N5vEQ/oG4KN4uLi4Ofnhzp16rDvhohgamoKT09PrF69Wu0bSU88INjl77//hqWlJSwsLNChQwe8ePECgP63R6rtcnrlCQsLQ5EiRUBEaN++vc5FF30VMAn14smTJ2jWrBkMDAxgYWEBR0dHLFy4UG33+82bN5ErVy40adIEx44dY4vfmibJnz59QqFChVC5cmV8+PAh6wqVBeia9IvFA7rqkcDdu3eZaEDf+rSM1iPBLocOHYK1tTUqVqyoVZB09+5d5MqVC15eXmzXFIfD0Q0XD3A0oanvEh8LDg5mzqM7d+6gfv36Wh3jAQEBbBxARKhcuTJatGiBKVOm6O24kdso41y6dAlVq1YFEaFx48aIjIwE8NVeCoUCHz58QOHChWFsbIzr16/j3LlzrF0Sjx2F8dHly5d1hnnWV/gcRDfcRtrh9pHC57G64TbSDbcRJ6fDhQMcDifbiYuLw8qVK2FhYQELCwu93FGnyZE5bdo0XL16FTVr1gQRoUSJEli5cuV3iQfEA3a5Le6FhIQw8UixYsUwa9YsAF/LKS57euIBudkE4DsoVdEk0BEPxMX1JCEhAT169Pgm8YC+TY7FCDZ6+vQpmjZtCiJC7ty5Ub16dfTv3x9NmjRBoUKF2Dc0fPhwFkpUID3xAJA22ZkzZw5CQkLYJEef7QVI244TJ05g5syZaNiwIdq0aYN58+bh2rVrkuszEplB/LO+fceCPaKjo5E/f34QERo1aoTz58/j2bNnGu+JiYlBtWrVWKQdsdoegKTv6969O4gI06dPl4VQR0Bcj65du4atW7di0KBBWLBgAXbt2qVWDzJSj9J7vj7wLfXo0aNH8PLyAhGhR48eaucF29y4cQMWFhaoX7/+zysAhyNTcqJ4QN/HKT8T4W/+5s0btRzyALBx40YQEezt7REfHw8gTbylyzHu7++PcuXKwcjICBMmTJDsWtW3vp/bKHMolUqEh4ejVq1aGsUDwnho+vTpICJ07NgRpUqVUhODCw4WAKhduzZsbW1ZznW5wOcguuE20g63jxQ+j9UNt5FuuI04HC4c4HA4GUDTQFE8OFUNz/MtvHnzBoGBgSz8vj4uWkVFRcHJyYk5MgW7Xbp0iQ0evkU8YGNjg8mTJ2dZObKLiIgIFC9eHEQEQ0ND+Pj4AIBkcSY98UBISEiWv29WIK4fz549w+PHj1lI5pyIJoHOlClT2HlNi8KZFQ80a9YsC0ry8xDbyNPTE0SE5s2b4969eyyXOgBcvXoVkydPZt9Qt27dEB4eLnmWNvGApv+nviL+zvz9/WFhYQEigrGxMbNPiRIlMH/+fMl9uiIz6CuCPV6+fInSpUuDiDBq1KgM3Xvu3DkYGhqyEPKaGD16NIgIdevWZdFz5IC4Hm3cuBHu7u4wMjKSRPro2bMndu/eLbmP1yP1e86cOcNs17dvX3z48EFtvNSnTx/Z7jzkcL4H1W9FoVBodHTmJPGAv78/goKCfsicVW4If+uoqCiYmppi0KBBkv7n9u3bKFCgAPLly4elS5cC+FrHMuIYDwgIQNGiRWFsbIzRo0cjKioqC0r1Y+E2+jaUSiXCwsI0igcEm546dUoiZh4xYgS7Pykpif08bNgwNl+RU5QhPgfRDbeRdrh9pPB5rG64jXTDbcThpMGFAxwOJ0PEx8dj3759amkEli1bhmHDhiE2Nva7/x9C56yPO0I+fvyIjh07gogwfvx4dlwYeF+9evWbxAPLli0DEaFIkSJs94KciYyMRLly5ZiTV1OYxvTEA/v378/y9/2ZiBdt9+3bh1q1aqFChQo4duyY3k/ovgWxQ9zV1RVEhMKFC+Pw4cPsmvS+pYyIB27evMnqkr4O3jUJK8QLcID6YsCqVavYxKZ///5MPS18Z+JFhY4dO+Ljx49ZUJLsITg4GEQEa2trLFy4ENevX8fBgwcxadIk2NraIleuXBg0aBAAabh5Odrn06dP+OOPP0BE6NOnDzuurX8WbLJt2zbm9O3QoQP8/f1x8eJFHD58GM2bNwcRoVChQnqdu1cbgYGBICKYmJhgxIgRmDRpEgYPHgxLS0sQfU1dJIbXo68I9WjHjh2sHjVr1gyLFi1CeHg4bt68yUQDJUqUQExMzE8vB4ejL4jb01OnTmHGjBlo1aoVOnTogB07djCBtvh6uYsHDh8+DKK0nPEhISGSHcw5HfG40c3NDUSEoUOHSq65cOECiAirV6+W3JcZx/iGDRtQrFgx5hiPjo7+eYX6wXAbfR/axAMCCxYsgLm5OYgIs2fPxp07d9i5lJQUNo4oXbo0a5/0bQe0LvgcRDfcRtrh9vkKn8fqhttIN9xGHA4XDnA4nAygVCqxceNG2Nvbo0mTJnj79i2ANIcTEcHR0RG3b9/O5rfMfnbv3o21a9ey31UHFN8iHoiPj4e/vz/L8yu3SbK4PMJgKTIyEpUqVQIRoUqVKnj9+jWA9MUDY8aMARHh0aNHWfTWPx+xXdavX8+U47/99hsuXryYjW+WPWhyiLu4uMDAwAD16tXDwYMH2bXfIx64e/eu3g7exaHUBBuJRUyq7ZFqHRNEE9OnT1e7JiwsjEUv6N+//88sRrYRFRXFIp5s3rxZcm7//v1ssVhsHwE52ufly5coVqwYSpQowRaRMiPqO3LkCKuHRAQzMzP2c926ddl3po9CQW1cvnwZTk5OsLS0xLZt2yTnjhw5glatWsHExAQeHh7YtGmT5DyvR+ocPnyYRXIiIlhaWrL+sESJEiyks9zqEYfzLaj269bW1iyKFxHBwMAAHTt2xKFDhyT3aRIPCIIcfRsLaeLx48fo27cvzM3NUbJkSezcuZOLB6B5bC2O4DJv3jw0atQIs2fPRoUKFVg7K64T3+oYHzduHB48ePAzi/dD4Db6MWREPDBr1iwmsMyXLx+6deuGdu3aoVixYiAieHp6yrbP53MQ3XAbaYfbRwqfx+qG20g33EYcDhcOcDicDHL//n3ky5cPRISuXbtiwYIFICLkz58f27dvz+7Xy1Y0OSrT6/y/RTyg65n6hK4yCucjIyNRoUIFtriiSzwg5FmX2058Yeeqg4MD1qxZIzkn2EpuYhJVhL+zeNHO19cXq1evhpeXFwwMDFCnTh0cOXKE3fM94gHx/1PfePz4MVt00yYaEBAvbC5cuFBr9I6LFy+ievXqePjw4Y9/8SxAKGt6dUPYkSikSBE4f/48c6ZMmDAh3efru31UWblyJYjSwsQrlcoMfxPivLURERFYtmwZ2rVrh5YtW6J///7YsmUL4uLiAOjnd5ZePRJ+F+wmzmUoLueNGzfQrVs3GBgYoGnTpiyqjvBcXo++Itj01q1bmD59OurUqQNPT080bNgQkydPZo5NfaxHHM7PZNOmTSAimJubY+7cuXj16hWOHTuGUqVKwdDQELVr18aePXsk96iKBxo1avRDosllN0I78uzZM/zvf/+DkZERFw9As0NcnFc+NjYWefPmBREhb968cHR0TLdf0uQYb9SoEa5cuSI5D6Q5xkuUKMH6yV953sZt9GPJiHggKCgIXbp0kThXSpQogYEDB7JIA/rY5/M5iG64jbTD7ZM5+DxWN9xGuuE24nC4cIDD4WQAodO7efMmy+9DRHB1dUVoaCi7Tg67UrKCsLAwVK9eXSIeEBSMcnYCi+vHlStXEBAQgB49emDq1KlYv349kpOTJeUXiwfq1q3LFjDFgytNOzrkwqVLl+Dg4ABjY2PJztXk5GQAX8ubE767Bw8esPQE4knvqlWrULx4cRgYGKB27doZTlvQs2dPEBEKFiyIkydP/vT3zyp27drFQqLVrFmTHde26CjUn+TkZHTu3Fmym0rVhkKOZH1axFT9PgSRkXBc+O/ff/8NIpKEkD9//jzKlCmjcbElJiZGbSeYPtonPebNmwcigp+fH4DMtzO6HDL61m5ltB516tQJRIRly5ZJjou/pbNnz7IddIJ9xfB69BVxPUpNTcWbN28k4Z/5YguHI+X06dNwdnaGnZ2dJKrJvHnzWOQBIkKFChWwe/duyb0KhQJnz55Fvnz54ODgwES7+o5YPDBw4EAYGxujZMmS2LFjBxNv5yQ0pf4aNmwYOy/0PdeuXYOXlxeICM7Ozrhw4QIAze2ueIG8SZMmLOy18Cxx279mzRpUrFjxl45WyG30faTX1wvigdq1azPxxP379yXXfPr0Cbdu3cLJkyexd+9evHnzhn2n+tbn8zmIbriNtMPt823weaxuuI10w23E4XDhAIfDyQAKhYJ1auPHj2eLTpUrV2YTOH2byGU3OU08oLqTwsXFhdUj4V+rVq2wefNm5hgHMiYekBuCrfz8/EBEmDZtmto17969w7Rp0zBixAhMnDhRbxeWMkJCQgIqV67MIg2osmbNmm8SDwg5sitWrKgmWtFXPn78iK1bt7IdUDVq1MjUIsDcuXNBRKhUqZIschwK/da7d++wc+dOdO/eHUWLFsW1a9fUrhUU5f7+/gDSnC+aFls+f/4MpVKJCRMmoGfPnnjz5k3WFCaLEGw2evRoEBH+97//ZfoZL168wPbt2zVOlvXxO8tMPfL19QURYcaMGQDS/+6WLFnCFs2/fPkiu4WDn12POByOOp8+fcKQIUNARFixYgU7Pn36dBCl5T3etm0bfv/9dxClpQPbtWuX5BkKhQKXLl1iu3vl0jZx8UAamnbRW1tbY8aMGXj37h27TrDXjRs3mGO8QoUKiI+PB6DdMX779m107twZ0dHRGv/fwFfn168It9G3IR7fffr0CR8+fMCzZ8+QlJQkuU6hUKQrHlAqlVpFB/oEn4PohttIO9w+mYfPY3XDbaQbbiMO5ytcOMDhcLQi7tTu3r2Lpk2bwsTEhDmm2rRpI4tQlpnlR3T2quKB1atXy8JZp42NGzey8Knjx4/HnDlzMGnSJDg7O4OIULhwYcydO1cywBKLBxo2bMjCE8udoUOHgoiwdetWdiw6OhorVqxA0aJFJaILJycnXL16NRvf9ucRHx+P1atXY968eexYamqq2s6czIoH4uPjMXz4cNmE5BP49OkTgoODWRtds2ZNneIBwZZhYWEwMzODt7c3W/jUV4QyPX36FM2bN4eJiQmMjIxgbm6OwYMHqy3IhoSEMLHF7t27Ua5cOY2LLQCQlJSEggULonTp0nj//n3WFSoL2bFjBwwNDdGyZUt2LKP93vbt2+Ht7Y3Tp0//rNfLMjJbjxYtWsT6MiFvodhuws/nzp0DEcHLy4st4skRXo84nKzjxYsXKF26NH7//Xd2bOnSpTA3N4eVlRXLqb5v3z54enrC0NAQtWrVQkhIiMbnyU2kq0k8UKJEiRwjHhA7xAUBd9myZUFEsLe3x/Tp0/H8+XN2vTjioBA6v0WLFkhISACg3TEunFMdd/7qQhRuo29D3K8fOHAAvXr1QvHixeHi4oL69etjwoQJSExMlETLS088oI/lV4XPQXTDbaQdbp/vg88/dMNtpBtuIw6HCwc4HE4GWbt2LYoUKYKAgABERUXh6dOn8PT0BBGhdevWGtWqclsIDwoKwoEDB37oQppYPODi4oKNGzf+sGf/aoSFhSFPnjwwMzPD9u3bJecuX76Mrl27wtLSEu7u7li5cqXEzpGRkahSpQqICB06dJBd3dLEggULQERo3rw5rly5gv3796Nu3bowNjaGu7s7fv/9dyxfvhytW7dmuSLluvCpGq5a4HvFAwJyCMkn5lvEAwBw/PhxEBHq1KmDjx8/6u13JtSL6OhoFCpUiC1KHj9+HG/evElXoFWnTh0QEXLnzg0iwl9//cXOib8tIaXDrFmzZOdYEbhy5QpLe7Fu3Tp2XFudEGwxZswYEJEkTLY+8i31KCUlBTVq1AARoUuXLkzoJjxL+A7v3r0LY2NjtG7dOmsKk03wesThZC3bt2/HpUuXAKTtai5XrhzMzc1x/PhxyXWjRo0CEcHQ0BBVq1aVpMSSMzlVPKBpF/2UKVOgVCrRt29fEBHs7Owwc+ZMjY7xGzduoHjx4hlyjOsr3Ebfhrg/X7duHUuJ4uzsDFNTUzYGaNSoEY4ePcq+M1XxQOPGjREZGan2TH2Dz0F0w22kHW6f74fPP3TDbaQbbiMOhwsHOBxOBti1axeICMbGxhLH9vXr19MVD4gHocLEWZ8JDQ1lYT2PHTv2QwfZ4eHh8PLygrOzM168ePHDnvurERgYCCLCuHHj2DGxHR88eICBAwfC0NAQNWvWZDvBhWsiIiLQrFkzREVFZe2LZwFiB7jg2P348SPatGmjltKhR48eOHfuHLv+4sWLcHBwgIeHBxITE7P83bObHyUekBuZEQ8Iv//7778gIowePTrL3/dHIfydX7x4wXZ/+fj4aLxGQGhj9uzZw6J5VKpUSWN+eiFkXd26dWUX3lGVSZMmgYhQqFAhHDlyhB3X9C0JNkxMTETx4sVRsmRJvd7F8i31SKgvW7duRcGCBWFubo7//e9/ePbsmdrzhVQpU6dO1RqaVw7k5HrE4WQVmtqQVatWgYgwatQodo3wje3fvx9WVlZo164diAhNmzaVpeNcU8QXwVY5TTwQHR0NBwcHEBEmTpzIxn5fvnxBr169MuUYb9mypSwd49xG346wXuTk5IRVq1YhLi4OFy9exJYtW1j0hvLly2Pv3r3MrkqlUiIeqFSpkl5HguNzEN1wG2mH2+fHwecfuuE20g23ESenw4UDHA5HDfEgU6lUomXLlrC2tpbsEhc6xZs3b6YrHlAoFBg7dix8fHz0Pp3BjRs30LZtWxgZGaFmzZo4evToD10EuHnzJtuZKLfFBaE+CY6S2bNnS46LuX79Ogut9vfff6udTy+soz6iOtgUypScnMzOv337FuPHj0ft2rXRp08frF+/Xu05Dx48gLW1NRo2bPjzX/oXhYsHNJMR8YDwTSUnJ8Pb2xvu7u4ICwsDoL/2+vjxI/744w8QEfr27cuO62o33r9/j/nz5yN//vwwNTVF06ZNcfLkSYSHh+P8+fNo2bIlmzgKzmB9dPjqcowIf/crV66wxdx69erh5MmT7BpNYifgazs/evRo1pbpK99Tj+bNmwc3Nze2UH7gwAGEhYXh2bNn6NevH4gIJUuW1OuxEa9HHE7Wo61fFn9DqampGDJkCIgIy5YtY8eFMcDBgwdBRNiwYQNGjhyJx48f/7yXzmLENkpOTsb79+/x6dMnlmtdoVDkuMgDKSkpGDBgAIyNjSUCbnFEr5zuGOc2+jaUSiXi4uJQv379dHdX3rp1C/Xq1QMRoVatWnj06JHk/vDwcJQuXRr29vZ6PS4C+BwkI3AbaYfbRzt8/qEbbiPdcBtxOBmDCwc4HE66nDt3DjExMShVqpRkB6rqjg2xeKBVq1aIiopCQkICJk6cCCKCg4MD3r17lx1F+KHcuXMHHTp0YA64Hy0eAPRz8J5RZs2aBSLC+PHjAaS/gLJp0yaWoy05OVmWNhEvah45cgSDBw+Gt7c3qlWrhk6dOuHEiROS61UHtsIAVKFQoEePHiAizJw5U+3ZOQlt4gGxOjinoU08INQrpVKJnj17gogwbNgwtriurzx8+BBFixZFqVKl2IJvRtvquLg4rFmzhgmYVP/VqlWL5a7Xx0Xg5cuX499//82w+j0wMBCenp4wMDBA5cqV082FDQA+Pj4gInh7e+PVq1cA9Ls9+t56tHr1apQvXx5EBCMjIxgZGcHKygpEhOLFi+PJkyeZeuavBK9HHE7WI/4OLl++jB07dmDt2rU4e/YsOy4eC/3111/M8fD69WvJs9q2bQtnZ2ckJCSo5VzXZ8Q22r9/Pzp27Ig8efKgUKFCaNSokcZcszlFPHDjxg0EBQWx34W/t/jvnlnHeM2aNfV+zCiG2+jbePbsGRwcHFCyZEl2TLCZ0CZFRESgWLFiICL07t1bcr9SqcStW7dYn6/Pc38+B9ENt5F2uH3Sh88/dMNtpBtuIw4n43DhAIfD0ciWLVtARGjbti3s7e3ZTmfViZxYPFCqVCm2IO7l5QUiQsGCBREdHQ1AHh3m7du3mXigRo0aP0U8oM9oC9nk7+/PQhjevn1b7Xrh5/DwcBgbGyNfvnz48OGDLOqNmPRyQdrb28PJyYlN7KZNm8ZyPareJyAMTCtXrqy2KJwT0SQeMDU1RenSpXHq1KlsfLPsRZN4QMiPmJycjLFjx7J6JIcJzsKFC0FE6NevH5RKZYYjlAhlTklJQWxsLCZNmoSuXbuiXr16GDBgALZs2YK3b98C0M/FlgULFrC+S1P4fDHiv/+KFStQtmxZ1jb99ddfOHr0KN6/f4/IyEgcP34cDRo0ABGhcOHCeu0QF/O99Sg5ORlPnz7FoEGDUKdOHTg5OaFx48YYN26cXkcY4vWIw8leAgMDYW1tzcaPNjY26Nq1qyR3OJC2S8rDwwOOjo6YP38+7ty5g/j4eAwaNAhEhDZt2qSbK1kfUR1fC21NiRIlUKVKFRARDAwMsHTpUsTHx0vuFYsHSpYsiZCQEFmKBwRU5/OZdYzfvHkTTk5OMDQ01Psd4unBbZRxbt26BRMTE5QrV07jecEm586dg7m5Oezt7REeHi45J6DPogGAz0EyAreRdrh9NMPnH7rhNtINtxGHkzm4cIDD4aihVCqxa9cu5M6dGyYmJjAwMMDixYsBfA1xKUaY4N29excdOnRA7ty5YWNjg4YNGzJFq76Hlhd3+I8fP0bHjh1hamqKWrVq4ciRI3xAAOnA6s6dO9i4cSPu3bsnuaZFixYgIrRo0YLlMBRPcgDg0aNHMDc3R7NmzbLozbOHHTt2sEWn1atXIzY2Fu/evcPy5cvh7OzMdomp5p979eoVrl27hmbNmoGIULRoUfad6ftiC/C1PgipUjKL2Abr1q1D7ty54e7uzhzicuBbbKQqHqhTpw4+f/7MdiQWKFBAr3cgiPn7779BRFi4cOEPeZ6q80Afv7Pg4GD2d963b1+G7hGXc9euXejatSubLBsaGiJPnjywsLBgxxo2bMgm4Ppeh4AfW49SUlLw4sULAOppQvQJXo84nOxl+/bt7Fvp2LEjmjVrxnKy16tXj/XjQFq44xkzZjDnpZWVFfLly6cWqlifhYKa2Lp1KxPkrlixgh1v06YNa3fmzJmjttNMEA9YWFggT5482L9/f1a/eraSWcf43bt3Wb+mj+Oib4HbSB2lUok7d+7AyMgIRKQWNU9AoVAgPj4eNWrUABHh0KFDWfymWQOfg+iG20g73D7q8PmHbriNdMNtxOFkHi4c4HA4GklJScH+/ftRtGhREBFKly7NcvRpGmwKx+Li4nD37l2EhYWx3Rz63mGKy3vjxg1cvHgRgwYNQsmSJUFEaNy4cY4XD4gXHbdv385SVzRt2hRv375l5/ft24cSJUrA2NgYXbt2RUREhNqzhPzPvr6+UCgUejm5EUhvMfbJkyeoXLkyiAiBgYGSc1evXkWhQoVARJg0aZLkXEJCAqZPnw4DAwMQEZo1a8YWqvSt/omd38J/xWXQFB40o4jrTFBQkN4u2v1oGwniASH3euHChUFEyJs3L8tvrG/1SBNCBAXh+8mMcO369eu4f/8+gK+2UP076CMDBgwAEWHr1q0A1FMOpfd3F5c5ISEB69evR+vWrVGsWDG4urqiQIEC6NatGzZt2oS4uDitz9I3vqceXbt2jdUjwcbCf3k9yln1iMP5HsTfVkpKCpo3bw57e3sEBwez8xEREWzcLQ5DDACJiYlYsWIFmjZtCiKCh4cHmjVrJttFzevXr6NYsWKwtLSU5FqfO3cuiAhWVlawsLCAoaEh5s2bp5ZK7/nz5+jatSvy58/Pxo45icw6xlXvyQlwG2lGmL/37t2bRZsUI9ijY8eOICJs3rw5i98wa+BzEN1wG2mH20cdPv/QDbeRbriNOJzMw4UDHA4nXVJSUrBv3z6Wj65Hjx5MDJBRB5w+D1AB6fuvX78eefLkARHB3d0djo6OTFnYoEEDnrYA0tCg06ZNQ0REhKSuJCUlYfny5UyQUrRoUWzZsgVnzpxBVFQUfv/9dxARvLy89HqHuOCEBTR/A9euXYONjQ26desmOX7mzBl4e3sz4YQqKSkpOHHiBHx8fLBs2TK24Kmv9S4+Ph7r16/HjRs3AHy11cKFC1G8ePHvChOrLcSoPvGjbSSIB4Rdh/nz55eNaECwzbx581hKBmGxJaN90ZIlS5A7d2626CIHPn36pFGotHTpUjRq1AjJycmZet7Hjx8RHx+Ply9fqjlW9E2cowlejzTD6xGHk33cvXsXAODi4oKxY8ey40K0rsePH7Pvs1atWixEKpDWtysUCly5cgUxMTFMCK7vfb4qCoUC06dPBxHhv//+Y8f/+ecfEBGsra1x584drFixgu0Umz9/vpp44OXLl3q78Psj2s70HOOzZs2SiFL0FW6jzKNt7COMj0JCQpA/f37Y2Nhg9uzZEhGF0E59+fIFFSpUgLOzM27evPlzXzqL4WNH3XAbaYfbRzN8/qEbbiPdcBtxON8GFw5wODmY9Aag4o5OEA8IO1MHDBigNfKAXNm2bRuICM7Ozli5ciU+f/6MO3fuICgoCPnz52cLdTlZPHDo0CGYmJggV65c2LJli+ScOKR6YmIiNm/ejDp16jCRARHB1NSU5SLV55xQs2bNQp48eXDw4EF2TPVb8/f3BxFh4sSJ7Nj58+dRpkwZEBEmTJgguf7BgwdsgUWhUCAlJUVtF6s+cujQITg4OCB37ty4ePEiALAFXSMjo3TDXeYkfoaNPn36hPXr18Pb25vtCtLHby09IiMj4erqCnNzc/j7+2dosSU1NRVKpRJDhw7VGAlEH7lx4wbLX718+XIYGhqiXr16uHv3LtauXQsiktQrXaiq8sU/67tIUBO8HqXB6xGHk70sXrwYRISRI0eiRo0aOHLkCAD1tCfiaFZi8YCm70sO35qm8e/IkSNRrVo19vvatWthY2MDKysrSRvVv39/rWkLAP2z0dKlSxEQEIDPnz9/97M0OcaJCH5+fno97+A2yjzisjx48ACXLl2Cv78/duzYgbi4OOZsSUlJwcSJE2FsbAx7e3uMGDECYWFhkmf5+PiAiNC6dWu2niQ3+NhRN9xG2uH2SYPPP3TDbaQbbiMO5/vgwgEOJ4ci7uieP3+Oq1evYs+ePXjw4IHaZPfLly/Yt28fChYsCCJC//79c4x4QKlU4tWrV6hatWq6g/CLFy+iZcuWICLUrVs3x6UtUCgU+PjxI3r27AkikuQTVa0fwmDqy5cvePv2LSZNmoSmTZsif/78aNmyJSZPnswiDeijDRMSElgIxlKlSuHw4cPsnHggKeRf7dWrF4C0OqRJNCDsJp87dy7s7e0RGRmZNQXJIhITE9G+fXsQEYoUKYIJEyaAiODm5oaQkJDsfr1fgp9lo8+fP7NJVGZCIP7qKJVKxMfHs+glzZs3Z9Ea0kNoaxISElCsWDF4e3trdCLoEzNnzkSBAgUQFBQEpVKJu3fvolOnTjAwMECpUqVY5JzQ0NDsftVfEl6P0uD1iMPJflavXi0R2i5YsACA5lDoquIBOex+Fsop7FoGINkZJt5ZmZycjFu3bkGpVCI2NhaNGzeGubk59uzZAwDMYXzmzBk4ODiAiGBmZoY///yTRdXTR06ePAkigr29PbZu3frDHeNt2rSBtbW1XtcnbqPMI25jgoODUapUKdjY2LC2qHjx4pg+fTpu3boFIO37GjVqFBwcHGBkZAQnJycMHz4co0aNQt26dUFEKFiwIEuVIjcnCx876obbSDvcPmnw+YduuI10w23E4Xw/XDjA4eRAxJO0bdu2oXz58jA0NGSLJwMHDsSpU6ck9wjiASH3ulg8oI8O3szw4sULuLq6olixYuyYoOoVCA8PR9myZUFEaNy4sUQ8ILdJsSbevn2LggULwt3dHYmJiQC0i0rENlEoFCwkqK78UvrA48eP2U4mLy8vjeKBx48fI0+ePChTpgzWrFnDRAPjx49n1woLWikpKfD29oanpydiY2OztjBZQHx8PMs3Jih+xbvo5S5OygjcRpnn2LFjsLe3BxHh999/l4huxO2POARkjx49QEQYN26cxEGhbyxbtoxNhM+dO8eOR0VFoWzZsjAwMIC5uTlmzpzJzslJPPIj4fWI1yMO51dAiFQl5BAXEPf/msQDpUqVUguhqo8kJCRgxowZ+PfffyXHlyxZIslXK2b//v0gIrRo0UItBO39+/dhZ2eHevXqwdjYGO7u7notHPjy5QtGjBgBIyMj5M6dG1u2bPnhjvG3b9+qHdMnuI2+HXH707p1a/z2228slaWZmRkaN26M8+fPA0gT7yxbtgzNmjWTCJ6srKxQr149JqyQm43E5OSxY0bhNtJOTrYPn3/ohttIN9xGHM6PgQsHOJwchnigKYTmISL06NED48aNQ/PmzWFoaIiKFSti586dkntVxQMDBw7U60WWjHLv3j1YWFjA1dVVkjNUlSNHjjB71q9fH8eOHZP1pFhMREQErK2tUbx48QwNuIRrFAoFlEql3od3Un3vJ0+eMKW4qnjgy5cvSEpKYo7gXLlyqUUaEBayFAoFevfuDSLCpEmT9HoSqA0hDK/gFL9z5w4APngXw22UeYKCgpjNunbtKmmTVdvmESNGgIhQrlw5vRboXLx4EQ4ODrC0tMSBAwcAfG2fNm3axBZvDQwM0KZNG5w5c4bdq6/t78+G1yNejzic7EIsDFi3bh1ri2bNmqXxGqFNevr0KYoWLQoDAwMWyUufefz4MUubJ4yXhXmsnZ2dxghMgrOzR48eANLaJmHMFB0dzZzHwcHBbH6nj+2XuD8aPXo0Gyf+DMe4vgpVuY2+nVOnTsHS0hK2trYIDg5mx5OSkvDvv//C29sbRITatWuz1AQKhQIfPnxAUFAQ/Pz8MH36dBw7dgzv3r0DIG/RgEBOHDtmFm4j7eRE+/D5h264jXTDbcTh/Di4cIDDyaGEhobCzMwMzs7OCAgIYMcnTpzIcj4WLlxYbSFGEA94eHiAiDB27NisfvUsRalUIiYmBl5eXiAilrc+vTyhTZs2hYmJCSwsLFC8eHHJIESuKJVK3Lt3D7a2tjA2NtYaTk2hUCAlJQXz589njk99x9/fH2vXrlVz4GoTDwDA6dOnmQindOnSePPmjdqzR44cCSJCzZo18fr1659ajuxAqVTixYsXqFWrFvLnz4+aNWuCiJA/f362cyWnD965jTKP2B6BgYFs0cXb2xs+Pj549uwZ3r59i5iYGJw9exZNmjQBEaFQoULMeaCvi5pHjx6FmZkZ+vfvLzl++PBhLFq0CKVLl8bff/+Ndu3agYjQrFkzSYQhXpe+wusRr0ccTlah7ZsRi0bXr1+vlrIA0CweeP78OWJiYtTO6yshISGs7E2bNmVpm1SF7gKHDx+GhYUFSpQowewgIIzPxbvQ9LW9BqQR24S5Q+7cuREUFPRDHONygNtIM6ptj2r+5smTJ4OIMH/+fHaN0CYlJydj//79LKXjH3/8oXE+K0YObZE2cvLYMaNwG2knJ9uHzz90w22kG24jDufHwYUDHE4OJDo6GlWrVoWhoSH8/f3Z8ZkzZ4KIYG1tzfK0Fy5cWGPkgZ07d6Jq1ap49OhRFr999uDj48McvLdv31Y7L0yCO3bsiBIlSqBVq1bIkyePLHb5ZBShzowcOZKFahQjTGA+fPiAPHnyoEuXLmqhQ/WN48ePg4jg4eGBzZs3qy2G6BIP7Ny5E87OziAiNGrUCH/99RdOnz6N4OBgNG7cmOWCFMI6ynWx5cKFC7h48SIAoHv37swxLhxTTW0hkJMG9dxGmUNsg5CQEJQtWxYWFhZsodjFxQXOzs4sTU/9+vVZzlV9XWwBvjpWChQogPDwcADAihUr2IKusKB07tw5tGzZEkRp+TP5ZFkzvB7xesTh/GzE7UxERAROnz6NRYsWITAwEE+ePFFzamZEPJDez/qKUIZLly6BiGBsbAwbGxscPXoUACTRywQSExPRoEEDEBEqVaqEHTt24NSpU+jVqxeICLVq1WI7oPUdpVIp6XPGjRsHW1tb5M6dG8HBwfj06VM2vt2vAbeRlIy0CwqFAvXq1QMR4cKFCwC+jm2EPj4lJQVr166Fs7Mz8ubNy8YMcmh3vpWcOnbMDNxG2smp9uHzD91wG+mG24jD+XFw4QCHkwMJDQ0FEWHKlCns2Lx582BoaAhra2uEh4fjw4cPaNOmDYgInp6e2L59u+QZX758YRNsfQ+VnZFdPtHR0Wynb7du3XDv3j0AaYN6YXCuUChQunRp9O/fH8+fP2c7xOUwcdZmI+FccHAwWzRYt24d3r9/z86L60inTp3YYqe+2yYyMhJDhgyBtbU1fH19NV6jSzxw6NAh1K1bF5aWlmwxlIhgZGSERo0ayWISKJCRAfj79+/RrVs3jY5xcT0SfpaDXcRwG/04xLa8ffs21q9fj8qVK6NgwYIgIjg4OKB9+/ZYs2YN4uLiAMjDVl26dAERoXv37mynmKurK7Zs2SK57uzZs3yynAF4PeL1iMP5WYi/kS1btsDT0xNWVlZMGODm5obx48fj6tWrkvvSEw/Ioe3RhGCnAwcOsHITEaZOncqu0RQu/u3btyhbtiwbVwtj7CJFishGlCuuQ2fPnkVQUBCGDx/O+ihXV1ds3bo1xznGxXAbSRHq/KtXrzB//ny0bt0aDRo0QIcOHXDjxg2JWKlRo0YgIgQGBgKQfmeCXZOSktC8eXMQEQYNGiQ5l1PJqWPHzMBtpJ2cah8+/9ANt5FuuI04nB8DFw5w9AptE3veqKujafcFAGzduhV9+/Zlju2tW7fCxcUFlpaWEjV5cHAwTE1NYWxsDE9PT435I/Udcb05efIk5s2bhz///BPLli2TDLyTk5MRGBgIDw8PGBgYoE6dOrh8+bLkOULYwxkzZrDj+r4YBUjLcPPmTYSGhmLOnDnw8/PD/fv32UQlLi4Of/zxB1N3zp49G1FRUeze1NRUDBs2DESEGjVq6AxlqC9ER0dj06ZN7PfIyMhMpy2Ijo7GgQMH0LNnT/Tq1Qs+Pj7Ys2cPE1/IYRIorkf37t3DjRs3cO7cOVZG4KtQJz4+XqNjXGDo0KHw9vaW3QIft9GPR3VskJqaio8fP+LJkydq6T/k0l5fuHCBRSwhIjg7O0vaHHF7wifLGYPXI16POJyfiVgI0LlzZ/Tq1QuVKlWCgYEBjI2NUb16dba7XtM9CxcuzKY3zzo+f/6Mf/75BzVr1sSECRNY2cePH8+uEbdLwlg8Li4Ow4cPR926dVGtWjUMGDAAz58/V7te31m3bh3s7e1BRKhcuTLc3NyQN29eEBHy5s2L4ODgHB2SH+A2Ar6OUR49eoRKlSqx70jYuVy4cGGsXr2ajW2GDh0KIsLAgQPVniH+efPmzTAwMECPHj2ysDS/Njlt7PgtcBtpJ6fZh88/dMNtpBtuIw7nx8GFAxy9QHUQdOzYMezduxfr16/HzZs3ZRNm8Efw8eNHibNW6Oj27t2Lffv2sePR0dHs3O+//w4TExPm/BQ7PUuVKsUmktbW1jh48GBWFCPLWb9+PQwMDCS7WOrWrYujR48iKSkJQFrIy9WrV6NcuXIgIlhaWqJr1674448/UKtWLRadQTWPpj4jHiht3LgRrq6uEhu5urqie/fuuHv3LgAgJiYGffr0gYWFBczMzFCkSBGMHTsW/fv3R8WKFdmChL7u8tH1vitXrkT+/PkREBCgthipSzzwrf9PfUBcjzZt2oQCBQrAzs4ORITGjRtj8eLF7LzQ/ogd425ubjh79ixSU1MxZswYtsD18uXLLC/Lz4LbKGNoWqzM6IRO9VsSfpfDN6aKj48P69OqVq2Kx48fA9Bss5w4Web1KGPwesTh/HzOnj0La+v/Y+++46Oo1j+Oz0kPHaQKCKKIUgSuV+wNW+wFFa+IqNgVBQEVsSB6r4iKFawoqCAgiogiFjRiQTqoKKBUKdIFAoSQ5Pv7I78dd7ObnQRmd7KTz/v14mXY3azPPJzZPWfOM+dUVdWqVfXee+/ZjxcWFuq1117TCSecIGOMjjrqKH3//fchvxtcPPDqq6/GO/S427Ztm37//XdJ0qeffmofe79+/ezXBPrfxVcgyM/PV15eXsTnE93EiRPtC+OBO8NXr16thQsX2vtf16tXT2PHjvX9xHhJyNE/391Lly61x/QXXHCB3nzzTQ0bNsxenaNJkyb2apNffvmlfZ49//zz9nsVP4/GjBkjY4yuv/76OB9V/NB3dEaOoiM/pcP4wxk5ckaOgP1H4QDKvcCH+tatW/Xyyy+HVI0FBnjt27fXN998o5ycHI+j9daePXs0bNgwXXbZZRozZoz9+EsvvWTfwVJ8UnvZsmVKTk6291EPfCkGBsynnHKKrrzySt10002qXbu2fYeGn3z88cd2h+KOO+5Q//791aJFC3uCd8yYMdqxY4ekosKM7777TldddZWMMfbvpaam6phjjrH3S/LTxShJeuedd+xz7t5779Ubb7yh/v3767jjjpMxRm3atNHMmTMlFd3Z8/TTT9tbOwRyVLduXV1yySUJe5dP4LNo5cqV+uCDD+yCEqmoM7l9+3bdfPPNMsaoXbt2GjVqVJmKB/Lz80M6pX7soI4ePdpuR8cdd5waNGigtLQ0GWPUu3dv+3WBifEdO3bommuusX+nWbNm9ooWxTv+fkGOwgWfCzt37tTOnTu1bds2e/UFhJo1a5aMMapevbratGkjY4w6deqk+fPnh7wu0mA5KSlJF154YdidrX5AOyob2hHgjj179kR8PPDd/L///U/GGD3xxBP2c4HPpcLCQmVnZ+vMM8+UMUZdu3bVX3/9FfK9/sorr6hSpUohheOJLlofOLhv/cknn0QsHgie+C2+zYOfFBQUKDc3177Y/cYbb4S9Ji8vT3fccUeFXJJfIkcBgfNm2bJlatCggT2mD7Z9+3a7UOmII46wb87573//K2OM6tSpU2KBUqdOnWSM0WuvvSbJP+NY+o7OyFF05KdsGH84I0fOyBHgDgoHUK4FLoqsXr1aF110kYwxqlWrltq0aaOrrrpKRx55pJo0aSJjjKpVq6aHH35YS5Ys8Thq72zdulUPP/ywfVdKdna2XnnlFbvAYuLEiWG/s2zZMqWlpalp06b2nanBF1sOPPBAde3aVZs2bfLN3lnFJ9Fuu+02VapUKeQun3Xr1ql79+5KT09X8+bNQ4oHAj777DONHj1agwcP1uTJk7V582ZJiZ+f4mbOnKnatWsrLS1N48aNC3lu7Nixqlq1qowJ32N1x44deueddzR8+HA9//zzmjNnjrZv324/n0gCHcqlS5eqevXqMsbo3XffDbuotHTpUt19993KzMxU69aty1w84JeLLAGB4ykoKNDatWvVtm1b1alTR6NGjZIk/frrrxo6dKjdhu688077d4NXPrn33ntVv359HXrooTr//PO1evVqSYnXjiIhR9EFnxMfffSROnXqpNatW6t58+a64oor9Prrr3sYXfm0du1aPfroo3rvvfc0Z84cnXrqqTLG6NJLL9XPP/8c8trig+VLLrlExhhdc801JU52JSLaUdnRjoD998wzz+jRRx/Vtm3bwp4LnDfnnHOOjDH68ssvJf3zvR14vrCwUGPHjlWTJk1Us2ZN+y6o4O/3QDFr8a2yyrvgMVngeIIf+/333zV9+nQNHTpUH330kZYvXx72HiUVD0hSnz59ZIwJGeP5zfbt29W4cWNVr15da9eulfRPDgM5zcvL0+WXXx6yJL/fJsajIUdF/vjjDx100EERV+kIfHasXr3afk3g2tGyZct0yy232OdZ//797e0Kt23bZhddHH300b7ZilCi71ga5Cg68lN2jD+ckSNn5AhwB4UDKLcCg7nly5erZcuWMsYoKytLCxYssAckmzZt0rx583TppZfKGKPMzEzdfPPN+uWXX7wM3VM///yzbrrpJqWnp9tFFQ0bNgzZpqD45ORpp50mY4r2iNywYYP9eGA/+pdffrnE3y3PnO6y/fbbb7V48WK1aNFC3bt3tx8PdA7Wr1+vu+66K6R4wGlVi0S/szdY4N/65ZdfljFGgwYNCnl++vTp9pKG/fv3L/P7JpqcnBzVq1fPvmhywAEHaNSoUWEXlZYtW6aePXuWunjgyCOP1CeffBLPQ4m7zZs3a9OmTUpNTQ0pMJGK2sMnn3yiatWqhU2MB3fUFy1apNWrVyds8YkTchTdiBEj7HMvsIVD4M8NN9ygefPmJexnSywEr4gyderUUg+Wv/76a1177bX2ahV+QzsqG9oRsO/mzZtnf74MGTKkxEnIwGRlYLwVPPkfOK/y8/PtrYm6dOliPxdcXJBoAmOm4NXwgo993Lhxat26td33Cdzx/NRTT4V9/gQXD9x1112aO3eubr31VvtusxUrVsTnoDywZ88eHXHEEapVq5b++OMPSZELMnbs2GHfdVe/fn2NGzfOt0vyF1fRc1RYWKjdu3fb49gjjzxSCxcuDHvd3r17tX37djsHI0eOtJ9bvHix7r33Xvs8a9SokZo3b66mTZvKGKPmzZvbKy/66XqIRN+xNMhRdOSnbBh/OCNHzsgRsP8oHEC5FBhsBC+l1qNHj4ivCejbt68yMjKUkZGh3r172wMXv4rWsdy+fbtOOeUUJScnKy0tLWQZuuALMoEcjhs3Tk2aNFGNGjV03nnn6ZlnntG5555rDyyDiwkSReDY1q9frwULFoQ9/95778kYo2uvvVbHHXecXnjhBUn/TMIF8hupeCDQAUn0zn1p4i8sLNQVV1whY4xmzZplPz59+nS1bds24t09mzdvticuEz1HwQoLC9W9e3d7hQ5jjGrXrq3Ro0fvc/HAjTfeKGOMTj31VF9cmIrkpZde0oEHHqh7771Xhx12mL2ySfG74iZPnhxxYjxSXvzUriRy5OSHH35Q9erV7SVS165dq6lTp2rIkCH2VijnnXeefvzxR69Djavi/8Z5eXkR20JBQYG+/vrrUg+WA9+Dfio8kWhHJaEdAbHz7LPPqnbt2hH3/Q6cG/369ZMxRp07d7afi7QP8qRJk5SSkqKLLrootkHHQfBY3xijM888M+T5kSNH2pMql19+uTp16mRvj5aRkaGLLrpI33zzTcjvfPrpp8rMzJQx/2yT1rx5c/vCrx8/iwoKCpSTk2Pn5uGHH7afC/48DmyH1qVLF6WmpqpWrVoyxuijjz7yIOr4Ikf/mDhxopKTk2WM0RVXXBFyjSR4zNGmTRs1bNgw7Gac3NxcjR8/XkcffbR9g0rbtm11ww032Cs5+O08o+/ojBxFR34iY/zhjBw5I0dAbFE4gHIneKWBQNHA/fffbz9f/IM7+O8PPvigjDGqWrWqvX+d3yqepX+OaefOnfrxxx/DKsanTJli32GRmpqqY445Rh988EHY0pcB27dv14svvqjWrVuHVL+2bNkyISvHA7EuXbpUBx98sC644AJ7MBswadIkNWnSRCkpKXYBQXElFQ+MGzfOceWB8s6pDQUUFhbqsssukzFG8+bNkyR99913EYsG8vLytGPHDj3yyCN66aWXfLmsU6Ba/Mwzz7T3yqxbt27U4oGMjIwSiweWL1+u3r17+/ZOqJ07d6pr164yxqhJkyaqWrWqXYAS6TOlpIlxP3fYyVG44t9RY8aMkTFG77zzTthrP/30U/u768orr7T3Y02k76x9EXx8X3/9tQYMGKDjjz9ep5xyivr27asJEyaE5LGsg2U/oB05ox0BsRH8nRzYgkCS5s+fr7///jvktfPnz1dGRoaMMRowYEDYewT+G7irPrDiQKIKLho48MADZYzRHXfcYT//7bffqnLlyqpZs6a9RVpgdYWnnnpKrVq1kjFGZ599tmbOnBny3t9//726du2qCy64QLfeeqtdiOmXPlLxz9fA38ePHy9jjA4++GBNmDDBfj6Q68Ck8MCBA3X44Yera9euql+/vr2tlZ+Qo8gCefj888/taz2XXnqpFi5cGLb1WWCsu3HjxojvtWHDBq1bt07Tp0/Xli1b7EkaP5xn9B2dkaPoyI8zxh/OyJEzcgTEHoUDKJeWLl2qmjVryhgTcrd8SYOR4MdvuOEGeynDpUuXxjzWeAte1rFnz5464IADdOCBB4bcDZ6fn69OnTrpqaeeUo8ePZSamqqjjjpK77//vv2a4ktb7tq1S0uWLNEDDzyg++67T88884y90kAiDQIjXYwKvrMg2Keffqo2bdooOTlZ7du31+zZs8NeU7x4oEqVKqpVq5a9518iKk0bkv459ocffljGGI0YMUK///672rVrF1Y0EJg0X7VqlSpVqqTrrrsuTkcTf2effbaaNm2qH3/8UbfffnupigcyMzPVqlWriMUDxS9Y+c2ff/4Zsi/ms88+az8XqWMePDHu53YUjBxFNnLkSD300EO68sordfjhh9uP5+fnhwwUp06davcZHnvsMS9CjavgNjFixAhVqlQppOjPGKOaNWvquuuuC/m8Kc1g2Y9oR5HRjoDYKn7hf/jw4TLG6PHHH9e2bdsk/XMeDh06VKmpqapataoGDx4c8f06d+4sY4y9SloiXtyMtKpg8e3OAjcCBG/bFNxH/vDDD3XMMccoNTVVPXv21K5du+y7xaV/lqb1y91ixf+d9+7dGzbeWLlypa688kolJSXprLPO0pQpU+zn8vLy7J87dOig888/X5LsApZEz49EjkojeGuT4OKBSy65xL5m9sQTT9gr6v3222/275X2/f2EvqMzchQd+YmM8YczcuSMHAHxQeEAyqXXX3/d/rAP3FHpNBgJfBns2bNHJ554oj1hXFhY6JuKzcBxrFy50l5ur3379urTp4+9X1/xycclS5bopptuUlpaWsTiAaeBcCLlzuliVKR9QCdPnqyWLVvKGKNrrrkm4hYXgddv2LBB3bt3V7NmzbRmzZpYHkrMlKYNFRe4wyk5OVnNmzcPWwUkeCmoCy+8sMSK6kQXOFfGjh0rY4xuuukmSbK3G6hTp45GjRrlWDwwevRo3xYJBAs+z/7880/dcccdMsYoLS0tpPAm0mf7Z599JmOMKlWqpC1btsQlXi+Qo5ItXLhQ1apV0wEHHKBjjz1Wbdq00c6dO0O+k4LzErib46CDDtLvv//uRchxN27cOBlTtFfmM888o2+++UbvvvuuunXrpjp16sgYozPOOCNssJydna3TTjtNKSkp6tixo31x2I9oR85oR0BsFB93DB48WGlpacrIyNCTTz5pFw9I0urVq3XPPfcoNTVVxhjdfPPNmj9/vtasWaPNmzfrtttukzFG//rXv0q8C7i8cxqn5eXlqbCwUCeffLKMMfr2229Dfi/4c/u1115TlSpVlJmZqRkzZkiKPM5LdMHH/NVXX6l///46/fTTdeqpp+rRRx/V5MmT7ec//fRTHX/88TLGqF27dnrxxRdD3uvuu++WMUZ33XWXPYnsh1yRo9ILPp4vvvjCvt7WqVMn9ezZ0165c+7cuZIS6zqQm+g7OiNH0ZEfZ4w/nJEjZ+QIiC0KB1BuDR061B7M9OjRo1T7fwe+DB555BEZU7R3m18EOpkrVqzQQQcdJGOMunXrVmJegjuiixYt0s0332wXD4wfPz7s9cOHD9enn34a8fcTQaSLUdG2uAg2ZcoUHX744TLG6MYbb9Sff/4Z9ppAPjZt2mQvIZZodx+UtQ0F69Onj30+Bu/BGrz9Re/evWWM0UUXXWTnKNEUv0AS6TzYuHGjWrdurZSUFM2bN0+FhYXq1q1bqYoHqlWrpvr16+uDDz6I6XHEW2k+L1atWmWv0NC8efOQC3mRfv/rr7+2z8VE+zyKhByVzfbt2zVkyBC7WCkpKcleFSX4WAM/b968We3bt1flypXDVk/xo1WrVunII4+UMUbvvfdeyHNbtmzRhAkT7M/5Tp06he2X/c0336hdu3Y68MADE3YSqjRoR9HRjoD9F/j8CB4XBBeIrly50v556NChql69upKTk/Xkk0+GbFuwfPly/e9//1NaWprdpzzwwAPtFdQOO+ywhNxCToq8IlzPnj3t54Nzd9FFF8kYY49Xg3MZ/Ll99dVXyxij2267LeT/4RfF76YLtIvgu+oyMjJCtrf45JNPdO6559pb8R1zzDE67bTT7NXiDj300LDt+xIZOSq7kooH0tLSVLlyZc2ZM0eSf1fCKw36js7IUXTkJzrGH87IkTNyBMQehQPwXODDO9BpCv4wDy4euPPOOx0nOIsPgo4++mjt2rXLNxcSNm7caN8lfvfdd0e8UBUs+LiLFw8Ef7Hed999dqFFaSaRy5vgi1H169cvsWgg8N9NmzaF3OUjFd29GygeuOGGG6IWDxT/OZGUtQ0FHv/111915ZVXyhijpk2bavTo0fr777+1ZcsWrVu3zr5416JFC3s1hkQ77wLxrl69Wh999FHIc4E8BF7z/vvvKzk5WX369LEfdyoeWL58uW644QYdcsghvrogFfzv/Ouvv+qrr77SCy+8oFGjRmndunUhF55WrVqlm2++2b4A7jQxLiVegU4k5Ci6kj4rtm/frueee87ez/jiiy+OuCpMwFlnnSVjjL0nsp/NmDFDSUlJuuSSS+zHil/k/fLLL+3vxKefflpS6J2b06dP1/r160MeT2S0o7KjHQHuyMnJ0ZgxY/Tpp5+GLHv+2muvqUOHDvriiy/sx1544YWQ4oHgYtu9e/fq66+/VseOHXXEEUcoLS1NRx99tG677TatW7dOUuJ950cq7k5OTtYjjzwScgdmfn6+8vPzddNNN4UVKgd/tgSO/5133pExRpdffnkcjyb+xo8fb98J/sILL2jFihX68ccf9cYbbyg5OVnGGHXt2tV+/YIFC/TMM8+odu3aqlKliowp2lLttNNOs8e3idaGnJCjsou0bcHpp5+ujRs3VqiiAfqOzshRdOSn7Bh/OCNHzsgREHsUDsBTwcumP/roo9q8eXPI41LZiwekojvIjSnar0ZK3EnegEA+XnjhBRljdO6559rPlWVQu2jRIt1yyy1KT09Xs2bN1LNnT11++eUyxqhevXohd8QkikBuli5dat/BMmDAgJCLUMGv+/HHH9WsWTONGDFCe/bsCWkbpSkeSFRutKFZs2bpuuuus8/HVq1a6YgjjrA7Yu3bt7cHQ4l2sSW4HTVs2FDGGF177bV66623wj4/CgsL9fvvv6t169aqVKmSvv/+e/vxQH5KKh5YtWpVwq5YEUlwbt599101a9ZM6enpdhs56KCD9Nhjj4Us/fXnn3+WeWI8kZGj0ps8eXLInrOStG3bNj333HM65JBDlJmZqf79+9uFN8Hb7eTl5aldu3Y64IADNG/evHiHHneBJS27dOlS4mt27dqlJ598UikpKSED6uJtyG+DZNpR6dGOAHd88803OvLII9WiRQuNHTtWUtEd0IHv+e+++y7k9dGKB6Siz6ytW7dq/vz5ysnJ0Z49eyQlXt8xUtHASSedZPeBHn74YW3YsCHkdxYsWKDq1avLGKNBgwbZjweOPXBR+KOPPrLHbH61cuVK+266MWPGhDw3f/58HXroofY1kuKWLVumGTNmaMyYMfrll1/s1S0SrQ05IUf7LvA9Hrh2FpjcrIj7PdN3dEaOoiM/pcf4wxk5ckaOgNijcACe27hxow4++GAZY9SvXz97r+Z9KR4IXEh47LHH7IsRfnLFFVfIGGMvcx64oyWQq5ycHK1Zs0ZPPPGE+vbtq0GDBumrr74KeY8lS5bo3nvvVa1ateyctmvXLmEnfKWiNtSiRQsZY3TiiSfabShwkS2Qn9mzZ6tatWoyxmjo0KH275dUPHDLLbdoxYoVcTyS2NuXNvTll1/av79z5069/PLLOuGEE9SgQQPVqFFDp556qgYOHGhf+EvENiQVtaPAv31GRoaSkpJkjNHxxx+v999/X8uXLw95/VNPPWUXqgSUpngg8Do/efvtt+3Pk9tuu02DBg1St27ddPDBB6tKlSq64oorNH36dPv1q1evDpkYLz7I9iNyFN3UqVPtz/CpU6eGPLd9+3Y9//zzaty4sapVq6brr79eixYtCnlNr169ZIxRx44dw1aU8aPAykotW7bUypUrS/xMmT17tr1n9uLFi+McZfzRjsqGdgS4Y+XKlerevbvS09PVoUMH+675gw46SO+//779uuA+cvHigeBtC/xwATNS0cCDDz4oSRowYIDdJ3rkkUdCigfy8vL02GOPKSMjQ02bNtULL7xgPxf8GRUofn/55ZfDnvOLwN10t9xyS8jjP/zwg9q2bStjjPr371/q9/NDuyqOHO27krYtuPTSS/XLL794HF380Hd0Ro6iIz9lw/jDGTlyRo6A2KNwAJ5buXKlOnXqpOrVq+uAAw7QPffcs0/FA4ELMbt27VLr1q3VrFkzLVmyRJJ/LiQcc8wxMuaf/XsKCgpCLsr07NnTrrgP/hM8SS4V7fczffp03XPPPXrttdfspXkSdcJ3xYoV6tSpk2rVqqUDDjhA/fv3t/coCkyMz549W5UrV1ZSUpKefPLJsPcoXjzQunVrGWPUt29fX11A2Nc2FHzRTioaAK1fv17Lly8PueiQyLkKtKPatWurRo0a6t69u04++WR7JYvDDz9cb731lpYuXSqp6LPmyCOPVMOGDe1zSAotHjjwwAM1fPjwhNwCpLSmT5+uGjVqKD093b7LLuCpp56yO+nvvPNOyHPBE+O1atUKK3LyE3Lk7Mcff9RFF12k9PR0nX766SEFS9I/F12aNm1qn1s9e/bU/fffb9+9eOihh9orxSTyZ1Fp/Pnnn2rTpo0qVapkL2lZ/JgLCgpUWFiof/3rXzLGaOHChV6EGle0o7KhHQH7ZsmSJWF9u0BxduA7vVatWnahrhR5W77ixQN+mzBYvny56tatK2OKtpELHmvef//9JRYPLFq0SDfccIPS09NVqVIl3XrrrVqxYoU2bNigHTt26I477pAxRv/+97+1adMmLw7NdZE+e9944w0ZYzR48GD78enTp9sT4v369Qv5nTVr1uiHH36IS7xeIEfui1Y8UFG+7+k7OiNH0ZGfsmH84YwcOSNHQOxROIByYdmyZbruuutUqVKlfSoeCN7HJrDXep8+fbRr1674HkiMFBYWau/evcrKypIxRtdff7393J49e5SdnW0vw2eMUe3atXXCCSeoffv29mNvvPFG1P9HondOI7WhQPHAjBkz7KKB4IsKxQslgnPw0Ucf6ZRTTvHNigNutKHhw4eHvF/x9/eDpUuX6rrrrlNKSoqOOeYYDRkyRJ999pn69Olj56Ft27Z66KGH9Pfff+vOO++0L0oF9maVivJxww03yBijI488Ujt37vT4yNwXOF8ef/xxGfPPnmEBs2bNsi/a3XvvvfbjwW1l9erV+s9//qMDDjjAXrbPT8hR2cyePVuXX365kpKSSrzo8txzz+mII46QMUbp6elq1KiROnbsqDvuuENr1qyRlLhFcMFK85ka+FyqXr265s6dG/J7gRV3du/eraZNm+qII47Q9u3bYxdwOUI7+gftCHDfU089pbS0NI0dO9Y+RwL69esnY4xSUlJ08MEH65NPPrGfCz4fIxUPpKSk6Omnnw7btiBRFRQU6MYbb1RycnLI5G1wwUXx4oHgQtyff/5Zffr0sVeLa9SokRo3bqxGjRrJGKPmzZvbK+Yl+jg2uG0EL1P91ltv2bmRpGnTpkWcEA/k9Omnn1ZWVpYv76gjR872dTxeUvFAx44dfZmnSOg7OiNH0ZGffzD+cEaOnJEjwHsUDqDc2NfigZycHElFXw59+/aVMUbHHnusfdeCXyY0paJ9swLHfsUVV6hPnz66+uqrlZmZKWOK9pjv37+/Pdm9evVq9e7dW8YULZvu9yXnirehgQMHaurUqRGLBoLbVEmd80iFKYmONuQs0I6Sk5N1xBFH6PXXX5dUVEk+YMAAe5uPE044QV26dJExRqeeemrYvpiFhYW6++67w7Y48JPCwkKdfvrpSk1NtVd4kaLf6bNz586Qz+V169bZn/V+GCgXR46cBR/rrFmzSnXRpUWLFqpdu7YeeeSRkEkWP3xeB38/LV++XL/88os++eQTrVixQjt27Ah57UUXXWQPlqdMmRJWpNSjRw8ZY3TNNdf4euUTiXZUHO0IcF9hYaG9ElCjRo00a9YsSf+cb8cee6yMMTr33HOVnp6udu3aacyYMfbz0YoHateuLWOMXnrppTgeUWz99ddfevfdd+2/B/ow0VYeCC4e2LBhgz777DMdffTROuSQQ2SM0VFHHaUbb7zRLqb0U7/ozTfflDFGPXv2lCQtWLBA1apVU4cOHfT111/bd8xFmhDPzc1Vs2bN1L59e7vP6EfkKLLiRcerV68Oe9zp9wOv/fLLL+1zMnAjhl/Rd3RGjqIjP6EYfzgjR87IEVA+UDiAcmVfigd69+6tXbt26b777pMxRgcffLCvl3h65pln7L3Xg/906tRJc+fODfuSXLVqldq1a6fq1atrxowZHkUdP4E2lJmZqWrVqik9PV3Jycl67rnn7NeUVDQwePBgffzxx3GN1wu0IWeBdpSamqqmTZvq9ddf1+7duyVJixcv1v3336+WLVvauUtNTVV2drb9+8UHfX4YBJbkrLPOUo0aNeylYr/77ruIE+J79+7V5s2b1atXL33zzTdh7+OnIq/iyFGR4PgD51Ok55wuumzbtk3PP/+8GjRooJo1a+qxxx7TX3/9Fdvg4yQ4D++++65at25tFys1bdpUJ598smbMmGGvqLR582ZdcMEFMsaoSpUq6tKli5599lmNGTNGF198sb30ZWCCJdHbkEQ7Kg3aEeC+QLvfu3ev+vbtq2uvvdZ+LrifN3v2bG3cuFG33367XTwwduzYsOKB4uPUxx9/XIcffrhWrlwZ60OJi0jLxQYrbfGAJP39999av369Zs6cqe3bt9uf/X4qGpg2bZqqVaumunXr6uWXX5Yk5eTk6JRTTrFXgzPGaMCAAfbvBK+u2LVrVxljNHDgQN+OO8hRZMHn1pQpU3T66aerXr16dmFTaQUXD0ybNs3+LPLDNTX6js7IUXTkxxnjD2fkyBk5AsoPCgdQ7uxL8cBxxx0nY4waNmxo3yntpwsJwXJzczVhwgSdcsopatu2re644w69+uqrJb5+06ZN9nJYEyZMiF+gHgq0oRo1ath3gwcmw/Py8uzXBbeRe++9116tovhAwG9oQ6UTaEdpaWk65JBD9PLLL9t7z+7Zs0c7d+7Ugw8+qE6dOumBBx7wONr4y8vLU15enjp37ixjjEaPHq3Zs2erXbt2YRPigXNq6dKlMsbouuuu8yrsuCJHkY0cOVKPPfZY2MRA8Ysul156qYwxOvvss/X555+HvDawV2SjRo10wAEH6LHHHvPVXVHvvPOO3cc59dRT1bJlSzVp0kTGGB1wwAF6/vnnQ+627N69uypXrhxWENahQwd7KWe/9YtoR85oR4A7gosGpNAx6ciRIzVq1KiwO6AWLVpUYvFA8Hjkt99+s38OvEdFOc+iFQ8EVg8MFvz5nugXfiMVjhhjNGbMmJDHFy1apMaNG8sYo1atWkV8r8BSvaeeeqpdpOoH5MhZ8Hnw1ltv2d/hnTt31uTJk/fp/YLf008FFhJ9x9IgR9GRH2eMP5yRI2fkCPAehQMol/aleKBp06a+LxoIlpubG1JBL4Ued+DntWvXqlGjRmrXrl3ECzB+FdirvmrVqqpdu7buv/9+uzNeWFgYkqvAahXBhScVAW3IWXDxwKGHHqqXX37Z3h4lILhC3I+fPcGD4E2bNoVtvfDxxx/LGKPDDz9cLVq0kDFG/fv3t58PXg4sKytLaWlp+uCDD2IedzyRo9L75ZdflJGRofT0dD399NNhnynBufzmm2/Uvn17GWN04YUXOl50efzxx8Mu4iSK4ONeuXKlDj74YNWvX99e4nnjxo1atmyZrrjiChljVLVqVQ0ePFibN2+2f++zzz7T4MGD1bVrV/Xo0UPvvPOOfXHcb59NtKPIaEeA+x599FHdcsstEYsGfvjhB3t51PHjx9v7qQb8/vvvYcUDgdfs3btXDzzwgE488UR98cUX9u8k+oR4WZW1eMBv3nrrLY0YMULdunXTxRdfbD9eUFBgt7WJEyeqUaNGMsbopJNO0tixY/X111/rs88+U1ZWlowxatasmW9XXSRHzt566y17MuW1117zOpxyib6jM3IUHfmJjPGHM3LkjBwB5Q+FAyi3Sls8MGjQINWpU6dCFQ04Cd5j/corr5QxRj169Khw+/kEigcitSGpKD+BlQYaNmxoL8dHG6INBStePPDKK6+Ebecg+fNCb/AxTZkyReeff76OOOIIjR492n588+bN+s9//mNvf9G1a1f7ueDVO3r16mVviRFYucEPyFF0wd/Xu3btUkFBgZ544gk1atRI1atX15NPPhn1osuzzz5rTyKcffbZYXdPBS66HHzwwTLG6Kmnnkq4i8HBx7tx40b9/PPPSkpK0tChQyO+PlDsVrNmzYjb6xT/Dku0fERCO3JGOwLcVVhYaK8CZIzRPffcE3b3bV5ennr06KGUlBTVr19f7733XtTigbZt2+rVV19VTk6OevfuLWOMGjdu7JtlivdVScUDjz76aMJOpJTG7NmzZYxRkyZN1LhxY51//vnKz88P+7zdu3evpk2bpsMPPzzsTrqkpCR17NjRnhD32ziWHDn7/vvvVbNmTaWlpWncuHH248ErmxTnx3FrcfQdnZGj6MiPM8YfzsiRM3IElE8UDqBcK23xQGBZR78tpba/ApNQRx55pH3RpSIMEoMVb0N9+vSxB9H33HNPhdniYl/RhopEKx7waz6Cj+vNN99Uenq6jDHq3r27Pv/887AJ85NOOklJSUm64IIL9N5770kqGmBv3bpV1157rYwxOuKII+zlxPzQeSdHpTdkyBDdf//9koo+Z4cMGaJ69eqVeNElcOwLFixQ7dq1dc4559hLrwYKmAL53bFjh5544gm1bNlSixYtiuNRuev111/XMccco3vvvVfp6en6448/JP2Ti+Dvp+7du9t3z/lpaUsntCNntCNnxb+3/fRZC/dNnDjR3lu1d+/e9ngz+L933323jDFRiwfuuusuVa1a1S4WMMbokEMOsccgFb0dllQ8MGTIEN/2tTdu3Kg+ffooOTlZxhhlZWXZz0VqD5s3b9aLL76oG2+8UZdddpluv/12ffjhh/b1ET+OY8mRs2eeeUbGGD3++ONhz23evFmDBw/WbbfdpmHDhmnOnDkeROgt+o7OyFF05McZ4w9n5MgZOQLKFwoHUO5FKh7YunWrpNDBol8vKJTVnj17tGrVKl144YX2BamKvp9PcBuqXbu2+vbtq549e1I0UALaUGQVsXhAksaPHy9jjOrWrauRI0eGPBf8GTxx4kSdccYZ9l31xx9/vNq1a2cvG9qmTRvfrupBjqJPeHz//fcyxuj555+3Hyt+0WXw4MEhF10Cky4LFy5UtWrVNHToUN144412fgKCL7oEryiTaDZt2mR/5rZo0UKVK1fWvHnzJEXeQmbv3r065phjZIzR2LFjJfnjc4h2tH9oRyUrflzR7sQEpNA2M2nSJFWrVi2seCD4XHIqHli1apVefvllNWrUSM2bN9eFF16oNWvW2L+P0M+pO++8U8YY328jt3HjRj300EMhhRIBwd+JTnfP+bnwhBxFFviMCnzvjxkzxn5u2bJlGj58uL1FWuDPKaecErI1ih/Qd3RGjqIjP/uH8YczcuSMHAHlD4UDSAjBE7/169fXbbfdpr///tvrsMqdL7/8UpdccokOPfRQGWN05pln2hekEm0Sym3Bbahy5coyxqhRo0YUDRRDG4ouuHjgiCOO0LPPPqtdu3Z5HVbM/P7772rXrp2MMfbeYlJohzz45wULFujZZ59VkyZN1KBBA6WmpurEE09U//797RUr/NaOyJE0dOhQjRgxosStTCZNmiRjjN544w1J/xxf4KJL/fr1Vb16dQ0aNChsguA///mP6tatqz179kSsNJf8M0CcNWuWunbtaq9c0bNnT/u54GMMHP+tt94qY4weeOCBuMcaC7Qjd1T0dhRJ8HF/9913uuuuu9SmTRt16NBBF1xwgb7++mvuVEFEwW3nww8/tFcM6NWr1z6tPCAVLU28ceNGu/+YaN/5sRacj8B434+FFcETVRs2bNCAAQNkjFGNGjX01ltvRXxdJH757oqEHJXO0KFDlZKSoptvvlkzZ87UlClT1LFjR2VkZOjAAw9Uly5d9L///U8nnHCCjDG68847vQ7ZNfQdnZGj6MiPOxh/OCNHzsgRUL5QOICEsWzZMt1www0yxqh169b2qgMosmfPHg0dOtS+a3XgwIHatGmTJC5IBQS3obp16ybsnb2xQhsqneB2dOKJJyonJ8frkGImOztbVapU0VVXXWU/FuniXPHH1qxZo1WrVmnOnDnas2dPyADbbyp6jqZNmyZjjKpXr64xY8aEXHQJHPO7774rY0zIagzBF0+GDBmiBg0aqHLlyurSpYsmTZqkxYsX29s3nH/++b4u0AkeBM+aNUvdunVTWlqa6tevr3feecd+LpCzwARKYN9MPwyUaUf7j3bkbPz48crMzJQxRrVr11aDBg3s/THvvPNOLVy40OsQUc4UFhaGnFuTJ09WnTp1ZIzR3XffXebigeJ9Ab9MGLjNT6sKljb+jRs36oEHHpAxRg0aNNDbb79tP+e3O+WLI0f7Z+bMmTr11FOVkpKitLQ0e2WzLl26aNq0aXZ+AyukNW3aVFu3bk34nNF3dEaOoiM/+4/xhzNy5IwcAeUThQOIqeKDwEiDwrJcDPj999/Vq1cve9n0RL+QILmboz179ig7O1tr1qyxl2BN9AGh221o8eLF6tWrl/78809JiTdJFwltyBmfRc4iHUNgWdBevXpJKv0dX35oM5GQo3AFBQXq3bu3UlNTVadOHb377rthd2wMHz5cxhhNnDgx7Helos/hYcOG2Ss3GGNUpUoVe6uUwOe1X88zKbQ9zJ49W126dFFycrKOO+44TZgwwX4uuH2de+65MsZoxIgRUd87EdCOyoZ2VHaff/65kpKSVLlyZT333HNau3at1q5dq9dee00tW7ZUpUqVdNZZZ9mrLAHB58KXX36pBx54QHfddZcaN25sf8b07dt3n1ce8AO3+9d+E/yZPHfuXL355pu65557NGjQIC1ZsiRsy7NNmzapf//+dtupCBPj5MhZac6zb775Rg8++KCaN2+url276rXXXgt7/cqVK5WRkaHLLrsstgHHCX1HZ+QoOvJTNow/nJEjZ+QISBwUDiBmgj+wp06dqkGDBqlTp066+eabNXbsWC1evNh+vjSTt4H3S9S7MiNxO0d+QxtyRhtyRjtyFpyjZcuW2RfpnnzySRljdPPNNzu+x+bNmzVt2rSYxeg1chQu0PYLCgp0zz33yBgT8aLLSy+9JGOMJk2aFPYegQFiQUGBfvzxR/Xt21eHHHKITjzxRF1zzTW+2ioluA1t3rxZf/zxh7Kzs7Vq1aqwVZRmz56t//znP0pOTtZhhx2mQYMGKS8vT3v37lVBQYHuuusuGWPUtm1be2WYREU7KhvaUdlt2LBBZ5xxhowxGjZsWMhzM2bMUKtWrey964Hi3nzzTXvJ1KysLHXs2FFHH320PUFwzz33RC0eaNSokd5++23fFQ8wBokuOD+jRo1S3bp1Q/aab9y4sfr06aO//vor5PXRJsb9dkGcHDlzOs9+/fXXkNcXv7M5+HOnS5cuMsZoyJAhkhK70IK+ozNyFB35KRvGH87IkTNyBCQWCgcQcyNGjFBKSkrIIDCwxPdLL71kv84Pnal9RY6iIz/OyJEzcuTslVdeUWpqql2x+9VXXyklJUWHHXaY5syZE/F3AhfJZ86cqVatWumzzz6LW7xeIEehgi+YFL/osmPHDkn/FFe8//77kooGjPn5+fbAMbC6ScDatWuVl5en3bt3S/LHORk8SJ4wYYJOP/10Va9eXcYYHXjggTrttNP05ZdfhvzO7NmzddVVVyk1NVXGGB1++OE6+uij1bRpU3tLmcCqJ4l88VeiHZUW7WjfLFq0SLVq1dJFF10U8vi8efN0/PHHyxijO+64w5vg4LloE42TJ0+WMUa1atXSe++9Zz++Zs0aezIh2soDffv2lTFG7dq18+1SxfSvo3v77bdljFFycrIGDBig7777TiNGjFCdOnVUo0YNde7cWWvXrpUUeWK8cePGIXeP+xE5chbtPAsuiNu7d6+do+D/9urVS8YYnXDCCdq4caMnx+A2+o7OyFF05Kd0GH84I0fOyBGQeCgcQExNnjxZSUlJqlSpkgYMGKA33nhD/fr1U7t27ZScnKyUlBQNGDDAfn1F/KAnR9GRH2fkyBk5cpadna0aNWrIGGPfubNmzRqdffbZMsaoX79+2rJli/36wKA5oGPHjsrMzFR2dnbcY48XchRZSXdsjBo1SpL03//+V8YYTZ06tczv7bc7x9544w37Yu+xxx6rNm3a6MADD7Qfe/HFF0Oq7WfPnq1rrrlGGRkZMsbo9NNPV48ePfTWW29p3bp1kvxxQUqiHZUF7ahkkf6tR40aJWOMbr/9dvux+fPn67jjjgt7XJLWrVun3377LeaxovwoaZuhO+64Q8YYPf/88yGPB9rZBx98EHXlgby8PD3yyCNauXJlDKP3Dv3r6L788kvVqlXLnogKePzxx+196I0xuuyyyyJOjAe2w2rfvr290pXfkCNnZT3PAt/nW7Zs0S+//GIv5Ry8bLpfzkX6js7IUXTkp/QYfzgjR87IEZA4KByAq4oPQK6//nqlpqZq/PjxIY8vWLBA9957r101/dRTT8UzTE+Ro+jIjzNy5IwcOSueo4cfflhJSUlhORo5cqTdSR84cKCWLVsW9l49e/aUMUaXXHKJtm/fHtO444kclV6kOzZq166tTz/9VP369ZMxRhdeeKH+97//6ZFHHtFDDz2kwYMH69lnn9WTTz6pl156SQMHDgzbP9JPpkyZoqSkpJCL41u3btW8efN022232YPlp556KmTwO2vWLHXt2lVJSUk6//zz9fXXX9vPFb/LJdHRjpzRjkoWfIH2p59+0pIlSyRJ3377rVJSUnT99dfbzx177LFhRQOBu8OGDBmi5s2ba+nSpXGMPj7Yg/4f/fr10+WXX27/vXjxQF5eno488kgZY/TVV19J+ufCZHDO3nrrLfu86927d1jxQIAfLmrSvy69rVu36oorrpAxRq+//rr9+GOPPSZjjKpWrarXX39d7du3tyfGA8taB9rXhg0b9MQTT2jFihWeHEOskaPI3DjPNm/erJ49e6p+/foyxujss8/21bLpweg7OiNH0ZEfZ4w/nJEjZ+QISCwUDmC/RapWnjhxojZv3qzLLrtMF154of148Af65s2b9dhjjyk5OVmHHHLIPlVwJgpyFB35cUaOnJGjfTN+/HjNnj1bV1xxhc444wz78eAL3oMHD7Y78RdeeKGef/55zZ07V1OnTtUll1wiY4yaN29uX5Dyy10sAeQoXPCkyc6dO0MGdsUvuhxxxBFhS6tG+nPAAQdo9erVXhxOTAVydd1118kYozfeeCPi6wYOHGjn4sMPPwx5bvbs2ercubOSkpJ0yimnaMqUKWHvn4hoR6VHOyq9cePGKTMzU927d9eWLVv022+/qVKlSqpTp45eeOEFe3uC2267zf6d4P1sTzrpJNWuXVvLly/3IHr3BX/fbN++XX///bdWrVoV8m+e6N9JZVFYWKi//vrLPk9uuOEG+7nik/3nnnuukpOT9fHHH9u/G/w+Ad26dYtYPOAH9K/3zW+//aYmTZrolltusR977rnnlJ6eripVqmjBggWSpFdffVX169dXRkaGLr300rCJ8cB//dSmAsjRP9w6zwJFTpI0evRoXXfddXrppZfsFdH8UDRA39EZOYqO/JQe4w9n5MgZOQISE4UD2CfPPPOMhg8fbv89+EP6ww8/lDFGBx98sP71r3+pR48ekiIPhv744w9deeWV9l2afkKOoiM/zsiRM3K0fz7//HMZY9SwYUP961//0o033igptOo+YNiwYWrdurXdkU9PT7d/7tChg723mB8uSAUjR+GCjzk7O1u33HKLLrvsMnsvyMBr+vbtq6pVq8oYo06dOunFF1/U2LFjNWLECL3wwgt67bXX9Prrr2vIkCEaMmSIvZSzHyew/v77bzVs2FA1atSwLyoFjjO4Pdx99912e/vjjz9C3mPOnDm68sorlZSUpFNPPVWfffaZ/VwiDpZpR2VHO3I2f/58NWzYUGlpaSF7Xj/00ENKSkqy99IM9Akkhew9f/vtt8sYo549e9orECSy4vuJXnjhhWrRooXq16+vyy+/XP/73/88jM5bM2fOVLVq1WSM0XXXXWc/Hjz5eOedd9p36waWQ43kgQcekDFG9erV80Vfkv71/tu8ebOeeOIJ/frrr5Kkb775Ri1atFDlypU1bdo0+3Vr165Vhw4dZIxRpUqV1LlzZ19OPkVS0XMUj/Nsx44dEccsiYq+ozNyFB35KTvGH87IkTNyBCQeCgdQZj/++KM9ETJ69Oiw57dt26aWLVvarznxxBO1efPmEt9v5MiRMsaocePGIfvYJDJyFB35cUaOnJGj/ZeTk6Ozzz7bztEJJ5ygDRs2hLwmePA7e/ZsvfzyyzrhhBN0/PHH66qrrtKLL76oTZs2SUr8CfFIyFGo4ssz16pVS8YYdezY0a76Dt4r8u6771ZGRoYaNGigMWPGOL5/oudHCm0Pe/bskVTUjpo2bap69eqF3Skn/XPcO3fu1EknnaT09HRNnjw55DkpdLB8xhln2HfBJhrakTPaUekUv0j0/vvvyxgTUjQgFfUZOnbsaE/EBO5kDfbggw/KGKN//etf9j7QfjFixAj7e6xBgwZKSkqyl7fOysrSwoULK9QFt8D5NWvWLGVmZoYVDwRWoJg3b55atGih2rVr69lnnw2ZWJD+OTffe+89/fvf/9bTTz+tww47LOKWRYmC/vX+C5xLubm59s+B5fcDxToFBQX2c08++aQqV65s5/Wmm27y5eRTsIqeo1ifZ4mcm5LQd3RGjqIjP84YfzgjR87IEeAPFA5gnzz88MMy5p+lHQNfCoGLLNu3b7f3hGzYsKG++eYbSaEf9oEviPXr16tRo0aqXbu2Nm7cGM/DiClyFB35cUaOnJGjfRe4oy4nJ0fnnXeejDGqW7euJk2aFPba4hefIg2K/XiBihyVbPTo0TLGqGbNmho2bFjY88EXXYKXexw9erQv7uItSfDg9/XXX1ffvn21bt06FRQU6KijjrLvBou2F9+1114rY4wee+yxiM/PmTNHV199tYwxOv/885WTk+P6ccQL7Sgy2lHZTZw4UcOGDVO3bt3UvHlz+/Hgz+KxY8fqmGOOUVJSko466igNGjRI06dP10cffaRLL73U/oxftGiRF4cQM7NmzVLNmjVVp04dvf7669qwYYOmTZum1157TbVr15YxRscff7zmzJkjqeLcsRP4jp8xY4YqVaokY4y6detmP19YWKgdO3aob9++Sk5OVvPmzfX666/bhYDB59+ZZ56pQw45JOTxRF42nf516UQ7V4Kfy83N1SmnnKKkpCR9+eWXkopyGmgjjz/+uBo2bKgJEybo7LPP1ooVK2IbeByRo5Jxnu0b+o7OyFF05Ccyxh/OyJEzcgT4B4UD2GcfffSR/fOSJUvsn4MHOu3bt5cxRq1atdJff/0V8vuBL4k1a9aoTp06atu2re86YeQoOvLjjBw5I0elV/ziXeDYc3JydMEFF8gYo+bNm2v+/PlR3yd4AtxPk+ESOSqNuXPnqnHjxkpJSdF7771X4usiXXSpU6eOxowZ49tzLOCDDz6w7xL77rvvJEkvvviiMjMzddJJJ2n69OlhvxOoxh88eLCMMXr66adDng9umzNmzFD37t21cOHCGB5FbNGOnNGOSueXX35RSkqKDjjgAJ188sk65ZRTJP3TdoKP+dNPP7WXdA7+k5ycrJNOOkmLFy/24hBcFXy8hYWF9ioMb7/9dthrFy9ebE9MdezY0T6n/F48UPz45s6dq4yMDBljdPXVV4c8t27dOl1xxRX25F2PHj3022+/affu3dqzZ4+9nUHXrl1D7p5OdPSvowvu2/3xxx/68ccfNXfuXHu56mB5eXk67bTTIn4mS9Jpp52mVq1aKTc31xeFJwHkyBnnWdnQd3RGjqIjP84YfzgjR87IEZD4KBzAfnvuuedkjNGIESPsxwIDnR07dtgVZW3atNH8+fPtL4KAW2+9VcYYXXXVVVErzhIZOYqO/DgjR87IUWTFl//asWNH2FL7UtGSYBdddJGMMTrssMMcJ8b9hBxFVrzgIZCn1157TcYY9e/fv8TXFn+8oKBA9957r9LS0mSM0YQJE2ITtEeCj3/Hjh0644wzVLdu3ZDlZ3/99Vcde+yxMsaoc+fO+vnnn+2LUsEXoM466yylpaXZd9wVnwQMCHy+lXe0o9KjHe2bHTt26L777lPDhg1ljFGVKlX022+/hbwmOLfbt2/X5MmTdeedd6pbt27q1auXPvnkk4S8SzPa0u9vvvmmHnzwQd1yyy1q0KCB/XigvQT++8cff6hBgwYyxujGG2+MabzlQXD7nzp1qvr166c+ffqoTZs2SkpKkjFG11xzTcjvrF27VjfddJPq1asnY4zS0tLUokULHXzwwTLG6JBDDrH3a/VL4UAA/eui76sff/zR/nvwv/GoUaPUqFEju100bNhQY8aMCWsHY8aMUaVKldS2bVuNGzdOBQUFys3N1V133WXfdZ7Iy1yTo/3DeRaKvqMzchQd+Sk9xh/OyJEzcgT4D4UDKLPinar77rtPxhhlZmaG3MkSPND597//bV9U6d27t0aPHq2pU6fq8ssvtx8P7HHjB+QoOvLjjBw5I0fOit9lecMNN6hly5Zq1qyZrrrqKg0bNizkbp2dO3fq4osvrjAT4xI5Ku7JJ5/UoEGD7L8H5ydwzp1//vkyxujdd98NedxJYWGhbr/9djVq1Mh3+4cHrFy5Un/99ZfS0tL00EMP2Y8HBsRfffWVPfF09tlnh+1r26tXLxljdPLJJyf0XtC0o/1DOyq9QLvJycnRAw88oKZNmyopKUn33XdfWCGA3yZ0Bw0apDPPPDPiKgm//vqrqlWrppSUFB177LE64ogj7OOPtJ9odna2qlWrphYtWmjZsmXxOQCPjRgxwp4EOOWUU3TBBReoVatW9mPB2xZI0pYtW/T+++/r0ksvVbVq1ewViM4//3y7aMAPk5r0r0N99NFHMsaoUaNG9nYeAe+++659N12HDh3sO8ONMXr00UdD9qRfvny5brzxRqWlpaly5co6/vjj1bZtWxljdOihh2rt2rXxPjTXkKOy4zwLR9/RGTmKjvzsH8YfzsiRM3IE+AeFAyiT4I5X8P6fjz32mIwxSklJKXGgE6iSTk1NVVJSklq3bq1q1arpwgsvtDtefrjYQo6iIz/OyJEzcuQsOEdvvPGGfZGuadOmqlu3rjIzM2WMUadOnULuWvH7xHgwchRq/vz5dg5eeOGFEl93zTXXyBijTz/9VFL0Cy4bN24MqR4vLCzU33//Lckf51mwYcOG2RfC27Rpo+zsbElFy8gGt7UvvvhChx9+uIwxSkpKUps2bXTOOefYy4UffPDB9mdRIm5zQTvaP7Sjsgu0gR07duihhx7SAQccoLp16+rll1+220kkwXlJpKKCwsJCrV27VocddpiMMbriiiu0fv36sNc999xzatGihX0+Tpo0qcT3++uvv9SuXTsZY/TZZ5/F+hA8N3nyZBljVKNGjZCliv/44w+NHDnS/v6/9tprI/7+8uXL9dNPP2nLli3auXOnJH98FtG/Drd79267z9esWTPNnj1bkrR582b9+9//Vt26dTVu3DhJRcf31FNPqXLlyjLG6MEHH9SmTZvs9/rpp5/0wAMPqGbNmjLGqFq1ajrxxBMTOj8SOSorzrNw9B2dkaPoyM/+YfzhjBw5I0eAv1A4gIgCH8zBy74Ef8i//vrratiwoR5//HH7sUcffdRxoBO4IFW/fn19//33ys3N1bZt2yQlXseLHEVHfpyRI2fkaP99+OGHMsaoZs2aevXVV5WTk6Nly5Zp5syZOuigg2SMUYsWLVRQUGAvbRm8JH/Lli3tC4B+RY7+8cILL8iYor2apX/Ot4KCAvvnO+64Q8YYXX755dqxY0fE9wmcR2+//bbOO+887dq1K+T5RJqkK63A3WLp6ekyxuiVV14JeT74mGfNmqWePXvay1wbY9SkSRNdfPHF9t1iifxZRDvad7SjyJz+rQPHmZOTo4cffljVq1dXgwYN9Morr0QtHkg0wRfPFi9erOOOO05XXnllia9//vnn1aZNGxljdNlll4Vt4RD8np07d5YxRmPHjnU/8HKmZ8+eMsbomWeeifj8d999p0qVKoWtPBCYQCjeHhPts4j+dekEVpzKzc3VZZddZk+Mz5s3T6tWrZIxRs8++2zY740YMUL169e3J8aDVz/Zu3evFi9erAkTJmj69On23XSJmB+JHEXDeVY29B2dkaPoyM++Y/zhjBw5I0eAv1A4gDCBAc6yZct0zjnn6Lvvvgt5/osvvlBaWppq1KihMWPGhDznNNDZvn27vTzdUUcdZXfUiu/RVt6Ro+jIjzNy5Iwc7b9NmzbpxBNPlDFGo0aNCnlu/vz5atWqlYwx6tGjh/144ALgzp071alTJxljdNJJJ/liv8xIyFG4qVOn2j///PPP9s+B45s7d64aNWqkxo0ba+zYsfZ5ExgIBgZ4hYWFOv7441W3bt2QO6oSUbQLRMFbWTz88MNKTk5WUlKSrr/++rDl9Yrvybdp0yZNnTpVkyZN0sqVK+3PIj8MkmlH4WhH+yb4eOfOnatXXnlF//nPf/TAAw9o4sSJYa/3a/FAoF/0xx9/KCsrS7/99pv++usv+/nPPvss4jny4osvqlmzZkpPT9f9998fshVB4LzLz89Xhw4dVKVKFU2fPj3GR+KtvLw8dejQQcYYff7555JCz79Ae/vggw+UkZEhY4y6dOliPx/82kRE/7psArEHT4wfcsghGj16tNq1a6elS5dKKjqHggt7Ro4caS/FW3xivLhEv5uOHIXjPNs39B2dkaPoyE84xh/OyJEzcgRUPBQOIETwAKdu3boyxujFF18MeU2/fv2UkpISNsAJKE2VdGB/trZt29oX8hLlIgw5io78OCNHzsiRs5I67sGPL168WGlpaercuXPIa6ZPn24vA3b//feX+P/IycnR9ddfn7D7HZOj6Jzy8+KLL8oYo6effjrkuS1btujmm2+WMUbHHHOMJk2aZN+JEXxh97bbbpMxRtddd13YnRqJoviF6q+++koff/yxJk6cqO+//z7i7zz44IP2snvDhw8v9XsHJNpdLLQjZ7SjfVNYWBhyHB9++KEaNGhg35US+NOrVy/9+uuvIb/rt+KBSP2iYcOG2c+///77Msbo/PPP1++//x72+0OHDtVBBx2kzMxMde/ePWwSK7Cf6EknnWTfuepXBQUFOuecc2SM0TvvvFPi67Zt26arrrpKycnJMqbkbQsSCf3r6AL52bt3b8jy+ZEmxqtUqSJjTMgkVfB7SOET45s3b47DUcQWOXLGeeaMvqMzchQd+XHG+MMZOXJGjoCKi8IB2IIHOIGLcvfdd5/9/EcffaSPPvpIxxxzTMgES6QP+rIMdNq1a5cw+0SRo+jIjzNy5IwcOQsc6+7du7VlyxbNnTtXv/zyS9jrvvjiCxljdPvtt9uPTZ8+XW3btpUxRv369Qt5/Zo1a/Thhx9GzGWiXIgKIEfRlSY/Tz31lD0x99xzz4U8t2jRIp155pkypmirhn79+unPP//U+vXr9eeff6pr1672c+vWrZOUeAPAQI62bNmi1157Teeee27IZGVaWprOPfdcTZo0KexC98MPPyxjjJKTkzV69Ggvwo8L2pEz2lHZbN++XT/99FPY4xMnTrRzdt9992nBggWaMGGC3U+4+uqrNWfOnJDfCS4eOOigg/Tcc88l5KR4pH5R8e+mH374wS52u/TSS7VkyZKw9xk6dKiaNm2q5ORk1ahRQ926ddPtt9+uY489VsYYHXbYYQm7n2ikeKN9VgTOrXPPPVerVq0q8XWBfmRgP/ZevXq5Eq8X6F9HFzjOzZs364UXXtDxxx+vwYMH288HYs/NzdUll1xif34/+uijYXd6R5oYT05OVq9evcLuvEsk5MgZ55kz+o7OyFF05McZ4w9n5MgZOQIqNgoHICl0gBPYay74DsvPP/9cxhidddZZOvzww3XHHXdIUtRlmQMDndTU1JDlnwMTK8EDnSZNmpT7C3nkKDry44wcOSNHzgI5WrNmjbp166aWLVvaHfcbbrhBU6dOtV8zbdo0u1I+8PdIE+KBC1CvvvqqjjrqKP3www9xPip3kaPoSpOfwEXHoUOHlnjRZeHChbriiitUs2ZNGWNUo0YN1apVS9WrV5cxRm3atLEnZMr7RcziAjn6888/7YvfNWrU0GGHHaaLL75YRx11lH0nXZMmTXT77bfbE24BAwYM8PVgmXbkjHZUNuvXr1ezZs3UuXPnkMncmTNnqmHDhqpatapee+01+/GRI0faS8kbY3TZZZdp9uzZIe+Zk5OjgQMHyhijww8/POEmpJz6RcHnxMyZM+0l+EsqHnjxxRd1xBFH2HcBHXnkkTr99NN1zz33JOx+ooEcLV++XFOnTlVOTo79XPEL/YG/f//992revLlq1qypl156KexuwsAk57vvvquTTjpJ48ePV/PmzSOu5pAI6F9HF/xZHViNonbt2jrrrLO0YcMG+3WRJsYbN26sadOmlfieUtE+2UlJSWrQoEHCrnxCjpxxnjmj7+iMHEVHfpwx/nBGjpyRIwAUDiBiVfTAgQND7pycMWOGLr74Yvvi3AUXXGA/F63yMjDQMcbo/ffftx8PHugceuihMsbYe9+VR+QoOvLjjBw5I0fOgnPUokULGWNUt25dNWrUyD6+E088UePHj1dBQYHWrVunZs2aqXr16nrrrbd01FFHlTghnp+frzZt2ujggw8O6/AnEnIUXVnzI0W/6LJ69WqNHz9eZ599tg4++GBVqlRJp59+uvr166f169dLStyLLcuXL7cn2M466ywtWLDAvji+bds2zZ07V2eddZaqVaum9PR0derUSStWrAh5L78OlmlHzmhHZbN+/XoddthhMsborrvuCrmb7I477pAxRk899ZT9+qefflppaWlKTU3V888/rxNPPFHGGF111VWaNWtWyHvv2LFDjz/+eMLtUevUL4p0TsyYMcOxeOD5559Xy5YtlZmZqccee8y+m05KrJVzgq1YscK+2N+pUyc9//zzkv7pGxa/mzc/P199+vSRMUYNGzbU22+/bZ+XwXnNyspSo0aNQt4j0XJE/zq64M/q5s2byxijc845R0uWLNGWLVvCXh88MR5Ykr9Zs2ZhRUvB7y1J7733nlavXi0pce9cJUcl4zxzRt/RGTmKjvw4Y/zhjBw5I0cAJAoHKrzgjteBBx4oY4yaN29uD1yC776YPXu2unbtqvT0dKWlpWnkyJH2c9EGOvfdd5+qVaumlStXhjweGOjk5OQkzACHHIUjP87IkTNy5CzSXSzdu3fXhg0btG7dOo0fP15NmjSxL+YFOuy33367jDGqVKmSjDF69NFH7ffcuXOn/fP1118vY4z69u0btpxooiBH0ZU1P8HnQ7SLLgEbN260fyfaxFZ5FunC75133lni69asWaP+/fvbF6y6desWMgknhQ6W33333dgfRIzRjpzRjspm/fr1OuSQQ2RM0VLwgbsvCwsLtXbtWmVmZqpTp072619//XVVrVpVKSkp+vbbbyVJ48aNs9tWly5dwooHEnkSKlK/aPfu3SX+bmmKB1588UU1bNhQlStX1sCBA+3JukRTWFiowsJCdenSRcYUraKQlJRkX+AcMmSI/vrrr5DfCbSvPXv26Morr5QxRnXq1FHfvn01ffp05eXladeuXerRo4fdnvbs2ZNwbUiif+0kcFxr1661J6F69+7t+HuBYyvrxLiUeN9n5MgZ55kz+o7OyFF05McZ4w9n5MgZOQIQQOFABRbpy6BGjRoyxigrK8vuLAVPjsycOVNdunRRcnKyjj/+eH3++ef2c9EGOoEl04p3vMp7R4wcRUd+nJEjZ+TIWaQc9e/f3348cMyTJ0+272IJTH7n5ubqjDPOsCvyi19Al6TevXvLGKPjjz/eriBOtAvk5Ci6fcnP//73v5D3KOmiS/C5Wfz9EklJOQocS/HPicDjmzdv1n//+1/VrVtX1atX1xNPPKE9e/aE3GUWGCwbYzRhwoT4HFAM0I6c0Y7KZsOGDXbRQM+ePSNerH3vvffs7/mff/5ZRx11lFJSUvTxxx+HvFfgc9oYoyuuuEIzZsyI34G4qLT9omh3vpemeGDYsGFq3LixXTywdu3a2BxQHMyZM0e1atVSWlqabr75ZjVs2NBuC82aNdMrr7wSccIyNzdXN910k51fY4y9spAxRoceeqiv7oCmfx1u9+7d6t69u4wxuuaaa+zHg2OPtP98We6qT3TkqGScZ87oOzojR9GRH2eMP5yRI2fkCEAwCgcqqEhfBn379tWoUaPs6s0zzzzTfn1wZ2r27Nm68sorlZSUpNNOO63UA51E63yRo+jIjzNy5IwclV7wXSy33Xab/XheXl7IMfXv31/GGF1++eX2Evvz58/XqaeeKmOMatWqpccff1xvv/22RowYoVNOOcW+kBdYfj/Sxb9EQI6i25f8FN93taSLLomYj0hKylFJE3SBvG3YsEE333yzjDE6+uij7eKT4Pz16dNHNWrUCLtbLNHQjpzRjkpnw4YN9vLKvXr1sr/jAxelIq3sMnz4cBnzz77RBQUFdl6HDRsmY4xOOukke4Ir8BmfKMraL3KzeOC///1vQq48UFhYqG3btumqq66SMUYvv/yytm3bphdeeEHHH3+8jDFKS0tT7dq1NXDgQC1YsCAkb3l5eRo5cqSuueYapaen29/3F1xwgZ2P8j4xVxz969L7+++/1apVKzVu3Fhbt26V9M+/d/FjWrhwoWbNmqUtW7aEtIniE+Nz5syJW/zxQI4i4zwrPfqOzshRdOTHGeMPZ+TIGTkCEEDhQAW2dOlSeymZwMU3SXr77bdVr149x4FO586dyzzQSTTkKDry44wcOSNHpROo0M3MzFTfvn3D7gwMdMgHDhxoD5aDrVy5Up07d7YHy4E/VapU0XnnnZewF8eDkaPo9jc/AcEXXV544YWYxx1PTjmKJPBZs2LFCh100EF2ZX5AcHsp6W6xREI7ckY7crZx40Z7pYGrr77aPpZA+wn8fdGiRTr//PPtrQcCn9Evv/yy/V6BfsEnn3yiAw44QEOGDNF5552nhQsXxvOQXFPWflFpiweuuOIK/fbbb5JCL5IPGzbMvsN+8ODBCduuxo8fb593P/30k6Si8+qpp57SRRddZH/etGjRQl26dNHSpUu1efNm+3WS9Mcff+i3337Tpk2b7OXFEzUf9K9L59tvv5UxRm3bttXevXvtPAQvwfvqq6+qY8eOyszMlDFGHTp00J133hlSmBQ8MV6tWjW7DfoBOSoZ51np0Hd0Ro6iIz/OGH84I0fOyBGAAAoHKqjdu3crJSVFxhg98MADIc/t2rVLo0aNqvADHXIUHflxRo6ckaOyuffee+0753r37q0//vhDUuhxXnrppTLG6KWXXgp7TpImTZqkIUOGqG/fvnr00Uf1/fff6++//5bkj847OYpuX/ITSfBFl+HDh8c87ngqKUfRBNrFiy++KGOK9sQOFjxJ54fPJdqRM9pRdPPnz5cxRXvSd+3aVUuWLLGPKXDxd9GiRapZs6aMMXrzzTcl/XMn2aBBgySFfiZfeumlOvDAA0NWIUg0+9ovcioeCNx5f+ONN9o5C25PTz/9tFq1aqVff/3V5SOKry5duigpKUlPP/10yON///233nvvPV144YWqVKmSjDE66KCDdPXVV4f0G6XQcytRzzP616U3ffp0GWNUvXp1/f777yHPLViwQKeddppq1aplf54bY+zc/uc//wnJWW5urs4880ylpKRozZo18T6UmCFHkXGelQ19R2fkKDry44zxhzNy5IwcAZAoHKjQpk6dqjvvvNP+e/AFp30Z6Jx55plhe40mOnIUHflxRo6ckSNnwZ3sQCc+NTVVffv21eLFi+3nHnnkERlj1Lp1a61YsSLkPZwmvBN9iT5yFJ0b+SnuqaeeUp06dRxflyii5ag0g2VJev/992WMUfPmzZWbm5vwhSbF0Y6c0Y5Kb+bMmUpKSpIxRdsKzJ07187fr7/+qtq1a8sYo4ceesj+nbFjxyo9PV21atXSpEmT7LtgArm++OKLlZOTk9AXpPa1XxSteOC7777Teeedp+XLl4c8Htxet2zZ4kL03nrllVdkjNEhhxyiDRs2SArNS+/eve0LoYGJTmOM7rjjDg0ZMsSrsGOC/nXpFBQU2FtSnXjiiZo3b56ys7P14osvqnLlynaRyUUXXaSpU6fqww8/VJ8+fVSnTh0lJSXZy10HCp727NmjjRs3Skr8YtMAclQyzjNn9B2dkaPoyI8zxh/OyJEzcgQgGIUDkBR5wFaWgU5gT8ng/aL9hhxFR36ckSNn5KhkwZ34e+65x+7E9+vXTytXrtTgwYPtu4F+/vnnsN+pCMhRdLHIz44dOyRFn7BKJCXlqLSD5ezsbBljdMkll8QyTE/RjpzRjkpv5syZ9uTtNddco9WrV2vx4sV20cCAAQPCfqdHjx4ypmgbmUMOOURt2rSRMUYNGjTQkiVLPDiK2ClrvyjaORSYtCv+Gj99D+7du1fHHnusjClaNnz37t32c0888YRdNDBq1ChNnTrV3ovVGKM6der4ongiEvrXkRUWFqqwsFAjR47UYYcdZn+upKenKyMjQ8YYnXXWWZowYUJI21i7dq39OfSf//zHfjw4z345r8hR6XGelYy+ozNyFB35ccb4wxk5ckaOAARQOICod+SUdqDz448/6tZbb9XKlStjGqtXyFF05McZOXJGjpyV1IkP3AVUtWpVzZ8/X1Li38Gzr8hRdLHITyLf2RvJvgyWA7kK3Ony4IMPxiVWr9COnNGOSi+4eODiiy+2tyd45JFH7Nfk5+eHtKV+/fqpXbt2Msaofv36OuaYY0LuOvODfe0X+eUCeFkF2sfIkSNVqVIlnXTSSdq1a5ck6fHHH7fPwffffz/k9yZNmqSHHnpIq1atkuS/zyL61862bdumV199Vcccc4z9WXT00Uerd+/eIedT8GfQuHHjZIxR27ZttXnzZt+1m+LIUXScZ87oOzojR9GRH2eMP5yRI2fkCIBE4QBKobQDncBdLBVxIoYcRUd+nJEjZ+SoSKROfFJSkjIyMjRp0iRJ/9wdVFGRo+jIj7OyDJYDnzU7d+5Uq1atdMghh2jp0qWS/HcxKhjtyBntqPSCty0wxujmm2+2nwt8r0uh3+3r1q3TN998o99//12bNm2Ka7zlAcUDkS1evFhNmzaVMUV7Fz/33HP2SgMTJkywXxepXfm17xgN/esi+fn52rFjhz7//HP98MMPWrdunf1c8Gd5IA+jR4+WMeF7+PoZOdp3nGdF6Ds6I0fRkR9njD+ckSNn5AgAhQMolWgDneCLLhUZOYqO/DgjR87IUZHgTnxgv97U1FQ98sgjvrvjcl+Ro+jIj7PSDJYDA+HCwkJdffXVMsaod+/eIctj+xntyBntqPRmzJhhL3197bXXatGiRREvNvlteev9Ea1f5NeJp9IYPny4vWRx4JwLLhrgImYo+tclC/68CT6nTj31VBlj9Oabb0qq2G2KHJUO51kR+o7OyFF05McZ4w9n5MgZOQIqNgoHUGrFBzr//ve/vQ6p3CFH0ZEfZ+TIGTkqsr97j1UE5Cg68uMsWo6CL0wFLlodd9xx2rhxo6SKc4GcduSMdlR6M2bMsFcduOaaazRv3jyvQyr36BeFW7hwodq0aSNjjCpVqqQvvvjCfq6inVOlRTuKLjAhXlhYqB49esgYo9NPP11btmzxOLLygxw54zwrQt/RGTmKjvw4Y/zhjBw5I0dAxUXhAMpk165devfdd+2lRDds2OB1SOUOOYqO/DgjR87IUREGzM7IUXTkx1lJOerfv7+WLFmifv36yRijZs2aafXq1WG/UxHQjpzRjkpv5syZdvFAt27dKB4oBfpF4Xr16iVjjA477DDl5ORIqrjnVGnRjsIFX/Tes2ePrr/+evuzes2aNZJoV+SobDjPitB3dEaOoiM/zhh/OCNHzsgRUDFROIAy27lzpyZMmMAgMApyFB35cUaOnJGjIpE68WlpabrvvvtYqu//kaPoyI+zkgbLxx9/vIwxatSokVauXCmp4i4PTjtyRjsqPYoHyo5+UZHAJOaff/6pI488UlWqVNHo0aMlcV6VBu0o3C+//KLhw4erffv2MsaoQ4cO+vPPPyXRpgLIUdlwnhWh7+iMHEVHfpwx/nBGjpyRI6DioXAA+4UvA2fkKDry44wcOavoOQruxN977732ZMtjjz1W4XMTQI6iIz/OIg2WjTFq3LixVq1aJYnPItqRM9pR6QUXD3Tv3l2zZs3yOqSEQRsqmpi77rrrZIxRVlaW1+EkJNpR0bYXJ554oowxqlevnrp3727fIU5+ipCj/VPRc0Tf0Rk5io78OGP84YwcOSNHQMViJMkCAAAJrbCw0EpKSrIsy7Juv/12a+zYsda8efOsxo0bexxZ+UGOoiM/zoJzdMstt1iffPKJ9cMPP1iNGze2CgoKrOTkZI8j9B7tyBntqPRmzZplnXTSSVZeXp516623WkOGDLHS09O9DgsJYtGiRdYpp5xibdy40XrnnXesq666yuuQkGB27NhhvfHGG9bq1autc8891+rQoYNVuXJlPquDkCPsL/qOzshRdOTHGeMPZ+TIGTkCKg4KBwAA8IngTvy2bdus6tWr03kvhhxFR36ckSNn5MgZOSq96dOnW+eff741bdo0q1WrVl6HgwTTuXNna/r06dasWbOsevXqeR0OEtDevXut1NRU+++SLGOMhxGVP+QI+4t+kTNyFB35cUaOnJEjZ+QIqBgoHAAAwEeCL9Rx0S4ychQd+XFGjpyRI2fkqPRyc3OtjIwMr8NAAlq+fLmVmZlp1a9fn4uaAFCO0S9yRo6iIz/OyJEzcuSMHAH+R+EAAAAAAADwreC7owAAAAAAQGQUDgAAAAAAAAAAAAAAUIFRcg8AAAAAAAAAAAAAQAVG4cD/27Bhg/Xxxx9bDz30kHXOOedYtWvXtowxljHGuvbaa70ODwAAAAAAAAAAAACAmEjxOoDyol69el6HAAAAAAAAAAAAAABA3LHiQASNGze2zjrrLK/DAAAAAAAAAAAAAAAg5lhx4P899NBD1tFHH20dffTRVr169awVK1ZYBx98sNdhAQAAAAAAAAAAAAAQUxQO/L9HHnnE6xAAAAAAAAAAAAAAAIg7tioAAAAAAAAAAAAAAKACo3AAAAAAAAAAAAAAAIAKjMIBAAAAAAAAAAAAAAAqMAoHAAAAAAAAAAAAAACowFK8DqCiOPXUU70OodzKyMiwpkyZYlmWZWVlZVm5ubkeR1T+kCNn5Cg68uOMHDkjR86CcwTsL86zyPgsckaOoiM/zsiRM3LkjBw5I0fRkR9n5MgZOXJGjqIjP87IkTNyVHrZ2dleh4A4Oe2007wOwVUjRoywmjRp4nUY+43CAQAAAKAcoggFAAAApUXf0Rk5ckaOAADYN6mpqV6H4AoKBwAAAIByiLsQIgu+U4MLmwAAAEXoO0bGXb7OyFF0jD/Khhw5I0eAP1WrVs3rEFxB4QAAAABQDnExwRkXNiNj2xQAACoevvudkSNn5Cg6xh+RUXzijByVHlsVIFHl5ORYVapU8TqM/ZbkdQAAAAAAAAAAAAAAACSiGjVqeB2CKygcAAAAAAAAAAAAAABgH+Tk5HgdgivYqgAAACAGWHouHEvzOSNHzliGHwAAIBx9x8joXzsjR9Ex/gCA2HjiiSesQYMGWVu3bvU6FFcUFBR4HYIrKBwAAAAAyiEuTgEAAAAAAMCPatWq5XUIrpLkdQiuoHAAAAAgBpj0jY78AAAAAO6hf+2MHDkjRwCAeLnxxhu9DsFVycnJXofgCgoH/t93331n/fHHH/bfN23aZP/8xx9/WCNGjAh5/bXXXhunyAAAQCJiicdwLIHpjBw5Y6lQAACAcPQdI6N/7YwcRcf4AwBQkVA48P9ef/11a+TIkRGf+/77763vv/8+5DEKBwAAAAAAAAAAAACgYvPLigNJXgcAAAAAAAAAAAAAAKgYGjZs6HUIrtqzZ4/XIbiCwoH/N2LECEtSqf8AAAAAAAAAAAAAAMqmRo0aXofgqtTUVK9DcAVbFQAAAMQAeyBGR34AAAAAAACAimnhwoVeh+Cq9PR0r0NwBSsOAAAAAAAAAAAAAACwD1JS/HGvvj+OAgAAAECFw8oVAAAAAOKF8YczcuSMHAH+tHv3biszM9PrMPYbhQMAAAAxkJWVZeXm5nodRrmSkZFhD5DJT2TBOYIz2lFktCMAAADAfYw/ImOs74wclV52drbXIQD7JC8vz+sQXMFWBQAAAAAAAAAAAACAuDjooIO8DsFVqampXofgClYcAAAAiAHu9o2O/AAAAAAAAAAV065du7wOwVXp6eleh+AKCgcAAABigKXnwrE0nzOWmAcAAAAAAIDfbdq0yesQXJWTk2NVqVLF6zD2G4UDAAAAMcDkb3TkBwAAAAAAAIAfpKT4Y8rdH0cBAABQznBHfThWHHDGigMAAAAAAABAYsnPz/c6BFckeR0AAAAAAAAAAAAAAKBiaNmypdchuCo5OdnrEFzBigMAAAAxwF3j0ZEfAAAAAAAAoGK6+uqrrfvvv9/rMFyTmprqdQiuoHAAAAAAccdWBZEFb1VAcQUAAABKi76jM3LkjBwBAOJl7NixXofgqpQUf0y5++MoAAAAyhkmxsMFT4rDGW0oMtoRAABAOPqOkQX3HclRZOQoOsYfABAbffr0sQYOHGht3rzZkmQVFBRYhYWF9s+J9n20a9cuq0qVKl6Hsd8oHAAAAAAAAAAAAAAAxEWjRo2sV199tcTnCwoKrE8++cRasmRJzGL45JNPXHuvpKQk197LSxQOAAAAAAAAAAAAAADKheTkZOvCCy+M6f/jt99+s5YtW+bKe1E4AAAAAAAAAAAAAABAGUyaNMkaMmSI12G4prCw0OsQXOGP8gcAAAAAAAAAAAAAQLk3ZswYr0NABKw4AAAAEANTpkzxOoRyjfwAAAAAAAAAFVOVKlW8DsFVKSn+mHJnxQEAAAAAAAAAAAAAQFx0797d6xBctXfvXq9DcIU/yh8AAADKmaysLCs3N9frMMqVjIwMe6UB8hNZcI4AAAAAAAAAP+rQoYP19ddf79d7zJkzx5o4caJVWFhoSbIsyyrTzz/99NN+/f+DFRQUuPZeXqJwAAAAAAAAAAAAAABQLmzYsMG69dZbrS1btngdSoVC4QAAAAAAAAAAAAAAIC5eeukla9y4cV6HgWKSvA4AAAAAAAAAAAAAAFAx+K1oICXFH/fqUzgAAAAAAAAAAAAAAEAFRuEAAAAAAAAAAAAAACAubr/9dq9DQAT+WDcBAACgnJkyZYrXIZRr5AcAAAAAAAComC677DLrsssu26ffLSwsdOXPjTfe6NrxGGNcey8vUTgAAAAAAAAAAAAAACj3kpKSrKSk8rWoviSvQ3AFhQMAAAAxkJWVZeXm5nodRrmSkZFhrzRAfiILzhEAAAAAAADgR1999ZX16KOPeh2Ga/bu3et1CK4oX+UYAAAAAAAAAAAAAADfGjJkiNchuIqtCgAAAFAi7hqPjvzADbQjAAAAAPHC+MMZOXJGjoAiO3fu9DoEV1WuXNnrEFxB4QAAAACAhMSWF5Gx5QUAAADgPsYfkbEtoTNyVHrZ2dlehwDsk927d1tVq1b1Ooz9xlYFAAAAAAAAAAAAAIC4uPbaa70OwVVsVQAAAIASUUEejgp7Z9wpDgAAAAAAAL/r1q2b1a1bt/16j99//9364osvQh6TFPb3wsJC+++BnyVZH3300X79/6P9fxMVhQMAAAAAAAAAAAAAgITRvHlzq3nz5vv8++vXr7dmzJjhSizBxQmJjMIBAACAGOCu8ejIDwAAAAAAAFAxFRYWWrNnz7Z2795tFRQUlPgnkpK2BQh+PNprAqsDuFU04CcUDgAAAMQAS/GHY6sCZ2xVAAAAAAAAAL8bOHCg9c0333gdhmvS09O9DsEVSV4HAAAAAAAAAAAAAACoGKZNm+Z1CK7as2eP1yG4gsIBAAAAAAAAAAAAAEBcBLYLQPlC4QAAAAAAAAAAAAAAAPsgOTnZ6xBckeJ1AAAAAH7EPvXRkR8AAAAAAACgYvrggw+sV1991dq+ffs+v4cxxrKsklcvCDwfUPx1P/zwwz7/v4tLSvLHvfoUDgAAAMRAVlaWlZub63UY5UpGRoZdMEB+IgvOEQAAAAAAAOBHNWvWtO69996or5Fk/yksLAz7ubCw0LIsK+TvkV5T0vvMmzfP2r17tyvHs3fvXlfex2sUDgAAAAAAAAAAAAAA4mLEiBHWyJEjvQ7DNX5ZccAfRwEAAAAAAAAAAAAAKPf8VDRgWZaVmprqdQiuoHAAAAAAAAAAAAAAAIB9kJ+f73UIrqBwAAAAAAAAAAAAAACAfeCXFQdSvA4AAAAAAPbFlClTvA4BAAAAQAXB+MMZOXJGjoAiTZs2tVasWOF1GK5JT0/3OgRXUDgAAAAAICFlZWVZubm5XodR7mRkZHAxCgAAAHAZ44/Igscf5CgyclR62dnZXoeAODn22GN9VTiwfft2KzMz0+sw9huFAwAAAAASEpPjAAAAAAAAiWfMmDFeh+AqSV6H4AoKBwAAAAAkJO7UiIwVBwAAAAAAAFBWSV4HAAAAAAAAAAAAAACoGK666iqvQ0AErDgAAAAAAAAAAAAAAIiLs88+25o+fbq1efNme5l/SfbPO3fu9DK8MktJ8ceUuz+OAgAAoJxhmfDoyA/cQDsCAAAAEC+MP5yRI2fkCCjSrVs3r0NwVVKSPxb5p3AAAAAgBth7PVzwvuvkJzL2pi8b2lFktCMAAADAfYw/ImOs74wclV52drbXIQD7JD8/3+sQXEHhAAAAQAwwaRcd+QEAAAAAAAAqpo4dO1pfffWV12G4hhUHAAAAUCIqyMNRYe+MO8UBAAAAAADgd34qGrAsy0pJ8ceUuz+OAgAAoJxh8jc68uOMHAEAAKC06Ds6I0fOyBEAAPsmPT3d6xBcQeEAAAAAUA6xKkNkrMoAAAAQjr5jZKx65owcRcf4AwBio3Xr1tYvv/zidRiu2b17t5WZmel1GPuNwgEAAIAY4IJLOC5IOeOiFAAAAAAAAPzuhRdesLZt22YVFhbajxljIv4sKeRPYWFh2H+L/xx434KCghJf8+CDD1o7d+505Xj27Nnjyvt4jcIBAACAGGDyNzryAwAAAAAAAFRMt912m/Xbb795HYZrggsdEhmFAwAAAAASEgUoAAAAAOKF8YczcuSMHAFF/FQ0YFmWlZ6e7nUIrqBwAAAAAEBCYsuLyNjyAgAAAHAf44/I2JbQGTkqvezsbK9DQJzcd9991qBBg7wOwzVsVQAAAAAgZpj4BQAAQGnRd3RGjpyRIwBAvEyaNMnrEFyVkuKPKXd/HAUAAADgM9yFEBl30wMAAISj7xgZd/k6I0fRMf4AgNg455xzrIULF3odhmsyMjK8DsEVFA4AAADEABdcwnFByhkXpQAAAAAAAOB35513nnXeeed5GsNFF11kbd++3dMYypskrwMAAAAAAAAAAAAAACBeWrdu7dp77d6927X38hIrDgAAAAAAAAAAAAAAyhVJVmFhoSXJ/hP898DPhYWFlmVZIX93ek1qaqqXh1YuUTgAAAAAAAAAAAAAAIiLkSNHWiNGjPA6DNcEihISHVsVAAAAAAAAAAAAAADiYvny5V6H4KqkJH9MubPiAAAAQAxMmTLF6xDKNfIDAAAAAAAAVEwtW7a0vvnmG6/DcE16errXIbjCH+UPAAAAAAAAAAAAAIByb/78+V6H4Kq0tDSvQ3AFKw4AAAAg7rKysqzc3Fyvwyh3MjIy7NUYWJUBAAAApUXf0Rk5ckaOAADxMmDAAOull16ytm3bZlmWZUmyJNnPJ9pqBNu3b7cyMjK8DmO/UTgAAACAuOOClDOKKyILLq4AAABAEfqOkQX3HclRZOQoOsYfABAbTz31lPXFF194HYZrqlSp4nUIrqBwAAAAIAa44BKOC1LOuCgFAAAAAAAAv6tTp47XIbhq165dVqVKlbwOY78leR0AAAAAAAAAAAAAAKBi2Llzp9chuCo/P9/rEFxB4QAAAAAAAAAAAAAAIC4mTpzodQiuSknxxyL/FA4AAAAAAAAAAAAAAOLinHPO8ToEVyUl+WPK3R9HAQAAAAAAAAAAAAAo97KysrwOwVVpaWleh+AKf6ybAAAAUM5MmTLF6xDKNfIDN9COAAAAAMQL4w9n5MgZOQKKDB8+3OsQXJWcnOx1CK6gcAAAACAGsrKyrNzcXK/DKFcyMjLsATL5iSw4R3BGO4qMdgQAAAC4j/FHZIz1nZGj0svOzvY6BMRJw4YNrZ9++snrMFyTl5dnZWZmeh3GfmOrAgAAAAAAAAAAAABAXGzdutXrEFxVUFDgdQiuoHAAAAAAAAAAAAAAABAXxx57rNchuCovL8/rEFzBVgUAAAAxwDLh0ZEfAAAAAAAAoGJ67733vA7BVSkp/phy98dRAAAAlDPsWReOPf2csTc9AAAAAAAA/K5SpUpeh+Cq/Px8r0NwBVsVAAAAAAAAAAAAAADi4uSTT/Y6BETAigMAAAAxwF3j0ZEfuIF2BAAAACBeGH84I0fOyBFQZNasWV6H4KqMjAyvQ3AFhQMAAAAxwFL84diqwBlbFZQN7Sgy2hEAAADgPsYfkTHWd0aOSi87O9vrEBAn5557rvXTTz95HYZrdu/ebdWoUcPrMPYbhQMAAAAxwKRddOQHbqAdAQAAAIgXxh/OyJEzcgQU+fTTT70OwVVpaWleh+AKCgcAAABigArycFTYO+NO8bKhHUVGOwIAAADcx/gjMsb6zshR6bHiQMXRtWtXa8GCBV6H4RpJXofgiiSvAwAAAAAAAAAAAAAAVAzLly/3OgREQOEAAAAAAAAAAAAAACAuPv74Y69DcFVGRobXIbiCrQoAAABigGXCoyM/AAAAAAAAQMWUn5/vdQiu8svxsOIAAAAAAAAAAAAAAAD7IDc31+sQXMGKAwAAADGQlZXlmw6jWzIyMuyVBshPZME5AgAAAAAAAPxo69atXofgqtTUVK9DcAWFAwAAADHA5G905AduoB0BAAAAiBfGH87IkTNyBBSpWbOmtWvXLq/DcE16errXIbiCwgEAAIAY4I76cKw44IwVB8qGdhQZ7QgAAABwH+OPyBjrOyNHpZedne11CIiT9u3bW2vWrPE6DNfk5ORYVapU8TqM/UbhAAAAQAwwaRcd+YEbaEcAAAAA4oXxhzNy5IwcAUU+/vhjr0NwVWZmptchuILCAQAAgBiggjwcFfbOuFO8bGhHkdGOAAAAAPcx/oiMsb4zclR6rDiARJWXl+d1CK5I8joAAAAAAAAAAAAAAEDFcP3113sdgqsKCgq8DsEVFA4AAAAAAAAAAAAAAOLijTfe8DoEVxljvA7BFWxVAAAAEAMsEx4d+QEAAAAAAAAqppNOOsn69ttvvQ7DNenp6V6H4AoKBwAAAGKAPevCsaefM/amBwAAAAAAgN8ddNBBXofgqry8PK9DcAWFAwAAADHA5G905AcAAAAAAAComEaNGuV1CK6qWrWq1yG4gsIBAACAGOCO+nCsOOCMFQcAAAAAAADgd+3bt7fmzZvndRiuyc/P9zoEVyR5HQAAAAAAAAAAAAAAoGJo2bKl1yG4KiXFH/fqUzgAAAAAAAAAAAAAAIgLv21VsHv3bq9DcIU/yh8AAACQUFiOH26gHQEAAACIF8YfzsiRM3IEFDn99NOtqVOneh0GiqFwAAAAIAYYCAKxl5WVZeXm5nodRrmTkZHBZxAAAADgMsYfkQWPP8hRZOSo9LKzs70OAXFSv359r0NwVXJystchuILCAQAAgBhgIBiOgbIzJnwBAAAAAADgd37bqsAvKBwAAACIASZ/oyM/zsgRAAAASou+ozNy5IwcAQCwb9LT070OwRUUDgAAAMQAd9SH4276sqENRRbcjmhPAAAAReg7RsaqZ87IUXSMP8qGHDkjR4A/SfI6BFdQOAAAAIC444JUZBRXlA3tKDLaEQAAAOA+xh+RUXzijByVXnZ2ttchAPtk165dVmZmptdh7DcKBwAAAGKASbvoyA/cQDsCAAAAEC+MP5yRI2fkCChSp04da+PGjV6H4Zr8/HyvQ3AFhQMAAAAxQAV5OCrsnXGneNnQjiKjHQEAAADuY/wRGWN9Z+So9FhxoOI46KCDfFU44JetCpK8DgAAAAAAAAAAAAAAUDFkZGR4HQIiYMUBAACAGOBuX+wv2hAAAABKi76jM3LkjBwBAOLlkUcesb755htrz549EZ8fPHhwnCOCZVE4AAAAAA9wQcoZyxdGxjL8AAAA4eg7Rsby4M7IUXSMPwAgNj7//HNfFQfUqFHD6xBcQeEAAABADHDBJRwXpJxxUQoAAAAAAAB+56eiAcuyrNzcXF9sv0DhAAAAQAww+Rsd+QEAAAAAAACA8oPCAQAAAKAcorgCAAAApUXf0Rk5ckaOAADYN/n5+V6H4AoKBwAAAGKApfjDsVWBM3LkjO0cAAAAwtF3jIz+tTNyFB3jDwCIjZo1a1pbt271OgzXUDgAAACAEnFhITryAwAAAAAAAFRMrVu3tr799luvw3BNRkaG1yG4IsnrAAAAAAAAAAAAAAAAFUPTpk29DsFVeXl5XofgClYcAAAAiAGWeAzHEpjOWAYTAAAAAAAAfnfBBRdYK1assLZt2xbx+Z9++inOEe0fY4zXIbiCwgEAAAAAAAAAAAAAQFw8/vjj1rx587wOwzX5+fleh+AKCgcAAABigLvGoyM/AAAAAAAAQMV08cUX+6pwIDU11esQXEHhAAAAQAywFH84tipwxlYFAAAAAAAA8LuqVat6HYKr9u7d63UIrkjyOgAAAAAAAAAAAAAAQMUwYsQIr0NwlTHG6xBcwYoDAAAAMcBd49GRHwAAAAAAAKBiuuaaa6w+ffp4HYZrMjMzvQ7BFRQOAAAAxABL8YdjqwJnbFUAAAAAAAAAvxs5cqTXIbgqKckfi/z74ygAAAAAAAAAAAAAAOXeCSec4HUIrtq5c6fXIbiCFQcAAAAAAAAAAAAAAHHRuXNnq3PnzjF7f0mOf1588UVr8uTJrvz/kpOTXXkfr1E4AAAAEAMsNx8d+QEAAAAAAAAqpp9//tm68847vQ7DNSkp/phy98dRAAAAAADCUKQTHflxRo6ckSMAAAAAKBs/FQ1YlmWlpaV5HYIrKBwAAACIgaysLCs3N9frMMqVjIwMe3KF/EQWnCPADZxr4fgsckaOnJEjZ3ynAQAAAKgo8vLyrMqVK3sdxn5L8joAAAAAAAAAAAAAAEDFcMstt3gdgqsKCwu9DsEVFA4AAAAAAAAAAAAAAOKievXqXofgqvz8fK9DcAVbFQAAAMQAS/NGR34AAAAAAACAiumJJ57wOgRX+WGbAsuicAAAACAm2O84HPtBO2M/aAAAAAAAAABeoHAAAAAgBpj8jY78AAAAAAAAABVTs2bNrGXLlnkdhmsKCgq8DsEVFA4AAADEAHfUh2PFAWesOAAAAAAAAAC/u+aaa6wBAwZ4HYZrdu/ebVWvXt3rMPZbktcBAAAAAAAAAAAAAAAqhmnTpnkdgquSkvwx5e6PowAAAAAAAAAAAAAAIM5SUvyxyD+FAwAAAAAAAAAAAACAuDj55JO9DsFVhYWFXofgCgoHAAAAAAAAAAAAAABxMXHiRK9DcFV+fr7XIbjCH+smAAAAIKFMmTLF6xDgA7QjAAAAAPHC+MMZOXJGjoAiZ555pjVv3jyvw3BNZmam1yG4gsIBAAAAxF1WVpaVm5vrdRjlTkZGBhcRyoB2FBntCAAAAHAf44/Igscf5CgyclR62dnZXoeAOBk8eLDXIbhq7969XofgCgoHAAAAYoBJu+jID9xAOwIAAAAQL4w/nJEjZ+QI8Ce2KgAAAECJqCAPR4W9M+4ULxvaUWS0IwAAAMB9jD8iY6zvjByVHisOAN6icAAAACAGmLSLjvwAAAAAAAAAFdOXX35pzZo1y9qzZ88+v8f8+fOtiRMn7vPvS9rn3y0uJcUfU+7+OAoAAIByhgrycFTYO+NOcQAAAAAAAPhdcnKydeyxx+7z72/cuNEaMGCAewHBsiwKBwAAAGKCyd/oyA8AAAAAAABQMa1Zs8Z67LHHrK1bt9qPGWNCft68ebOVl5fnRXhllp+f73UIrqBwAAAAACiHKK4AAABAadF3dEaOnJEjAEC8PPnkk9aiRYu8DsM1GRkZXofgCgoHAAAAYoCl+MOxVYEzcuSM7RwAAADC0XeMjP61M3IUHeMPAIiNq666ylqwYIHXYbhmz549XofgCgoHAAAAYoALC9GRHwAAAAAAAKBiKigo8DoEV1WuXNnrEFyR5HUAAAAAAAAAAAAAAICKYdy4cV6H4Kr8/HyvQ3AFKw4AAADEAEs8hmMJTGcsgwkAAAAAAAC/a9eunTV//nyvw3BNXl6e1yG4gsIBAAAAxB2T43AD7QgAAABAvDD+cEaOnJEjoMiYMWO8DsFVtWvX9joEV1A4AAAAEAMMBLG/aEPOWLkiMlauAACg4uG73xk5ckaOomP8ERmrCzojR6WXnZ3tdQiIE7+dBxs3brTq1avndRj7jcIBAAAAoBziYkJkTIoDAACEo+8YGZN1zshRdIw/ACA26tWrZ61fv97rMFxTp04dr0NwBYUDAAAAAAAAAAAAAIC4eOedd6zs7GwrNzfXMsaEPGeMsebMmWN99dVXHkVXdlu2bPHFdgUUDgAAAMQAd2qE404WZ9zNAgAAAAAAAL9LSUmxzjjjjBKfr1y5ckIVDhQvfkhUFA4AAAAAAAAAAAAAAOLil19+sXr06OF1GK7Zu3ev1yG4gsIBAACAGOCu8ejID9xAOwIAAAAQL4w/nJEjZ+QIKNK3b1+vQ0AESV4HAAAAAAAAAAAAAACoGAoKCrwOwVVVqlTxOgRXsOIAAABADGRlZVm5ubleh1GuZGRk2JX15Cey4BzBGe0oMtoRAAAA4D7GH5Ex1ndGjkovOzvb6xAQJ1dffbX15ptveh2Ga3JycnxRPEDhAAAAQAwwaRcd+YEbaEcAAAAA4oXxhzNy5IwcAUXmzJnjdQiuyszM9DoEV1A4AAAAACAhcadGZKw4AAAAALiP8Udk3E3vjByVHisOVBzXXnutdffdd3sdhmv27NnjdQiuoHAAAAAgBhgIhmMyE26jPQEAAACIF8YfzsiRM3IEFGnfvr319ddfl/j8+PHjraFDh8Yxov1TWFjodQiuoHAAAAAAcUdhRWQUV5QN7Sgy2hEAAADgPsYfkXE3vTNyVHqsOFCxSbL/nHHGGdaMGTOs2bNnex1WqUjyOgRXUDgAAAAAAAAAAAAAAIiLV155xRozZozXYbgmLS3N6xBckeR1AAAAAAAAAAAAAACAiuGXX37xOgRX5eXleR2CK1hxAAAAIAZYJjw68gM30I4AAAAAxAvjD2fkyBk5AookJyd7HYKrUlL8MeXuj6MAAAAoZ9izLhx7+jljb/qyoR1FRjsCAAAA3Mf4IzLG+s7IUellZ2d7HQLipHPnztaCBQu8DsM1BQUFXofgCrYqAAAAAAAAAAAAAADExSeffOJ1CIiAwgEAAAAAAAAAAAAAQFy0atXK6xBcJcnrEFzBVgUAAAAxwDLh0ZEfAAAAAAAAoGI6+OCDvQ7BVSkp/phy98dRAAAAlDPsWReOPf2csTc9AAAAAAAA/K5fv35eh+Cq5ORkr0NwBVsVAAAAAAAAAAAAAADi4pJLLvE6BFcZY7wOwRWsOAAAABAD3DUeHfkBAAAAAAAAKqY777zTuvPOO/f59/Py8qwbbrjB+vPPP12Mat/t2bPH6xBcQeEAAABADLAUfzi2KnDGVgUAAAAAAABAdDt27Cg3RQN+QuEAAABADDD5Gx35AQAAAAAAACqm+fPnW7169fI6DNdUqVLF6xBcQeEAAABADHBHfThWHHDGigMAAAAAAADwOz8VDViWZeXk5PiieCDJ6wAAAAAAAAAAAAAAAIB3KBwAAAAAAAAAAAAAAKACY6sCAACAGGC5+ejIDwAAAAAAAFAxHXPMMdaMGTO8DsM1ftimwLIoHAAAAIAHsrKyrNzcXK/DKHcyMjLsogqKKwAAAFBa9B2dkSNn5AgAEC+PPPKINWnSJGv37t2WZVmWJPs5SdaIESM8imzf5Obm+qJ4gMIBAACAGGBiPFzwpDic0YYiox0BAACEo+8YWXDfkRxFRo6iY/wBALHx/fffW0OHDvU6DNfs3bvX6xBckeR1AAAAAAAAAAAAAACAiuHjjz/2OgREwIoDAAAAMcAdCdGRHwAAAAAAAKBievDBB63XXnvN2rFjxz79/pYtW6xff/3V5aj2nTHG6xBcQeEAAAAAAAAAAAAAACAuatasad1zzz0lPr906VLrhhtuiGNE+yczM9PrEFxB4QAAAEAMsDdkOPbOdMb+mQAAAAAAAPC7+fPnW7169fI6DNcUFBR4HYIrkrwOAAAAAAAAAAAAAABQMbz55pteh+CqjIwMr0NwBYUDAAAAAAAAAAAAAIC46Nmzp1WvXj0rOTnZSkpKsv8YY0L+JIrt27d7HYIr2KoAAAAgBlhuPjryAwAAAAAAAFRMH3/8sbV+/Xqvw3BNIhU5REPhAAAAQAxkZWVZubm5XodRrmRkZNgFA+QnsuAcAQAAAAAAAH70wQcfeB2Cq6pVq+Z1CK6gcAAAACAGmPyNjvwAAAAAAAAA8IPdu3dbmZmZXoex3ygcAAAAiAHuqA/HigPOWHEAAAAAAAAAfnfVVVdZo0eP9joM1+Tl5XkdgisoHAAAAIgBJn+jIz8AAAAAAABAxXTjjTdaN954Y6leK8n+E/h78OORXlNYWGhJsgoLCyP+KSgosK6++mrXjiclxR9T7v44CgAAAAAAAAAAAABAuTdhwgTr+eef9zoM1xhjvA7BFUleBwAAAAAAAAAAAAAAqBj8VDRgWf+sgpDoWHEAAAAgBrKysqzc3FyvwyhXMjIy7C0KyE9kwTkCAAAAAAAA/Ojkk0+2pk2b5nUYrsnPz/c6BFdQOAAAAAAAAAAAAAAAiIvbb7/dWrRokbVp06aIzxtjQpb/j7QVgNNrAn8v/prA6gC7du3a9wPwKQoHAAAAAAAAAAAAAABxcf3111s7d+70OgzXVK9e3esQXEHhAAAAQAyw3Hx05AduoB0BAAAAiBfGH87IkTNyBBTxU9GAZRUdT2Zmptdh7DcKBwAAABB3WVlZVm5urtdhlDsZGRn2RQQuJjijHUUW3I4AAEDFwHe/M3LkjBxFx/gjsuDxBzmKjByVXnZ2ttchIE6aNWtmLVu2zOswXJOUlOR1CK6gcAAAACAGGAiGYzKzbGhDkdGOAAAAwtF3jIzJOmfkKDrGHwAQG8OHD7f++usvq6CgwLIsyzLG2P81xlhbtmyx+vbta+3atcvLMEttz549XofgCgoHAAAAAAAAAAAAAABxk5mZaRUWFtp/DxQPWJZlVapUyapRo0bCFA4Ex57IKBwAAABA3HHHBtxAOwIAAAAQL4w/nJEjZ+QIKPLMM89YH330kddhoBgKBwAAABB3LIEZGctglg3tKDLaEQAAAOA+xh+Rsd2FM3JUetnZ2V6HgDhJSkryOgRXJScnex2CKygcAAAAiAEm7aIjPwAAAAAAAEDFdNddd1nXX3+9vVWBJPs5SSF/D34s+M/HH39svfPOO3GNuyR+KYSgcAAAACAGqCAPR4W9s+AcUVwBAACA0qLv6IwcOSNHAIB4qlq16j7/7l9//VVuigYsixUHAAAAAMQQxRWRsQw/AABAOPqOkVG87IwcRcf4AwBi46uvvrIeffRRr8NwjV++P/2xbgIAAAAAAAAAAAAAoNz7+OOPvQ4BEbDiAAAAAICExJ0/AAAAAOKF8YczcuSMHAFFunTpYs2bN8/rMFAMhQMAAAAxwEAwOvLjjBw5YynVyFhOFQCAiofvfmfkyBk5io7xR2Rsd+GMHJVedna21yEgTv773/96HYKrqlSp4nUIrmCrAgAAAAAAAAAAAABAXGzdutXrEFyVlOSPKXdWHAAAAADKIe5CiIy76QEAAMLRd4yMu3ydkaPoGH8AAEpj586dVqVKlbwOY79ROAAAAACUQ1ycAgAAQGnRd3RGjpyRIwAA9o1ftiqgcAAAAAAoh7jbJ7LgO364sAkAAFCEvmNk3E3vjBxFx/ijbMiRM3IE+NP27dutzMxMr8PYbxQOAAAAxAAXXMJxQcoZy2CWDe0oMtoRAAAA4D7GH5Ex1ndGjkovOzvb6xCAfSLJ6xBcQeEAAABADDBpFx35AQAAAAAAAOAHtWvX9joEV1A4AAAAACAhUYACAAAAIF4YfzgjR87IEeBPmzZtsurXr+91GPuNwgEAAIAYYOm5cCzN54wl5suGdhQZ7QgAAABwH+OPyBjrOyNHpcdWBUhUGRkZXofgiiSvAwAAAAAAAAAAAAAAVAxXXnml1yG4yi8FQaw4AAAAACAhcVc9AAAAgHhh/OGMHDkjR0CRv/76y+sQXJWWluZ1CK6gcAAAAABAQmKJx8jYqgAAAABwH+OPyFiG3xk5Kj22Kqg4lixZ4nUIrsrPz/c6BFewVQEAAAAAAAAAAAAAIC5q167tdQiuSkryx5S7P44CAAAAAAAAAAAAAFDu/fTTT16H4CpjjNchuILCAQAAAAAAAAAAAAAA9sHevXu9DsEVFA4AAAAAAAAAAAAAAFCBUTgAAAAAAAAAAAAAAIiLevXqeR2Cq1JSUrwOwRX+OAoAAIByZsqUKV6HUK6RH2fkCAAAAKVF39EZOXJGjgAA8ZKfn+91CK6icAAAAAAlysrKsnJzc70Oo1zJyMiwL0SRn8jIkbPgHAEAAKAIfcfI6F87I0fRMf4AgNjo3r27NXjwYK/DcM3u3butGjVqeB3GfmOrAgAAAAAAAAAAAABAXHzxxRdeh+Cq1NRUr0NwBYUDAAAAAAAAAAAAAIC4OP/8870OwVV+2XqBrQoAAAAAAAAAAAAAAHHRsWNH6+ijj7YKCwstSfYfy7LCfg5+rKS/78trXnnlFWv27NlxOd5EQeEAAAAAAAAAAAAAACAunnzySWvy5Mleh+EaY4zXIbiCrQoAAAAAAAAAAAAAAHHx999/ex2Cq5KS/DHlzooDAAAAAAAAAAAAAIC4GDhwoLV8+fJSbU8Q/HPg71u2bLEGDBgQ/8BLUFBQ4HUIrqBwAAAAAAAAAAAAAAAQF2vXrrXGjRtnbdq0yZJkFRYWhhQHBP4e/HhhYaFlWZZVWFho5ebmenwE/kThAAAAQAxMmTLF6xDKNfLjjBwBAACgtOg7OiNHzsgRACBennjiCWvhwoVeh+GazMxMr0NwBYUDAAAAQDmUlZVF9XQEGRkZXNAEAAAohr5jZMF9R3IUGTmKjvEHAMTGOeec46vCgT179ngdgisoHAAAAIgBLriE44KUMy5KAQAAAAAAwO/OO+8867zzztvn39+yZYvVqVMnFyPaP8YYr0NwBYUDAAAAMcDkb3TkBwAAAAAAAKiYPvzwQ+u5557zOgzX+KVwIMnrAAAAAAAAAAAAAAAAFYOfigYsq2gVUT9gxQEAAIAYYCn+cGxV4IytCgAAAAAAAIDEkpOTY1WpUsXrMPYbhQMAAAAxwORvdOQHAAAAAAAAqJgaNGhgrVu3zuswXOOHogHLonAAAAAgJrijPhwrDjhjxQEAAAAAAAD43eWXX249//zzXofhmh07dviieCDJ6wAAAAAAAAAAAAAAABVDUpK/pqiNMV6H4Ap//asAAAAAAAAAAAAAAMqt77//3usQXJWcnOx1CK6gcAAAAAAAAAAAAAAAEBeZmZleh+Aqv6w4kOJ1AAAAAH7EPvXRkR8AAAAAAACgYmrYsKHXIbgqPz/f6xBcQeEAAABADGRlZVm5ubleh1GuZGRkUDAAV9GeAAAAAMQL4w9n5MgZOQKK3HTTTdZNN90U8TlJ1vjx461hw4bFOap955etCigcAAAAiAEGgkDsUaATGUU6AAAAgPsYf0QWPP4gR5GRo9LLzs72OgSUA8YY66yzzrKmT59uzZs3z+twSsUvWy9QOAAAABADDATDMVB2xoQvAAAAAAAA/G7u3LlW7969vQ7DNbt27bKqVKnidRj7jcIBAACAGGDyNzryAwAAAAAAAFRMI0eO9DoEV1WrVs3rEFxB4QAAAEAMcEd9OFYccMaKAwAAAAAAAPC73r17Ww899JC1devWiM9v3749zhHtn7///tuqX7++12HsNwoHAAAAEHdMjsMNtCMAAAAA8cL4wxk5ckaOgCIHHXSQNWLEiBKfHz9+vDV06ND4BQTLsigcAAAAiAkGgkDssXJFZKxcAQAAALiP8UdkrC7ojByVXnZ2ttchIE4mTpxoPfvss16HgWIoHAAAAIgBBoLhGCg7Y8IXAAAAAAAAfjdu3DivQ0AEFA4AAADEAJO/0ZEfuIF2BAAAACBeGH84I0fOyBFQpFq1atbatWu9DsM1qampXofgCgoHAAAAACQkVq6IjJUrAAAAAPcx/oiM1QWdkaPSY6uCiqN79+5W3759vQ4DxVA4AAAAgLhjoBxZ8MUEJn4BAABQWvQdnZEjZ+QIABAv//73v62vv/66xOfHjx9vDR06NI4R7Z/09HSvQ3AFhQMAAAAxwMR4OO6CLhvaUGS0IwAAgHD0HSPjLl9n5Cg6xh8AEBvPP/+8NWHCBK/DcE1OTo5VpUoVr8PYbxQOAAAAxAAXFqIjP87IEQAAAEqLvqMzcuSMHAEA4sVPRQOWZVmVKlXyOgRXJHkdAAAAAAAAAAAAAAAAiSgjI8PrEFzBigMAAABAOcQyoZGxVCgAAEA4+o6RsQy/M3IUHeMPAEBpbNmyxapfv77XYew3VhwAAAAAAAAAAAAAAGAfJCcnex2CKygcAAAAAAAAAAAAAABgH6Snp3sdgivYqgAAACAGWOIxHEtgOmMZTAAAAAAAACCxFBYWeh2CKygcAAAAiAEmf6MjPwAAAAAAAEDFdOCBB1pr1671OgwUQ+EAAABADHBHfThWHHDGigMAAAAAAADwu4KCAq9DcNXu3butGjVqeB3GfqNwAAAAIAaY/I2O/AAAAAAAAAAV0/r1670OwVVJSUleh+AKCgcAAABigDvqw7HigDNWHAAAAAAAAAASiySvQ3AFhQMAAAAxwORvdOQHAAAAAAAAqJj+/e9/W7Nnz/Y6DBRD4QAAAEAMcEd9OFYccMaKAwAAAAAAAPA7v9yhH5CS4o8pd38cBQAAQDnD5G905AcAAAAAAAComI444ghrzpw5XofhmoKCAq9DcAWFAwAAADHAHfXhWHHAGSsOAAAAAAAAwO+WLVvmdQiuSk1N9ToEV1A4AAAAEANM/kZHfgAAAAAAAICK6fzzz/+/9u48Sq6yzh//p3pJKqQDgixBUJQ5bl9lHL6oyPhVQEQLxS8uo+j4VQkjg8soioDCyCL7KgjDER0RGEBBUZERjKjQIiCLiGyiiINBkIBAFhJS6aXq90dO+tdJV+p2p5+qp1P9ep1Th+pabr3r40XuU/dznyduvvnm3DGS6erqyh0hCY0DAAAwBWmuAABgvBw7FlOjYmoEQLscccQRuSPQgMYBAACYgizn0Njo5Rz8sAkAsIpjx8Ysl1ZMjZoz/pgYNSqmRtCZyuVy7ghJaBwAAAA2SH7YbGz0j5sAAEAaxh+NaT4ppkbj19/fnzsCrJelS5d2RPOAxgEAgBYwEBzLQLmYE74AAAAAdLpddtklfvWrX+WOkUxvb2/uCEloHAAAaAEnf5tTHwAAAACYno499tj4xS9+EdVqNUql0sjjpVJp5O+//OUv8be//W3k77VfN9p4XhMRUa/XR24pf58cGhpKtq2cNA4AALSAK+rHMuNAMTMOAAAAANDpenp6Yo899ljn89ddd11861vfamOiyanVarkjJKFxAACgBZz8bU59AAAAAGB6GhgYiKuvvjpWrFgx8tjoGQLuuuuuHLHW26abbpo7QhIaBwAAWsAV9WOZcaCYGQcAAAAA6HSf/OQn48EHH8wdI5nly5fHjBkzcseYtK7cAQAAAAAAAACYHjqpaSBi1QwKnUDjAAAAAAAAAABtccwxx+SOkFStVssdIQmNAwAAAAAAAAC0xb333ps7QlLd3d25IyShcQAAAAAAAACAtrjiiityR6CBntwBAAA60fz583NHmNLUp5gaAQAwXo4di6lRMTUCgPWz0UYb5Y6QhMYBAIAWqFQqUa1Wc8eYUsrl8sgPUerTmBoVG10jAABWcezYmOPrYmrUnPEHQGt0dXVFrVbLHSOZoaGh3BGS0DgAANACflhoTn0AAAAAYHqaM2dOLFmyJHeMZAYHB3NHSELjAABAC7hSYyxXshRzNQsAAAAAna6TmgYiIoaHh3NHSKIrdwAAAAAAAAAA2BD19HTGtfqd8S0AAKYYV403pz4AAAAAMD199rOfjTPPPDN3jGR6e3tzR0hC4wAAQAuYin8sSxUUs1QBAAAAAJ1uwYIFuSMkNTg4mDtCEpYqAAAAAAAAAKAtBgYGckdIamhoKHeEJMw4AAAAAAAAAEBbfO5zn4uPfOQjUavVGj7/5JNPxmc+85kN5kr+er2eO0ISGgcAAFrAdPPNqQ8AAAAATE8///nP4/jjj88dI5ne3t7cEZLQOAAA0AKVSiWq1WruGFNKuVweaRhQn8ZG1wgAAAAAOtHll1+eOwINaBwAAIApSAMBAADj5dixmBoVUyMA2mXp0qW5I9CAxgEAgBbwg0tz6lPMrAyNmZUBAGAsx46NmfWsmBo1Z/wB0BqdMrX/aqVSKXeEJDQOAAC0gB9cxvKDVDE/SgEAAADQ6Wq1Wu4ISXV3d+eOkITGAQCAFnDytzn1IQX7EQAA0C7GH8XUqJgawSorVqzIHSGpoaGh3BGS6ModAAAAAAAAAIDpYdGiRbkjJNUpjQNmHAAAaAFT8Y9lqYJiliqYGPtRY/YjAABIz/ijMWP9Ymo0fv39/bkj0CYvfvGL449//GPuGKzFjAMAAAAAAAAAtEWnNQ10d3fnjpCEGQcAAIANkqvqAQCAdjH+KKZGxdQIVjn00EPjtNNOyx2DtWgcAABoAQPB5tSHFEzx2JilCgAAID3jj8ZMw19MjcbPUgXTx9NPP507QlKlUil3hCQ0DgAAtICB4FgGysWc8AUAAACg051//vm5IyRVr9dzR0hC4wAAQAs4+duc+hRTIwAAxsuxYzE1KqZGALB+arVa7ghJaBwAAGgBV9SPZcaBYmpUzKwMAABjOXZszPF1MTVqzvgDoDU+8pGPxEUXXZQ7RjIzZszIHSGJrtwBAAAAAAAAAJgeOqlpICJicHAwd4QkzDgAANACrkhoTn0AAAAAgE4wa9as3BGSMOMAAAAAAAAAAG1x8MEH546Q1MDAQO4ISWgcAAAAAAAAAKAtvvzlL+eOkNRGG22UO0ISlioAAGiBSqUS1Wo1d4wppVwujyxRoD6Nja4RAAAAAHSi173udXHLLbfkjpHM0qVLO2K5AjMOAAAAAAAAANAW++67bzznOc/JHSOZUqmUO0ISZhwAAGgBV403pz6kYD8CAADaxfijmBoVUyNY5Wtf+1osXrw4d4xkyuVy7ghJaBwAAAA2SJa8aMySFwAAkJ7xR2OWJSymRuPX39+fOwJtMm/evDjxxBNjyZIluaMksXLlytwRktA4AADQAgaCYxkoF3PCFwAAAIBO97vf/a5jmgYiIoaGhnJHSKIrdwAAAAAAAAAApoeLLrood4SkSqVS7ghJaBwAAAAAAAAAoC0OOeSQ3BGSqtfruSMkYakCAAAAAAAAANri1a9+dbzyla+Mp556Kmq1WgwPD0e9Xh9zv1arRb1ej+Hh4ZH7tVotd/wxZsyYkTtCEhoHAABawDr1zalPMTUCAGC8HDsWU6NiagRAu7z//e/PHSGpmTNn5o6QhMYBAIAWqFQqUa1Wc8eYUsrl8sgPUerTmBoVG10jAABWcezYmOPrYmrUnPEHAOOxcuXK6Ovryx1j0jQOAAAAAAAAANAWP/3pT+OBBx5YY9mBUqkUERH1en3MP1ffGj3e6DXret/ov4888shk32cqLp+wPjQOAAAAAAAAANAW3d3d0dfXF0NDQy3/rKIGgxSGh4eTbi8XjQMAAAAAAAAAtMVee+0VK1euzB0jmZ6ezjjl3hnfAgBgirEGYnPqAwAAAADTUyc1DURoHAAAAMhKAwoAANAuxh/F1KiYGkFnqlaruSMkoXEAAKAFKpVKxxwwplIul0cGyOrT2OgaUcx+1Jj9CAAA0jP+aMxYv5gajV9/f3/uCLTJDjvsEPfcc0/uGKxF4wAAQAs4adec+gAAAADA9DR37lyNA1OQxgEAgBbQQT6WDvtirhQHAAAAoNN1d3fnjpBUb29v7ghJdOUOAAAAAAAAAMD0sPHGG+eOkFSpVModIQmNAwAAAAAAAAC0xVve8pbYbLPNcsdIZnBwMHeEJCxVAADQAqabb059SMF+BAAAtIvxRzE1KqZGsMrZZ58dTz/9dO4YydTr9dwRktA4AADQApVKJarVau4YU0q5XB4ZIKtPY6Nr5McEAACAqcM4tjFj/WJqNH79/f25I9Amjz/+eO4ISfX19eWOkITGAQAAmIL8mNCYH1yKja4RAAAAwFTzxBNP5I6Q1MDAQO4ISWgcAABoASftmlMfAAAAAJieOmVq/9U23XTT3BGS0DgAANACroQey5XixVwpDgAAAECn23nnnePWW2/NHSOZp556KjbffPPcMSZN4wAAQAs4+duc+gAAAADA9PS6172uoxoHeno645R7V+4AAAAAAAAAAEwPN910U+4ISXVK40BnfAsAgCnGVPxjWaqgmKUKAAAAAOh0n/zkJ2PevHm5YySzbNmy6Ovryx1j0jQOAAC0gJO/zalPMTUCAGC8HDsWU6NiagRAuxx99NG5IyRVr9dzR0hC4wAAQAu4on4sMw4UU6NiZmUAABjLsWNjjq+LqVFzxh8ArfHwww/njpBUqVTKHSEJjQMAAC3gh4Xm1IcU7EcAAEC7GH8UU6NiagSdafbs2bkjJKFxAACgBVypMZYrWYqNrpEfE4rZjxpzVRQATD/+219MjYqpUXPGH40Z6xdTo/Hr7+/PHYE2OeKII+LEE0/MHSOZrq6u3BGS0DgAAABTkB8TGnNSHABgLMeOjTlZV0yNmjP+AGiNe++9N3eEpJYtW9YRsw5oHAAAaAE/LDSnPsXUCACA8XLsWEyNiqkRAO1y1VVX5Y6Q1MYbb5w7QhIaBwAAWsCVGmO5kqWYGhVzxQ8AwFiOHRtzfF1MjZoz/gBojc997nNxxhln5I6RzPLly2PWrFm5Y0yaxgEAgBbww0Jz6gMAAAAA09Pb3/72ePGLXxyDg4Mjj5VKpZH7Tz75ZBxzzDEZkk1vGgcAAFrAlRpjuZKlmKtZAAAAAOh0J554YvzsZz/LHSOZer2eO0ISXbkDAAAAAAAAADA9bLXVVrkjJDV6toQNmcYBAAAAAAAAANripS99ae4ISXXKjAOWKgAAaAHTzTenPgAAAAAwPf3gBz/IHSGpGTNm5I6QhMYBAIAWqFQqUa1Wc8eYUsrl8kjDgPo0NrpGAAAAANCJDj/88PjKV74SS5YsiYixV+yP/ntd94eGhmL58uXrfE29Xo9arRb1en3kNvrvZ555Jtn3GRoaSratnDQOAAAAAAAAANAWd955Z9x00025YyQzODiYO0ISXbkDAAAAAAAAADA9/OQnP8kdIamens64Vr8zvgUAAAAAAAAAU97RRx8dF110UcPlAkYvNTD6n2t78skn4+67725dyAnolBkHNA4AALSAdeqbUx8AAAAAmJ423njj+NSnPrXe73/66afjPe95T8JEk9PX15c7QhIaBwAAWqBSqUS1Ws0dY0opl8sjDQPq09joGgEAAABAJ7r66qvj9NNPzx0jmZUrV8acOXNyx5i0rtwBAAAAAAAAAJge+vv7c0dIamhoKHeEJMw4AAAAAAAAAEBbfOlLX4rvfOc7sXz58vV6/9/+9rf4xS9+kTjV+uvu7s4dIQmNAwAAAAAAAAC0RbVajb/+9a/xzDPPjDxWKpUa3l/Xc5tsskksWbKkxUnHp7e3N3eEJDQOAAAAAAAAANAWxx9/fNx55525YyRjqQIAANZp/vz5uSNMaeoDAAAAANPTO97xDo0DU1BX7gAAAAAAAAAATA+Dg4O5I9CAxgEAAAAAAAAA2uKss87KHSGpvr6+3BGSsFQBAEALVCqVqFaruWNMKeVyeWSJAvVpbHSNKKZWAABAuxh/FFOjYmoEq8ycOTNWrFiRO0YyK1as6IjmAY0DAADABkkDSmMaUAAAID3jj8ZcJFBMjcavv78/dwTaZPHixbkjJDVr1qzcEZLQOAAA0AJO2jWnPgAAAABAJxgYGMgdIYmu3AEAAAAAAAAAYEM0Y8aM3BGSMOMAAEALmHpuLFPzFTPFPAAAAABsWKrVavT19eWOMWkaBwAAWsDJ3+bUBwAAAABg6tA4AADQAq6oH8uMA8XMOAAAAABAp3vta18bt912W+4YyQwNDeWOkERX7gAAAAAAAAAATA89Pa5tn4r8rwIA0AKuGm9OfUjBfgQAALSL8UcxNSqmRrDKzTffnDtCUp3SCNEZ3wIAYIoxFf9YliooZqmCibEfNWY/AgCA9Iw/GjPWL6ZG49ff3587Am0yZ86ceOaZZ3LHSEbjAAAAAAAAAABMwJVXXhm/+c1vYuXKlVGv1yMiolarjdyPiKjX61Gr1Ubur76Nfn5dt9HPr+u1//Ef/5Hs+3RKQ5DGAQAAAAAAAADa4qtf/WpcccUVuWOwFo0DAAAtYJrw5tQHAAAAAKan5cuX546Q1OzZs3NHSKIrdwAAAAAAAAAApocPfehDscUWW0SpVEp+y2FwcDDL56ZmxgEAAJiCzMoAAMB4OXYspkbF1AiAdjnhhBPib3/7W+4YyQwMDOSOkITGAQAAmIIqlUpUq9XcMaaccrnsB00AgLU4dmxs9LGjGjWmRs0ZfwC0xv333587QlKbbrpp7ghJWKoAAAAAAAAAgLY48MADc0dIatGiRbkjJKFxAAAAAAAAAIC2mD17du4ISZXL5dwRkrBUAQBAC5jicSxTYBYzDSYAAAAAna6/vz93hKRWrlyZO0ISGgcAAFrAyd/m1AcAAAAApqd99903fv3rX+eOkUxvb2/uCEloHAAAaAFX1I9lxoFiZhwAAAAAoNNdfPHFuSMkNTAwkDtCEl25AwAAAAAAAAAwPXziE5+IjTbaKHcM1mLGAQAAAAAAAADa4qUvfWlcffXV6/3+xx9/PN7//vcnTDQ53d3duSMkoXEAAAAAAAAAgLZ47LHH4tRTT41Fixat8XitVovh4eEYHByMoaGhiIio1+sjt9F/TyUaBwAAWCfr1DenPsXUCACA8XLsWEyNiqkRAO3yz//8z7kjJFWr1XJHSELjAABAC1QqlahWq7ljTCnlcnnkhyj1aUyNio2uEQAAqzh2bMzxdTE1as74A6A1enp6RmYU6ASd0jjQlTsAAAAAAAAAANPDsccemztCUqVSKXeEJDQOAAAAAAAAANAWX/7yl3NHSGrGjBm5IyRhqQIAgBYwlWFz6kMK9iMAAKBdjD+KqVExNYJVuro669r2wcHB3BGS0DgAANAC1oYcy9qZxayfOTH2o8bsRwAAkJ7xR2PG+sXUaPz6+/tzR6BNDjvssDjkkENyx0hG4wAAAAAAAAAATMBOO+0U1113XdTr9ajX6xERI/dX/93osbXvN3rN8PDwyN+1Wi1qtdqY+8PDw3HuuefGHXfckeT7lEqlJNvJTeMAAEALuNq3OfUBAAAAgOnp85//fNx22225Y7AWjQMAAMAGSQMKAADQLsYfxdSomBrBKp3WNNDb25s7QhIaBwAAWsCadWNZ06+Yteknxn7UmP0IAADSM/5ozFi/mBqNX39/f+4ItMn//t//O37zm9/kjsFaunIHAAAAAAAAAGB6mDNnTu4ISQ0ODuaOkIQZBwAAAAAAAABoi6OOOip+85vfxMDAQMPnf/KTn8QNN9zQ5lRoHAAAAAAAAACgLW6//fb4whe+kDsGa9E4AADQAtYXb059AAAAAGB66rSmgZkzZ+aOkITGAQAAmII0VwAAMF6OHYupUTE1AoD1o3EAAIB1qlQqUa1Wc8eYUsrl8sgPUerTmBoVG10jAABWcezYmOPrYmrUnPEHQGucdtppcfLJJ8dTTz2VO0oSS5cujY022ih3jEnTOAAAAAAAAABAW7z61a+OK664Yr3eW6/X17jVarWo1Wpr3F/773q9HsPDw2s8NjAwEFdccUU88MADY55bfX9dj6++rW64q9frKcuTjcYBAAAAAAAAANrioYcein//93+PJ598cuRkfMT/3xRAHhoHAABawFSGzakPKdiPAACAdjH+KKZGxdQIVtl///1zR0hqq622yh0hCY0DAAAtYG3IsaydWcz6mRNjP2rMfgQAAOkZfzRmrF9Mjcavv78/dwTaZPPNN48nn3wyd4xkFi9eHJtttlnuGJOmcQAAoAWctGtOfQAAAABgejrwwAPjhBNOyB0jmYGBgdwRktA4AADQAjrIx9JhX8yV4gAAAAB0uk5qGoiImDlzZu4ISXTlDgAAAAAAAAAAG6Lh4eHcEZIw4wAAQAu4arw59QEAAACA6emCCy6IefPm5Y6RTFdXZ1yrr3EAAKAFTMU/lqUKilmqAAAAAIBOd+655+aOkFStVssdIYnOaH8AAAAAAAAAYMrbddddc0dIamhoKHeEJMw4AAAAAAAAAEBb7L333rH33nsXvq5er4/c1vX36qv9x/Pa0X8ffPDBsWDBguTfbUOmcQAAAAAAAACAKeH222+Pww47LHeMcVvdjLCh0zgAANAC1qlvTn0AAAAAgEZWrFiRO8KEzJw5M3eEJDQOAAC0QKVSiWq1mjvGlFIul0caBtSnsdE1AgAAAIBOdM8998SnP/3p3DGSGRoayh0hCY0DAAAt4ORvc+oDAAAAANNTJzUNRESUSqXcEZLQOAAA0AKuqB/LjAPFzDgAAAAAABsWjQMAAKyTk7/NqQ8p2I8AAIB2Mf4opkbF1Ag606abbpo7QhIaBwAAgA2SmSsaM3MFAACkZ/zRmNkFi6nR+PX39+eOQJucc8458alPfSp3jGT+9re/xdy5c3PHmDSNAwAALWAgOJaBcjEnfAEAAADodK985Svj+uuvX+fzv/jFL+KYY45pXyAiIqIrdwAAAAAAAAAAiIiYPXt27gjTkhkHAAAAAAAAAGiLxYsXx/z582P58uUREVGv16Ner69xf9999x35e/Tj9Xo9arXayD9X3x/P46P/vvnmm/N8+SlM4wAAQAuYbr459QEAAACA9luwYEFcfvnlWTP8+Mc/zvr5qZXL5dwRktA4AADQApVKJarVau4YU0q5XB5pGFCfxkbXCAAAAABSqlarsd9+++WO0XGGh4dzR0iiK3cAAAAAAAAAAFpr5syZseeee+aO0XEGBwdzR0jCjAMAAC3gqvHm1KeYGgEAMF6OHYupUTE1Auh8pVIpjjjiiDjiiCOy5th9992zfn5qXV2dca2+xgEAgBYwFf9YlioopkbFLOcAADCWY8fGHF8XU6PmjD8AWuPAAw+Mr33ta7ljJNPT0xmn3Duj/QEAAAAAAACAKe+2227LHSGp4eHh3BGS6Iz2BwCAKcYVCc2pDwAAAABMT29/+9vjzjvvzB2DtWgcAABoAVM8jmUKzGKmwQQAAACg0+2xxx6xxx57ZM3wlre8JQYHB5Nsy4wDAACsk5O/zakPAAAAAJBLqqaBiIje3t5k28pJ4wAAQAu4on4sMw4UM+MAAAAAAJ3uwQcfjK9//euxcOHC3FGSGBgYyB0hCY0DAAAt4ORvc+pDCvYjAACgXYw/iqlRMTWCVb785S/H/fffnztGMmYcAABgnVxRP5YZB4qZcWBi7EeN2Y8AACA944/GjPWLqdH49ff3545Am7znPe+J448/PneMZIaGhnJHSELjAAAAAAAAAABtsccee8SrXvWqdZ5w/93vfhfHHXdcm1Otv3q9njtCEhoHAABgCnLFOAAA4+XYsZgaFVMjANrllFNO6aj/7syYMSN3hCQ0DgAAwBRk+sLGTMMPADCWY8fGTA9eTI2aM/4AaI1O+//WwcHB3BGS6ModAAAAAAAAAADIR+MAAAAAAAAAAG3x/Oc/P3cEGrBUAQAAbddp05GRh/0IAABoF+OPYmpUTI1glX/+53+OU045JXeMZGbOnJk7QhIaBwAAaDtrZzZm/cyJsR81Zj8CAID0jD8aGz3+UKPG1Gj8+vv7c0egTSqVSlQqlXU+//jjj8fHP/7xWLRoURtTrb+hoaHcEZLQOAAA0AJO2jWnPgAAAAAwPT344INx6KGHxuLFi9fr/aVSKUqlUsPHmz0/+jUDAwPr9dmN1Gq1ZNvKSeMAAABMQZorAAAYL8eOxdSomBoB0C7nnHPOejcNRETU6/Wo1+vpAk1Sd3d37ghJaBwAAGgBU8+NZWq+YmpUzDT8AABjOXZszPF1MTVqzvgDoDUef/zx3BGS6urqyh0hic74FgAAAAAAAABMeW95y1tyR0hqaGgod4QkzDgAAABskFz5AwAAtIvxRzE1KqZGsMr+++8f+++/f+HrVi9JsPbt8ccfjw9/+MNtSDo+vb29uSMkoXEAAKAFDASbUx9SMJVqY6ZTBQCA9Iw/GrPcRTE1Gr/+/v7cEWiTBx98MA477LBYtGhR7ihJdMpSBRoHAABgCnLiFwCA8XLsWEyNiqkRAO1ywAEH5I6Q1PDwcO4ISWgcAACAKchVCI25mh4AYCzHjo25yreYGjVn/AHQGttss008+uijuWMkMzg4mDtCEhoHAABawA8uY/lBqpgfpQAAAADodBdffHE8/PDDMTQ0FKVSKSJijX+uvo3+e/X9er0+cltt7cca/T368YiIj33sY234phsWjQMAAC3g5G9z6gMAAAAA01OpVIrtttsua4bZs2fH8uXLk2yrq6sryXZy64xvAQAAAAAAAADjsM022+SOMOWYcQAAoAVMxT+WpQqKja6RWRkAAAAA6ES33357HHbYYbljsBaNAwAAMAVprmhsdHMFAAAAABueSy+9NHcEGtA4AADQAk5sNqc+AAAAADA9HXLIIXHCCSfEokWLolQqRUREqVQac3/032v/c13Pj/c19913X7LvM2vWrGTbyknjAABAC7hafCxLFRRzNT0AAAAAnW7bbbeNr371q5PaRq1Wi4GBgZGGgFqtFhER9Xp9XPc/85nPxCOPPDKpDKstW7Ys+vr6kmwrJ40DAAAAAAAAALTFgw8+GIcddlgsWrQodxRG0TgAANACrhpvTn1IwX4EAAC0i/FHMTUqpkawyjnnnNNRTQObbLJJ7ghJaBwAAAA2SJa8aMySFwAAkJ7xR2OWJSymRuPX39+fOwJt0t3dnTtCUsuWLYtZs2bljjFpGgcAAFrAQHAsA+ViTvgCAAAA0OnuvPPO3BGSKpfLuSMkoXEAAKAFnPxtTn0AAAAAYHp6wxveEL/85S9zx0imp6czTrl3xrcAAJhiXFE/lhkHiplxAAAAAIBOd/TRR8dtt90WK1euzJbhS1/6UrJtWaoAAAAAAAAAACagu7s7dtlll0lt46qrroqvfe1rUavVIiKiXq+vcX/tWyuZcQAAAGgZMw8AADBejh2LqVExNQJgQ7Fw4cI488wzc8cY0erGhHbpyh0AAAAAAAAAADZEOZdcSMmMAwAAMAVVKpWoVqu5Y0w55XLZlVAAAGtx7NjY6GNHNWpMjZoz/gCYmrbccsvcETqSxgEAAAAAAAAA2uIHP/hBnH322bljJFMqlXJHSMJSBQAAAAAAAAC0xa233po7QlIzZ87MHSEJMw4AAAAAAAAA0BbHHntsXH311fHss8+ucbX+2lful0qlps+v/Vij96/rNddff33cc889k/gW/79OWepH4wAAQAtYA7E59QEAAACA6emBBx7oqKUKZs2alTtCEhoHAABaoFKpdEynaSrlcnmkYUB9GhtdIwAAAADoRJ/61KdyR0hq5cqVuSMk0ZU7AAAAAAAAAABsiGbMmJE7QhJmHAAAaAFXjTenPgAAAABAJyiVSrkjJKFxAACgBUzFP5alCopZqgAAAAAANixDQ0O5IyShcQAAoAWc/G1OfQAAAABgenrrW98aP/nJT3LHSKZWq+WOkERX7gAAAAAAAAAATA/PPvts7ghJzZkzJ3eEJDQOAAAAAAAAANAWm2++ee4ISS1ZsiR3hCQsVQAA0AKVSiWq1WruGFNKuVweWaJAfRobXSMAAAAA6EQDAwO5IyQ1c+bM3BGS0DgAAAAAAAAAQFsccsgh8eEPfziGh4cbPn/33XfHySef3OZU62/lypW5IyShcQAAAAAAAACAtrjkkkvi/PPPzx2DtXTlDgAAAAAAAADA9PDAAw/kjkADGgcAAAAAAAAAaIsPf/jDuSPQgKUKAABaYP78+bkjTGnqU0yNAAAYL8eOxdSomBoB0C4HHHBA7ghJ9fb25o6QhMYBAIAWqFQqUa1Wc8eYUsrl8sgPUerTmBoVG10jAABWcezYmOPrYmrUnPEHQGtsvfXW8dhjj+WOkUytVssdIQlLFQAAAAAAAADQFq961atyR0iqVCrljpCExgEAAAAAAAAA2qLTZnMZHh7OHSEJSxUAANB2nTY4IA/7EQAA0C7GH8XUqJgaQWfaaKONckdIQuMAAABtZ+3MxqyfOTH2o8bsRwAAkJ7xR2Ojxx9q1JgajV9/f3/uCLTJxhtvHEuXLs0dI5mBgYHcEZLQOAAAAGyQnBwHAAAA2PB0UtNARER3d3fuCEloHAAAoO2c8AUAAGBDYhxbTI2KqRF0pp6ezjjl3hnfAgCADYqp+RozxfzE2I8asx8BAEB6xh+NmYa/mBqNn6UKpo+Pfexjcd555+WOkcyyZcuir68vd4xJ68odAAAAAAAAAIDp4a677sodIalSqZQ7QhIaBwAAAAAAAABoi49+9KO5IyRVr9dzR0jCUgUAAC1gmvDm1KeYGgEAMF6OHYupUTE1AqBdzjjjjNwRkurp6YxT7p3xLQAAphhr1o1lTb9ialRsdI0AAFjFsWNjjq+LqVFzxh8ArfH2t789fve73+WOkUxXV2dM8q9xAAAAAAAAAIC2eN3rXhd77rlnLF26NLq6uqJUKkWpVBo5Ad/V1bXOx0ulUixdujRuvvnmnF9hDcPDw7kjJKFxAACgBVyR0Jz6kIL9CAAAaBfjj2JqVEyNYJXjjz8+7rzzztwxkpk1a1buCEloHAAAaAFTPI5lCsxipsGcGPtRY/YjAABIz/ijMWP9Ymo0fv39/bkj0Cb/9//+345qHFi5cmX09fXljjFpGgcAAAAAAAAAaIvXve51ceCBB8azzz7b8PkFCxbEDTfc0OZU629gYCB3hCQ0DgAAAAAAAADQFkcffXTcdtttuWMkUyqVckdIoit3AAAAAAAAAACmh3/8x3/MHSGper2eO0ISZhwAAGgB64s3pz4AAAAAMD294x3viG233TZWrlyZLcO///u/J9vWRhttlGxbOWkcAAAAAAAAAKAt3vnOd8YzzzyTO0Yy1Wo1Ntlkk9wxJk3jAABAC1QqlahWq7ljTCnlcnlkpgH1aWx0jQAAAACgE3VS00BE5yxV0JU7AAAAAAAAAADTwxe+8IXcEZLq6emMa/U1DgAAAAAAAADQFl/5yldyR0hqaGgod4QkNA4AAAAAAAAA0BYrVqzIHYEGNA4AAAAAAAAA0BYzZszIHSGpcrmcO0ISGgcAAAAAAAAAaIuTTjopd4SkVq5cmTtCEj25AwAAdKL58+fnjjClqQ8p2I8AAIB2Mf4opkbF1AhWOfzww3NHSGrjjTfOHSEJjQMAAC1QqVSiWq3mjjGllMvlkQGy+jQ2ukZ+TChmP2ps9H4EAEwP/ttfTI2KqVFzxh+NGesXU6Px6+/vzx2BNhkYGMgdgQY0DgAAtIAfXJpTHwAAAACYnvr6+mLZsmW5YySzZMmSmDVrVu4Yk6ZxAACAttNh35grxQEAAADodNttt13cd999uWMks8kmm+SOkITGAQCAFnBifCwnxSfGPtSY/Whi1Ko59SmmRsXUCJgKHDs2ZnrwYmrUnPEHQGt0UtPAy1/+8iiXy7ljJKFxAACgBfyw0Jz6QHv48XcsP44XU6NialTMiRYAAGBd3v/+98dll12WO0YS999/fzz55JOxxRZb5I4yaRoHAABawEmEsZxkKeYkCwAAAACd7sADD4wDDzxwnc9fccUVce6557Yx0eQMDw/njpBEV+4AAAAAAAAAABARseeee8ZOO+2UO8a0o3EAAAAAAAAAgCnhwQcfjDvuuCN3jHHr7e3NHSEJjQMAAAAAAAAATAlLly7NHWFCarVa7ghJ9OQOAAAAAAAAAMD08MQTT8RXvvKVWLJkSXR1dUWpVIpSqTRyv6urK57//OfHU089FbVaLYaHh6Ner0etVmt6kr6rq2vkn6u3ua7bsmXLkn2f4eHhZNvKSeMAAEALzJ8/P3eEKU19SMF+BAAAtIvxRzE1KqZGsMq+++7bku2ubipo9wwA5XK5rZ/XKhoHAABaoFKpRLVazR1jSimXyyMDZPVpbHSNKGY/asx+BAAA6Rl/NGasX0yNxq+/vz93BFgvPT2dccq9K3cAAAAAAAAAAKaHM844I3eEpFIue5BTZ7Q/AABMMa72bU59iqkRAADj5dixmBoVUyMA2uW//uu/ckdIqq+vL3eEJDQOAAC0gKnnxjI1XzE1KmYafgCAsRw7Nub4upgaNWf8AdAaH/jAB+Kuu+7KHSOZZcuWdUTzgMYBAIAW8MNCc+oDAAAAANPTD37wg9wRkpo1a1buCEl05Q4AAAAAAAAAwPRw66235o5AA2YcAABoAVM8jmUKzGKmwQQAAACADcvg4GDuCEloHAAAaAEnf5tTHwAAAACYnl7ykpfEAw88kDsGa7FUAQAAAAAAAABt0dvbmztCUt3d3bkjJGHGAQCAFjAV/1iWKihmqQIAAAAAOt3uu+8e9913X+4YyaxcuTJ3hCQ0DgAAtICTv82pDwAAAABMT7/97W9zR0hqo402yh0hCUsVAAAAAAAAANAWN954Y+4INGDGAQCAFjAV/1iWKihmqQIAAAAAOt2b3/zm+NnPfpY7RjIDAwO5IyRhxgEAAAAAAAAA2uJFL3pR7ghJDQ4O5o6QhMYBAAAAAAAAANrid7/7Xe4ISZVKpdwRkrBUAQBAC5huvjn1AQAAAIDp6Utf+lLceOONsXLlyvV6f61Wi9NOOy1qtVriZNObxgEAgBaoVCpRrVZzx5hSyuXySMOA+jQ2ukYAAAAA0Im6u7tj1113Xe/3P/7445oGWkDjAAAAAAAAAAAbhK222iqOOOKIuPjii9d7G3/5y1+S5dloo42SbSsnjQMAAAAAAAAATBl33HFHPPzww01f8653vWu9t3/22Wev93vXViqVkm0rJ40DAAAAAAAAALTFjTfeGEceeWTuGMksX7485syZkzvGpHXlDgAAAAAAAADA9PC9730vd4Skuru7c0dIQuMAAAAAAAAAAG1x0EEH5Y6Q1PDwcO4ISViqAACAtps/f37uCHQA+xEAANAuxh/F1KiYGsEq5557bu4ISfX19eWOkITGAQAA2q5SqUS1Ws0dY8opl8t+RJgA+1Fj9iMAAEjP+KOx0eMPNWpMjcavv78/dwTa5BWveEX8+te/zh0jmWXLlnVE84DGAQCAFnDSrjn1KaZGAACMl2PHYmpUTI0AaJfrrrsud4SkNtlkk9wRktA4AAAAU5CrEBobfaWGHzYBAFZx7NiYq3yLqVFzxh8To0bF1Gh6ueSSS+KXv/xl3HHHHXHPPffEwMBAXHDBBbHffvsVvvehhx6KHXbYIZYvXx4HHnhgnHfeea0P3EZ/+ctfckdIaunSpTFr1qzcMSZN4wAAQAv4wWUsP0gVM8X8xNiPGrMfAQBAesYfjRnrF1Oj8eu0pQq++MUvxoIFC2LzzTePrbfeOhYsWDCu99Xr9Zg3b16L0+X16le/uqOWKuju7s4dIQmNAwAALeCkXXPqAwAAAEAn+8Y3vhEvfvGLY7vttouTTz45Dj/88HG975xzzombbropTj311Dj44INbnDKPhQsX5o6QVKlUyh0hCY0DAADABkkDCgAA0C7GH8XUqJgaTS9vfvObJ/yeBx98MA4//PA47LDDYscdd2xBqqmhE6b1H61er+eOkITGAQCAFjD13Fim5itmivmJsR81Zj8CAID0jD8aM9Yvpkbj12lLFUxUrVaLefPmxXbbbRdHHXVU/OpXv0r+GY888kj8+Mc/joULF8bcuXNjr732im233Tb55xSZN29eHHHEEW3/3FYZHBzMHSEJjQMAAAAAAAAAGZ111llx8803x4033hgzZ85Mvv0f//jHcfrpp6/x2GWXXRaHHnpoVCqV5J/XzC677BLXX3/9uF5br9dHbqv/Hv14o9es632j/543b14sWrQoyffp7e1Nsp3cNA4AAAAAAAAAZPLAAw/EF7/4xTjooINil112Sb79Rx55JE4//fSo1Wpjnjv11FNj5syZsfnmm0fEqpkP1nWyvV6vj2yj2Yn5opP2xx13XPLvmFNPT2eccu+MbwEAAEw7puMHAADaxfijmBoVUyMaqdVqsd9++8Xznve8OP7441vyGT/+8Y/X+Vy9Xo9jjz22JZ87XcyZMyd3hCQ0DgAAABska0M2Nnr9TAAAIA3jj8ZGjz/UqDE1Gr/+/v7cEbI4++yz45ZbbonrrrsuNtpoo5Z8xsKFC1uyXVZZsmRJbLbZZrljTJrGAQAAAAAAAIAMfvvb30a9Xo/dd9+94fNf+9rX4mtf+1rss88+ceWVV67XZ8ydO3edz3V1dcX73//+OOCAA0YeG73EwOh/rr4/2cff8Y53rNf3mKq6urpyR0hC4wAAQAu42rc59QEAAACAiF133TV6esaesn3sscfimmuuiZe97GXx+te/Pnbcccf1/oy99torLrvssnU+/7a3vW2Nv0ul0hr/TO0Vr3hF3HfffS3Zdg5DQ0O5IyShcQAAoAVMPTeWqfmKmWIeAAAAYHqZN29ezJs3b8zj/f39cc0118Suu+4a55133qQ+Y9ttt41DDz00TjvttDHPHXroobHNNttMavsTtd9++8Whhx7a1s9sJY0DAAAAAAAAAIzxjW98I2688caIiLjnnntGHuvv74+IiHe+853xzne+s215KpVK7LDDDnHNNdfEwoULY+7cufG2t72t7U0DERFHHnlk2z+TYhoHAABawFXjzakPAAAAAJ3sxhtvjIsuumiNx2666aa46aabIiLihS98YVsbByIittlmmzjggAPa+pmNdNpMpL29vbkjJKFxAACgBUzFP5Zp+EnN/gQAALSL8UcxNSqmRtPLhRdeGBdeeOF6v3+33XaLer2eLtAUsuOOO8add96ZO0YyXV1duSMkoXEAAIC201jRmOaKibEfNWY/AgCA9Iw/Ghs9/lCjxtRo/FZP4U/nO/300+POO++MgYGBkcfq9frI7a9//Wt89atfzZhwYlauXJk7QhIaBwAAWsBJu+bUBwAAAACmp4997GPxxz/+MXeMZLq7u3NHSELjAAAAQIfSpNOc+hRTo2JqBAAAMDGd1DQQETFz5szcEZLQOAAAANChTIM5lmlCi6lRMTUqZtkUAABgXWbPnh3Lly/PHSOZrq6u3BGS0DgAAAAAAAAAQFtcddVV8etf/zpWrlwZ9Xq96S0iolarTep+RES9Xl/j/n/+538m+z7VajX6+vqSbS8XjQMAAC3g6sOxXJ1ZzNWZAAAAAHS6r3/963H55ZfnjpHM4OBg7ghJdMa8CQAAAAAAAABMeUuWLMkdIamens64Vr8zvgUAwBTjqvHm1AcAAAAApqfh4eHcEZLq7e3NHSEJjQMAAC1gKv6xLFVQzFIFAAAAAHS6n/70p7kjJDUwMJA7QhKWKgAAAAAAAACA9dDV1Rmn3M04AADQAq4ab059AAAAAGB6et7znhd//etfc8dIplOWKuiM9gcAAAAAAAAApry3vOUtuSMktWLFitwRktA4AAAAAAAAAEBbXHjhhbkj0IClCgAAgA2SJS8AAIB2Mf4opkbF1AhWmTt3bixcuDB3jGTK5XLuCEloHAAAADZIlUolqtVq7hhTTrlc9mMUAAAkZvzR2Ojxhxo1pkbj19/fnzsCbfLpT386zjrrrHjiiSdyR0miU/691jgAANACBoJjGSgXc8IXAAAAgE639dZbx0tf+tLYbLPNsmX4/e9/n2xb9Xo92bZy0jgAANACTv42pz6kYD8CAADaxfijmBoVUyNY5aCDDoqlS5fmjpFMb29v7ghJdOUOAAAAAAAAAMD00ElNAxERtVotd4QkzDgAANACpuIfyzT8AAAAAMCJJ54YRxxxRO4YyfT0dMYp9874FgAAU4wT5M1prGhsdHOFfaiY/agxTToAMP34b38xNSqmRs0ZfzQ2evyhRo2p0fj19/fnjkCb/OhHP8odIamurs6Y5F/jAABACxgIjuVk5sTYhxqzHwEAjOXYsTEn64qpUXPGHwCt8ec//zl3hKSGhoZyR0iiM9ofAAAAAAAAAJjy/vrXv+aOkNTMmTNzR0hC4wAAAAAAAAAArId6vZ47QhKWKgAAAAAAAACgLS688MK46KKL4qmnnmr4/N13393mRJOzfPny2HjjjXPHmDSNAwAALWANRCbLPgQAwHg5diymRsXUCIB22W677eKoo45a5/MnnXRSXHvttW1MNDmzZs3KHSEJjQMAAC1QqVSiWq3mjjGllMtlP0RNgH2oMfsRAMBYjh0bG33sqEaNqVFzxh8AeTz3uc/NHWFChoaGckdIQuMAAAAAAAAAAFPCAQccEK961avi4Ycfju7u7ujp6Ynu7u6R22OPPRYXXHBB7pgjNA4AAAAAAAAAQEKlUil23nnn2HnnnRs+/9RTT02pxoFOoXEAAKAFTGXYnPoAAAAAwPR07733xqc+9ancMZLp6emMU+5duQMAAAAAAAAAMD10UtNARMTMmTNzR0iiM9ofAACmmEqlEtVqNXeMKaVcLo/MNKA+jY2uEQAAAAB0ojlz5sQzzzyTO0YyAwMDuSMkYcYBAAAAAAAAANpi++23zx0hqU5ZqqAzvgUAAAAAAAAAU96hhx4aJ5xwQixevDhKpdLI46VSaeQ2+u+1nx8YGIhHH3207bnXpVqtxiabbJI7xqRpHAAAaAHTzTenPgAAAAAwPW211Vbxnve8Z51LmTZqGBhtyZIlcd5557U040T09vbmjpCExgEAgBaoVCrrPPCdrsrl8kjDgPo0NrpGAAAAANCJ9txzz9wRkhoeHs4dIYmu3AEAAAAAAAAAYEO09owIGyqNAwAAAAAAAAC0xSmnnJI7QlJDQ0O5IyShcQAAAAAAAACAtjjzzDNzR6CBntwBAAA6kXXqm1MfUrAfAQAA7WL8UUyNiqkRrLJw4cLcEWhA4wAAQAtUKpWoVqu5Y0wp5XJ5ZICsPo2NrhHF7EeN2Y8AACA944/GjPWLqdH49ff3545Am2y99dbx2GOP5Y6RTHd3d+4ISWgcAABoASftmlMfAAAAAJiePvCBD8SXv/zl3DGSGR4ezh0hia7cAQAAAAAAAACYHq688srcEZJ6znOekztCEmYcAABoAVPPjWVqvmKmmAcAAACg0y1dujR3hKQWL14cc+fOzR1j0jQOAAAAdCiNKM2pTzE1KqZGAAAAE/Pkk0/mjpBUd3d37ghJaBwAAGgBJxGaUx9oD7N7jGX2k2JqVEyNiplFBwAAmC56ejrjlHtnfAsAAOgwTrYAADBejh2LqVExNQKA9VOv13NHSELjAAAATEGuYG3MFawAAGM5dmzMDDHF1Kg54w8AphONAwAALeAHl7H8IFXMj1IAAAAAdLqddtop7rjjjtwxkrFUAQAArCcnx0nBfgQAALSL8UcxNSqmRrDKMcccE5dcckksW7as4fNXX311mxNNzrPPPhsbb7xx7hiTpnEAAIC2M+NAY2YcmBj7UWP2IwAASM/4ozGzCxZTo/Hr7+/PHYE2WbhwYVx77bWxaNGi3FGSMOMAAADr5KRdc+oDAAAAANPTAQcckDsCDWgcAABoAR3kY+mwL+ZKcVKzPzWnPsXUqJgaAQAATG+9vb25IyShcQAAoAWcRGhOfaA9NOmMpYmpmBoVU6NimuEAAIB1mTt3bixcuDB3jGS6u7tzR0hC4wAAQAs4iTCWkyzFnGQBAAAAoNPtuuuucfnll+eOkczy5cujr68vd4xJ68odAAAAAAAAAIDpYcstt8wdIal6vZ47QhJmHAAAaAFXjTenPgAAAAAwPd122225IyTV09MZp9w741sAAAAAAAAAMOUde+yxcfXVV8eKFSuiVCqNPF4qlUZuo/9efX+8r+nq6mr6/oiIk08+Odn3GRoaSratnDQOAAC0QKVSiWq1mjvGlFIul0dmGlCfxkbXCAAAAAA60YwZM+Jd73pX1gwpGwc6hcYBAIAWcPK3OfUBAAAAgOnpD3/4Q3z605+OgYGB3FGSKJfLuSMkoXEAAKAFXFE/lhkHiplxAAAAAIBOd9JJJ3VM00CEpQoAAGjCyd/m1IcU7EcAAEC7GH8UU6NiagSrLFiwIHeEpHp7e3NHSKIrdwAAAAAAAAAA2BDNnDkzd4QkzDgAANACpuIfy1IFxSxVMDH2o8bsRwAAkJ7xR2PG+sXUaPz6+/tzR4D1snjx4pg7d27uGJNmxgEAAAAAAAAA2uIzn/lM7ghJ1ev13BGSMOMAAEALuNq3OfUBAAAAgOlpn332iX322SciImq12pjbkiVL4sQTT4x77703c9LxmTFjRu4ISWgcAABoAVPPjWVqvmKmmAcAAACg033961+Pb3/727ljJDM8PJw7QhKWKgAAAAAAAACgLR555JHcEWhA4wAAAAAAAAAAbfHwww/njpBUvV7PHSEJSxUAALSA6eabUx9SsB8BAADtYvxRTI2KqRGssmDBgtwRkurq6oxr9TvjWwAAAAAAAABAmw0PD+eOkIQZBwAAWqBSqUS1Ws0dY0opl8sjnfXq09joGlHMftSY/QgAANIz/mjMWL+YGo1ff39/7giwXrq7u3NHSMKMAwAAAAAAAAC0xXOf+9zcEZKaOXNm7ghJmHEAAAAAAAAAgLY466yz4tJLL42nn3664fO33XZbmxNNTqlUyh0hCY0DAAAAAAAAALTF1ltvHa997Wvj2WefHXmsXq+P3JYvXx733XdfxoQTs3LlypgzZ07uGJOmcQAAoAWsL96c+gAAAADA9HT00UfHTTfdlDsGa9E4AADQApVKJarVau4YU0q5XB5pGFCfxkbXiGJqBQAAALDhedGLXtRRjQO9vb25IyShcQAAANggaUBpTAMKAAAAMJVdcskluSMkNTQ0lDtCEhoHAABawEm75tSnmBoBADBejh2LqVExNQKA9WPGAQAA1smV0GNZqqCYGhVzNT0AwFiOHRtzfF1MjZoz/gBojY033jiWLl2aO0Yyzz77bGy88ca5Y0yaxgEAgBbww0Jz6lNMjQAAGC/HjsXUqJgaAdAundQ00Ek0DgAAtIArNcZyJUsxNSrmih8AgLEcOzbm+LqYGjVn/AHAeHR3d+eOkITGAQAAAAAAAADa4lvf+laceeaZ8dRTTzV8vlqtxl//+tc2p1p/w8PDuSMkoXEAAKAFXJHAZNmHAAAYL8eOxdSomBoB0C4XX3xx3H777bljJDNr1qzcEZLQOAAA0AKmeBzLFI8TYx9qzH4EADCWY8fGTMNfTI2aM/4AaI2NNtood4SkBgYGckdIoit3AAAAAAAAAACmh4ULF+aOkJSlCgAAAAAAAACYNp5++un49Kc/HY8++mjuKFNGpyxVYMYBAAAAAAAAAArdcsstmgbWsmLFitwRkjDjAABAC1gDsTn1KaZGAACMl2PHYmpUTI0AGI83velN8Yc//CFuvvnm9d7Gk08+mTBRfn19fbkjJKFxAADWYqBcTI2KVSqVqFaruWNMKeVyeWTfUZ/G1KjY6BoBALCKY8fGHF8XU6PmjD8AxiqXy/HZz342PvvZz673Nr761a/Gd77znYSp8lq2bFlHNA9oHACAtRgoN+bHhGJ+UID28u8bAADQLsYfxdSomBrBKp3UNBARMWvWrNwRktA4AABA2xkoAwAAAACdoLu7O3eEJDQOAAC0gBPjAAAAAACdz1IFAACsk+UcxrLcRTHLXUyM/agx+xEAAKRn/NGYsX4xNRq//v7+3BFok9NPPz0OOeSQ3DFYi8YBAAAAAAAAANpip512iuuvv36dz1999dVx+umntzHR5JRKpdwRkujKHQAAAAAAAAAAIiK233773BEmpF6v546QhBkHAABawDThzakPAAAAANDIy1/+8qYzEqSw++67J9tWT09nnHLvjG8BAAAAAAAAwJR31VVXxZlnnpk7RjLlcjl3hCQ0DgDAWlwJXUyNilUqlahWq7ljTCnlcnlk31GfxkbXCAAAAAA6USc1DURErFy5Mvr6+nLHmDSNAwCwFic0G3PSt9joGjn525z6AAAAAACdYObMmbkjJKFxAAAApiDNFQAAjJdjx2JqVEyNAGD9VKtVMw4AAACtYWaPxszsAQAwlmPHxsycV0yNmjP+mBg1KqZG0JmGhoZyR0hC4wAAQAv4wWUsP0gVG10jitmPGrMfAQBAesYfjRnrF1Oj8evv788dAdZLT09nnHLvjG8BADDFOGnXnPoAAAAAwPT0wQ9+MC699NLcMViLxgEAgBbQQT6WDvtirhQHAAAAoNMtWLAgd4SkLFUAAAAAAAAAABNwzDHHxM0337zOC4uuuOKKeOCBB9qcav1ZqgAAAAAAAAAAJuC3v/1tHHXUUbljJNPd3Z07QhIaBwAAWsB0882pDwAAAABMTxdffHHuCEnV6/XcEZLQOAAA0AKVSmWdU21NV+VyeaRhQH0aG10jAAAAAOhEBx98cBx77LHx9NNPj3muXq+PnIhvdEK+6PmIiOHh4ajVamvcWmlgYKCl228XjQMAAC3g5G9z6gMAAAAA01NfX19sv/32sfnmm2fLcOutt2b77KlK4wAAALBB0oACAAC0i/FHMTUqpkawykc/+tFYtGhR7hisReMAAEALmIp/LEsVFLNUwcTYjxqzHwEAQHrGH40Z6xdTo/Hr7+/PHYE20TQwNXXlDgAAAAAAAADA9NDV1VmnqGfNmpU7QhKd9b8KAAAAAAAAAFPWBRdcENtvv31suummsdlmm8Vzn/vceO5znxubb755bL755rHFFlvkjjghK1asyB0hCUsVAAAAAAAAANAWL3jBC+L8889f5/PXXHNNnHbaaW1MRIQZBwAAAAAAAACYIl70ohfljjAtmXEAAKAF5s+fnzvClKY+AAAAADA93XHHHXHIIYfkjsFaNA4AALRApVKJarWaO8aUUi6XRxoG1Kex0TUCAAAAgE70X//1X7kj0IDGAQCAFnDytzn1AQAAAIDp6XOf+1x86UtfikWLFmXLkPOzpyqNAwAAAAAAAAC0xQte8II4//zzs2bYfffdk22rt7c32bZy0jgAANACpuIfy1IFxSxVAAAAAACt9/rXvz5uuummJNsaHBxMsp3cNA4AAAAAAAAAsEGp1+tr3Gq12sg/I2KNv9d+TcrGgXq9nmQ7uWkcAAAAAAAAAKAtHnvssTj55JNj8eLFDZ9/+OGH2xtokmbMmJE7QhIaBwAAWsB0882pDynYjwAAgHYx/iimRsXUCFY55ZRT4u67784dI5nVMxxs6DQOAAC0QKVSiWq1mjvGlFIul0cGyOrT2OgaUcx+1Jj9CAAA0jP+aMxYv5gajV9/f3/uCLTJwoULc0dIanh4OHeEJLpyBwAAAAAAAABgenj88cdzR0iqu7s7d4QkNA4AAAAAAAAA0BYvf/nLc0dIqlQq5Y6QhKUKAABawDThzakPAAAAAExP999/f+4ISfX29uaOkITGAQBYixOaxdSomDXrxrKmXzFr0wMAAADAhmX27Nm5IyShcQAA1uKEZmNO+hYbXSMnf5tTHwAAAACgEwwPD0dPz4Z/2n3D/wYAAFOQ5oqxNJ8UM+MAAAAAAGxYli1bFjNnzswdY9K6cgcAAAAAAAAAYHrYaqutckdIql6v546QhMYBAAAAAAAAANqiUqnkjpDU0NBQ7ghJWKoAAKAFTDffnPoAAAAAwPT0wQ9+MHbaaaeo1Wojj5VKpZH73/ve9+KGG27IEW29dHd3546QhMYBAIAWqFQqUa1Wc8eYUsrl8kjDgPo0NrpGAAAAANCJjjrqqLjllltyx2AtlioAAAAAAAAAoC06rWlg9GwJGzIzDgAAtICrxptTn2JqBADAeDl2LKZGxdQIANZPT09nnHLvjG8BAMAGxVIFjVmqAAAAAAA2LLVaLXeEJDQOAAC0gBPjY40+Ke7keDH7UGP2IwCAsRw7Njb62FGNGlOj5ow/JkaNiqkRrFKpVDrq34eNNtood4QkNA4AANB2fpBqzIwDE2M/asx+BAAA6Rl/NKb5pJgajV9/f3/uCLRJp/1uMTg4GOVyOXeMSevKHQAAAAAAAAAANkSdslSBxgEAAAAAAAAAWA+Dg4O5IyRhqQIAgBbotOm2UlMfAAAAAKAT1Ov13BGS0DgAANAC1qwby5p+xaxNDwAAAECn+9znPhdnnHFG7jASVLAAABOYSURBVBjJDA0N5Y6QhMYBAIAWcPK3OfUBAAAAgOlp7733jr333nudzz/zzDNxyimnxK9+9auWZajVasm2NXPmzGTbyknjAABAC7iifiwzDhQz4wAAAAAA092cOXPi+OOPj4hVywCsvq3+e/TjjV6zrveN/nvevHmxaNGiJHkHBgaSbCc3jQMAAAAAAAAAtMU3vvGNuPTSS3PHSGZ0w8KGrCt3AAAAAAAAAACmh05qGoiI6OrqjFPunfEtAAAAAAAAAJjy3vjGN+aOkJTGAQAAAAAAAACYgD333DN3hKSGh4dzR0hC4wAAAAAAAAAAbfG9730vd4Sk+vr6ckdIoid3AAAAAAAAAACmhy984Qtx5plnxtNPPx31ej1qtVoMDw+P3H/88cdjcHAwd8xxe+aZZzqieUDjAAAAAAAAAABtsdVWW8XJJ5+8zuevuOKKOPfcc9uYaHJKpVLuCEloHAAAaIH58+fnjjClqQ8AAAAATF/Lly+Per3e8Lk3vvGNcccdd8Stt966ztdMJeVyOXeEJDQOAAC0QKVSiWq1mjvGlFIul0caBtSnsdE1AgAAAIBOdOaZZ8ZVV12VO0YyPT2dccq9M74FAMAU4+Rvc+oDAAAAANNTJzUNdBKNAwAAMAVprgAAYLwcOxZTo2JqBADrZ9myZdHX15c7xqRpHAAAaAFT8Y9lqYJialTMcg4AAGM5dmzM8XUxNWrO+AOgNT7/+c/HKaeckjtGMl1dXbkjJKFxAACgBfyw0Jz6AAAAAMD0VKlUolKprPP5++67L/7t3/6tjYkmZ86cObkjJKFxAACgBVypMZYrWYq5mgUAAACATnfFFVfEueeemztGMsuXL49Zs2bljjFpnTFvAgAAAAAAAABT3q9//evcEZLq7e3NHSEJjQMAAAAAAAAAtMW9996bOwINaBwAAAAAAAAAoC2WL1+eO0JSK1asyB0hiZ7cAQAAAAAAAACYHi688MI46qij4umnn16v99fr9Y5rPpgKNA4AAAAAAAAA0BYbb7xxvPKVr4wlS5ZEvV6PiFXNAKtvq6392Or7//M//5Ml97r09fXljpCExgEAgBaYP39+7ghTmvoUUyMAAMbLsWMxNSqmRgC0y7vf/e7cEZLq7u7OHSEJjQMAADAFVSqVqFaruWNMOeVyeeQHTT9sAgCs4tixsdHHjmrUmBo1Z/wxMWpUTI2gM2kcAAAAWsaPCcX8sNnY6B83AYDpwX/7i6lRMTVqzvijMc0nxdRo/Pr7+3NHgPWyePHi2HLLLXPHmDSNAwAALWAgOJaBcjE1KuakOADAWI4dG3N8XUyNmjP+AGiN/fffP775zW/mjpFMqVTKHSGJrtwBAAAAAAAAAJgeOqlpICJi1qxZuSMkoXEAAAAAAAAAgLbYdNNNc0dIamhoKHeEJCxVAAAAAAAAAEBbXHbZZTF//vwxS+SUSqUx0/6P/nv1/SeeeCIuv/zy1gcdJ40DAAAAAAAAADABM2bMiF122SWGh4cbPr92A8Hq+/V6feT26KOPxo033tiWvEXW9T02NBoHAAAAAAAAAGiLM844I370ox/ljsFaunIHAAAAAAAAAGB66LSmgRkzZuSOkIQZBwAAWmD+/Pm5I0xp6kMK9iMAAKBdjD+KqVExNYLONDAwkDtCEhoHAABaoFKpRLVazR1jSimXyyMDZPVpbHSNKGY/asx+BAAA6Rl/NGasX0yNxq+/vz93BFgvs2fPzh0hCY0DAAAt4KRdc+oD7eHftebUp5gaFVMjAACA6W3ZsmXR19eXO8akJW0cOOyww+K0004b+fv666+P3Xbbbdzvf/bZZ+OVr3xlPPTQQxERsd1228Wf//zncb13cHAwLr300vjud78b99xzTzz++OMxZ86c2HrrrWPnnXeOt771rfHe9763cDsPP/xwnH/++XH11VfHggUL4plnnoktttgiXvjCF8buu+8e73vf++KVr3zluL8TADA96SAfS4d9MVeKk5p/18by/0XF1KiYGhXz3zQAAGBdTjzxxDjiiCNyx0imp6czrtVP9i3uuuuuOPPMMye1jaOOOmqkaWAi7r777vjgBz8Y99577xqPP/XUU/HUU0/FvffeG1dccUVh48A555wThx9+eCxfvnyNxx955JF45JFH4sYbb4ylS5fGWWedNeGMAAAwEU62AAAwXo4di6lRMTUCoF06qWkgIqK3t3fS23j00Ufju9/9blxzzTXx+9//PhYuXBibbbZZvP71r4/DDjssdt5556bvf+ihh2KHHXaI5cuXx4EHHhjnnXfehDMkaRyo1WpxwAEHxNDQUGy55ZbxxBNPTHgbd955Z5x11llRLpejt7c3nnnmmXG97+67747dd989nn766ZgxY0bMmzcv9tprr9h2221j8eLFsWDBgvj5z38ev/zlL5tu5/jjj48jjzwyIiK23377+Nd//dfYeeedY86cOfHoo4/GAw88ED/4wQ+iq6trwt8NAAAmyhWsjbmCFQBgLMeOjZkhppgaNWf8AcB4DA4OTnob55xzTpxyyinxd3/3d7HnnnvGlltuGX/84x/jyiuvjCuvvDK+/e1vx/ve976G763X6zFv3rxJZ0jSOHD22WfH7bffHi972cviXe96V5x00kkTev/w8HAccMABMTw8HEcffXScf/7542ocqFar8d73vjeefvrp2HrrrePaa69tuIzA/vvvHwMDA+vcznXXXTfSNPBP//RPcckll8TMmTNHnt9pp50iIuKQQw5puh0AAKB9/IAHAAC0i/FHMTUqpkawyhve8IbCi743JCmWKnjta18bN9xwQ7zhDW9Y4/Ff/vKXsccee8THP/7x2GeffdY4h73aOeecEzfddFOceuqpcfDBB693hkl/i7/85S8jJ92/+tWvRn9//4S38ZWvfCXuuOOOeOlLXxqf//zn4/zzzx/X+04//fR44IEHIiLiW9/6VsOmgdVmzJjR8PFarRYf+9jHIiLipS996ZimgfFuBwAAaC9XRDXmqigAAEjP+KMxs1YUU6PxW59zjGyY7r///twRkkrx7/W73/3uho+/4Q1viN133z2uvfbauOeee+LVr371Gs8/+OCDcfjhh8dhhx0WO+6446QyTLpx4BOf+EQsW7YsPvKRj8Ruu+024X+pFyxYEEcddVRErGo8GO+J+eHh4ZG1GXbbbbfYbbfdJvS5q1177bXxxz/+MSIiDj/88KZNAwAA4+WkXXPqAwAAAADT05NPPpk7QlLf+973Yp999oltt922Jdvv7e2NiLEzG9RqtZg3b15st912cdRRR8WvfvWrSX1O12Te/J3vfCd+9KMfxWabbRannXbaem3jE5/4RCxfvjw+9KEPxe677z7u9918883x6KOPRkTEe9/73pHHn3322XjwwQfjsccei1qtVrid7373uxER0d3dvUYnx5NPPhkPPvhgLFmyZNyZAAAAAAAAAJg+vv/978dHPvKRllws9fDDD8fPfvazmDt3buywww5rPHfWWWfFzTffHOeff36Si+PXe8aBxYsXx0EHHRQREaecckpsscUWE97GZZddFtdcc01suummcfrpp0/ovbfccsvI/V122SVuu+22OPLII+NnP/vZSMPAZpttFu9617viyCOPjO22267pdl7xilfE7Nmz4+yzz46zzz47/vSnP4285n/9r/8VBx54YHz84x8f6egAAADyMnMFAADQLsYfxdSomBpBZ1p9bvq0006LHXbYIbbZZpsk2x0cHIwPfehDsXLlyjj11FOju7t75LkHHnggvvjFL8ZBBx0Uu+yyS5LPW+/GgcMOOywWLlwY//iP/xj/8i//MuH3L1q0KD7zmc9ERMTJJ58cW2655YTe/7vf/W7k/i233BKf/vSnY2hoaI3XPP3003H++efH9773vfjhD38Yb3zjG9d4vlarxe9///uIiHjBC14Q7373u+OHP/xhw8866KCD4vvf/37893//d8yZM2dCWQGA6ceadWNZdx0AAAAAOOCAA+I///M/c8doiWuuuSYOOOCASW+nVqvF/vvvHzfccEMccMAB8aEPfWiN5/bbb7943vOeF8cff/ykP2u1Ur1er0/0TTfeeGO88Y1vjO7u7vjNb36zxrQIxxxzTHzpS1+KiIjrr78+dtttt4bb+OhHPxrnn39+7LLLLnHTTTdFqVQaee6FL3xhLFiwILbbbrv485//3PD9++yzT1x11VURETFz5swYGBiIQw89NA488MDYdttt4y9/+Uucd955ccYZZ0S9Xo/nPve5cdddd63R4bFo0aLYbLPNRraxcuXK2HbbbeO0006LSqUSM2fOjNtuuy0+//nPx6233hoREfvuu29cdtllEy0ZAAAAAAAAABuw4447Lvr7+0dmGRitq6srdttttzjyyCMn9Rn1ej0++tGPxje/+c34f//v/8VFF10UXV1dI8+fddZZcfDBB8d11123xrn4/v7+2H333ePAAw+M8847b8KfO+HGgYGBgfiHf/iHuP/+++PQQw+NU089dY3nx9M4cMMNN8Ruu+0W3d3dcccdd8Tf//3fr/H8eBoH3vzmN8fPf/7zkb9PO+20OOSQQ8a87qSTToojjjgiIiI++clPxn/8x3+MPPfII4/E85///JG/58yZE7/97W9j++23X2MbK1asiF122SXuuuuuiIi47bbb4jWveU3DXAAAAAAAAAAwUbVaLT760Y/GBRdcEB/4wAfi4osvXmOJgoiI/fbbLy666KLCbe2zzz5x5ZVXjvuzJ7xUwYknnhj3339/vOAFL4ijjz56om+PlStXxr/+679GvV6Pgw46aEzTwHiVy+WR+9tuu2189rOfbfi6Qw89NM4555x47LHH4rLLLotzzjlnZHaD0duIWNVYsHbTQETErFmz4oQTToi99947IiIuu+wyjQMAAAAAAAAAJDG6aWDfffdt2DQQEbHrrrtGT8/Y0/yPPfZYXHPNNfGyl70sXv/618eOO+44oc+fUOPA73//+zjppJMiIuKcc86J2bNnT+jDIiJOOOGE+MMf/hDPf/7z45hjjpnw+1ebM2fOyP0999yzYdEiInp6euJNb3pTXHrppfHUU0/FQw89NNIcMHobERF77bXXOj9vjz32iJ6enhgaGorbb799vXMDAAAAAAAAwGq1Wi3+5V/+JS688MJ473vfG5dccsk6z3/Pmzcv5s2bN+bx/v7+uOaaa2LXXXddr6UKJtQ4cOaZZ8bAwEBsv/328eyzz8Zll1025jX33nvvyP3rrrsuFi5cGBER73jHO2L27NlxyimnRMSqpQZ+9KMfNfyc5cuXj/xz9WdsueWW8aY3vWnkNaOXGNh2222b5h792ieeeGKkcWDmzJmxxRZbxN/+9rfC7ZTL5dh8881j4cKF8cQTTzT9PAAAAAAAAAAYj2OPPTYuvPDC6Ovri5e85CVx/PHHj3nNO9/5zviHf/iHlmWYUOPAypUrIyLif/7nf+IDH/hA4euPO+64kfsPPfRQzJ49OwYGBiIi4oILLogLLrig6fuffPLJkc/Zdddd12gceMUrXjFyf3h4uOl2Rj+/9rQNr3jFK6K/v39C22k09QMAAAAAAAAATNSf//zniIhYtmxZnHDCCQ1f88IXvnDqNA5MJW984xtH7v/pT39q+trRz2+zzTZjtrO6ceBPf/pTvPjFL264jaVLl8aTTz7ZcBsAAAAAAAAAsD4uvPDCuPDCCye1jd122y3q9fp6v79rIi++8MILo16vN70dffTRI6+//vrrRx5/4QtfGBFR+P56vR7bbbddRERst912I4+tPrm/2ote9KLYcccdIyLiJz/5STz77LMNMz/zzDPx05/+NCIi/u7v/i623nrrNZ5/z3veM3L/+9///jq/+w9+8IORQr/hDW8YR7UAAAAAAAAAYOqbUOPAVPOFL3whIiIWL14cn/vc5xq+5rOf/Ww888wzERHxsY99bMzzf//3fx977bVXRKxaPuHGG28c85rHHnssvvjFL0ZExIwZM2LevHlJ8gMAAAAAAABAbht048D73ve+eNvb3hYREeedd17svffecdVVV8Wdd94ZP/zhD2OvvfaK888/PyIidtxxx/i3f/u3hts566yz4jnPeU4MDQ3FW9/61vjiF78YN954Y9x+++1x7rnnxmte85p45JFHIiLiuOOOs1QBAAAAAAAAAB2jJ3eAybr88svjPe95T1x77bVx9dVXx9VXXz3mNa95zWviqquuinK53HAbL3nJS+K///u/45/+6Z/i8ccfjxNOOCFOOOGENV5TKpXi3//93+Owww5ryfcAAAAAAAAAgBw26BkHIiL6+vriJz/5SXz729+OSqUSc+fOjd7e3thiiy1izz33jG9+85vxq1/9KubOndt0O//n//yfuO++++Loo4+OV73qVbHxxhtHuVyOF73oRTFv3ry444474rjjjmvTtwIAAAAAAACA9ijV6/V67hAAAAAAAAAAQB4b/IwDAAAAAAAAAMD60zgAAAAAAAAAANOYxgEAAAAAAAAAmMY0DgAAAAAAAADANKZxAAAAAAAAAACmMY0DAAAAAAAAADCNaRwAAAAAAAAAgGlM4wAAAAAAAAAATGMaBwAAAAAAAABgGtM4AAAAAAAAAADTmMYBAAAAAAAAAJjGNA4AAAAAAAAAwDSmcQAAAAAAAAAApjGNAwAAAAAAAAAwjf1/uDPA1LpwyF0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import missingno as msno\n", + "%matplotlib inline\n", + "msno.matrix(df_2023.sample(fraction=1/10000).toPandas())" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "90aa424e-4efa-47af-9710-0e5d50216fc8", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "23/11/22 17:55:49 WARN org.apache.spark.sql.catalyst.util.package: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.sql.debug.maxToStringFields'.\n", + "[Stage 12:=======================================================>(90 + 1) / 91]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+------------------------------+\n", + "|approx_count_distinct(Trip ID)|\n", + "+------------------------------+\n", + "| 44321903|\n", + "+------------------------------+\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "#Approximate number of 2023 trips\n", + "from pyspark.sql.functions import approxCountDistinct\n", + "\n", + "df_2023.select(approxCountDistinct(\"Trip ID\", rsd = 0.01)).show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2dd6ea75-5417-4d27-92bb-4d9a24808545", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + }, + { + "data": { + "text/plain": [ + "24711974" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# number of observations with all the data in each column\n", + "df_2023.dropna(how='any').count()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "46e2e9e5-3581-444c-b149-827a5cbc62f5", + "metadata": {}, + "outputs": [], + "source": [ + "# Working with just data that contains full information and check for dupes\n", + "df_2023 = df_2023.dropna(how='any', subset=['Trip Start Timestamp','Trip End Timestamp','Fare','Dropoff Community Area','Pickup Community Area'])\n", + "df_2023 = df_2023.dropDuplicates()\n", + "# df_2023.count()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "6a52d857-bc07-47a7-8cc9-71478bf10e08", + "metadata": {}, + "outputs": [], + "source": [ + "df_2023 = df_2023.drop('Trips Pooled','Additional Charges','Shared Trip Authorized','Pickup Centroid Location','Dropoff Centroid Location')\n", + "df_2023 = df_2023.withColumnRenamed(\"Trip ID\",\"ID\").withColumnRenamed(\"Trip Start Timestamp\",\"start_timestamp\").withColumnRenamed(\"Trip End Timestamp\",\"end_timestamp\").withColumnRenamed(\"Trip Miles\",\\\n", + " \"miles\").withColumnRenamed(\"Pickup Census Tract\",\"pickup_tract\").withColumnRenamed(\"Dropoff Census Tract\",\"dropoff_tract\").withColumnRenamed(\"Pickup Community Area\",\"pickup_area\"\\\n", + " ).withColumnRenamed(\"Dropoff Community Area\",\"dropoff_area\").withColumnRenamed(\"Trip Total\",\"total\").withColumnRenamed(\"Pickup Centroid Latitude\",\"pickup_lat\").withColumnRenamed(\\\n", + " \"Pickup Centroid Longitude\",\"pickup_lon\").withColumnRenamed(\"Pickup Centroid Location\",\"pickup_location\").withColumnRenamed(\"Dropoff Centroid Latitude\",\"dropoff_lat\").withColumnRenamed(\\\n", + " \"Dropoff Centroid Longitude\",\"dropoff_lon\").withColumnRenamed(\"Dropoff Centroid Location\",\"dropoff_location\").withColumnRenamed(\"Trip Seconds\",\"seconds\")\n", + "# fix datatypes\n", + "df_2023 = df_2023.withColumn('start_timestamp', F.to_timestamp(df_2023['start_timestamp'], 'MM/dd/yyyy hh:mm:ss a')).withColumn('end_timestamp', F.to_timestamp(df_2023['end_timestamp'], 'MM/dd/yyyy hh:mm:ss a'))\n", + "#df_weather = df_weather.withColumn('datetime',F.to_date(df_weather['datetime'], \"yyyy-MM-dd\"))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "17ebe569-82bb-49b0-aaaf-ac5062bede35", + "metadata": {}, + "outputs": [], + "source": [ + "# add the month column\n", + "df_2023 = df_2023.withColumn('month', F.month(df_2023.start_timestamp))\n", + "df_2023 = df_2023.withColumn('day_of_month', F.dayofmonth(df_2023.start_timestamp))\n", + "df_2023 = df_2023.withColumn('hour', F.hour(df_2023.start_timestamp))\n", + "df_2023 = df_2023.withColumn('day', F.dayofweek(df_2023.start_timestamp))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "38ae8fc8-7d8b-4560-a6fb-7d84fc672929", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "sample_df = df_2023.sample(fraction=1/10000).toPandas().loc[:,[\"pickup_area\",\"dropoff_area\",\"total\",\"Fare\",\"Tip\",\"total\",\"miles\",\"seconds\",\"hour\",\"day\",\"month\"]]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fdd98395-7ec5-413f-975c-db44d2871c46", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pickup_areadropoff_areatotalFareTiptotalmilessecondshourdaymonth
0233335.0425.0635.047.410991169
18814.0710.0014.071.65861469
28811.165.0211.161.14401031
312426.4817.5526.488.51504471
4283411.2910.0011.292.77221932
\n", + "
" + ], + "text/plain": [ + " pickup_area dropoff_area total Fare Tip total miles seconds hour \\\n", + "0 23 33 35.04 25.0 6 35.04 7.4 1099 11 \n", + "1 8 8 14.07 10.0 0 14.07 1.6 586 14 \n", + "2 8 8 11.16 5.0 2 11.16 1.1 440 10 \n", + "3 1 24 26.48 17.5 5 26.48 8.5 1504 4 \n", + "4 28 34 11.29 10.0 0 11.29 2.7 722 19 \n", + "\n", + " day month \n", + "0 6 9 \n", + "1 6 9 \n", + "2 3 1 \n", + "3 7 1 \n", + "4 3 2 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "064352aa-8513-4953-b527-48cc322fdfab", + "metadata": {}, + "outputs": [], + "source": [ + "sample_df = sample_df.dropna()\n", + "sample_df = sample_df.drop_duplicates()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "a81f2984-28da-4dbb-9645-7615f81c1b67", + "metadata": {}, + "outputs": [], + "source": [ + "sample_df.head()\n", + "sample_df = sample_df.drop(columns='total')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "aaa804fd-84c8-4670-a4fe-4027d9fc1510", + "metadata": {}, + "outputs": [], + "source": [ + "#import seaborn as sns\n", + "#sns.set_theme(style=\"ticks\")\n", + "#sns.pairplot(sample_df)\n", + "#plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "a973b0bb-3518-4d17-a53e-6201c08fe814", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHpCAYAAABN+X+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqxklEQVR4nO3de3BUZZ7/8U9Lkg6X0IRE04lGDCHqQAKDgUWiI1EgLDOIFr+ScVCX3WUsEQhmgWKHYVeipYnFlIEhCArLGJSlslWreNkahaASZRnKEGVpgusyXOQyidnRkA4QOyE5vz9czthJuIUO50n6/ao6VZznPH3yfY4pPzl9Lo/LsixLAADASNc5XQAAALgwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIakmWZcnv94tHygEApiGoJTU0NMjj8aihocHpUgAACEJQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAINFOF1ATxcIBFRZWRnUlpmZKbfb7VBFAIDuhKDuYpWVlZq/5m0NuDFVknTq5CGtmiNlZWU5XBkAoDsgqK+BATemKj41w+kyAADdENeoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwR4M6Pz9fLpcraPF6vfZ2y7KUn5+vpKQk9e7dW9nZ2aqqqgraRyAQUG5uruLj49W3b19NnTpVJ06cuNZDAQCgSzh+Rj1s2DBVV1fbi8/ns7ctX75cRUVFWr16tSoqKuT1ejVx4kQ1NDTYffLy8rRlyxaVlpZq586dOn36tKZMmaKWlhYnhgMAQEg5Ps1lRERE0Fn0eZZlaeXKlVq6dKmmTZsmSdq4caMSEhK0efNmPfHEE6qvr9eGDRv0+uuva8KECZKkTZs2KTk5Wdu3b9ekSZM6/JmBQECBQMBe9/v9XTAyAACunuNn1AcPHlRSUpJSUlL08MMP6/Dhw5KkI0eOqKamRjk5OXZft9utcePGadeuXZKkyspKNTc3B/VJSkpSenq63acjhYWF8ng89pKcnNxFowMA4Oo4GtRjxozRa6+9pq1bt2r9+vWqqalRVlaWvvnmG9XU1EiSEhISgj6TkJBgb6upqVFUVJRiY2Mv2KcjS5YsUX19vb0cP348xCMDACA0HP3qe/Lkyfa/MzIyNHbsWKWmpmrjxo268847JUkulyvoM5ZltWtr61J93G633G73VVQOAMC14fhX3z/Ut29fZWRk6ODBg/Z167ZnxrW1tfZZttfrVVNTk+rq6i7YBwCA7syooA4EAvriiy+UmJiolJQUeb1elZWV2dubmppUXl6urKwsSVJmZqYiIyOD+lRXV2v//v12HwAAujNHv/petGiR7r//ft18882qra3Vc889J7/fr5kzZ8rlcikvL08FBQVKS0tTWlqaCgoK1KdPH82YMUOS5PF4NGvWLC1cuFBxcXEaOHCgFi1apIyMDPsucAAAujNHg/rEiRP6xS9+oT//+c+6/vrrdeedd2r37t0aNGiQJGnx4sVqbGzUnDlzVFdXpzFjxmjbtm2KiYmx97FixQpFRERo+vTpamxs1Pjx41VSUqJevXo5NSwAAELGZVmW5XQRTvP7/fJ4PKqvr1f//v1Duu9du3bp6bf3Kz41Q5L050M+PftAOl/NAwAui1HXqAEAQDCCGgAAgxHUAAAYjKAGAMBgBDUAAAZzfPascNN6rjloKs/zMjMzea0pAKAdgvoa8399TMVHG+U9/Jd3kZ86eUir5ohHtgAA7RDUDojxptjPVQMAcDFcowYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMJgxQV1YWCiXy6W8vDy7zbIs5efnKykpSb1791Z2draqqqqCPhcIBJSbm6v4+Hj17dtXU6dO1YkTJ65x9QAAdA0jgrqiokLr1q3T8OHDg9qXL1+uoqIirV69WhUVFfJ6vZo4caIaGhrsPnl5edqyZYtKS0u1c+dOnT59WlOmTFFLS8u1HgYAACHneFCfPn1ajzzyiNavX6/Y2Fi73bIsrVy5UkuXLtW0adOUnp6ujRs36uzZs9q8ebMkqb6+Xhs2bNCLL76oCRMmaOTIkdq0aZN8Pp+2b99+wZ8ZCATk9/uDFgAATOR4UM+dO1c/+9nPNGHChKD2I0eOqKamRjk5OXab2+3WuHHjtGvXLklSZWWlmpubg/okJSUpPT3d7tORwsJCeTwee0lOTg7xqK5M67lm+Xw+7dq1y14CgYCjNQEAzBDh5A8vLS3VZ599poqKinbbampqJEkJCQlB7QkJCfrqq6/sPlFRUUFn4uf7nP98R5YsWaIFCxbY636/39Gw9n99TMVHG+U97JIknTp5SKvmSFlZWY7VBAAwg2NBffz4cT311FPatm2boqOjL9jP5XIFrVuW1a6trUv1cbvdcrvdV1ZwF4vxpig+NcPpMgAAhnHsq+/KykrV1tYqMzNTERERioiIUHl5uVatWqWIiAj7TLrtmXFtba29zev1qqmpSXV1dRfsAwBAd+ZYUI8fP14+n0979+61l1GjRumRRx7R3r17NXjwYHm9XpWVldmfaWpqUnl5uf2VcGZmpiIjI4P6VFdXa//+/XxtDADoERz76jsmJkbp6elBbX379lVcXJzdnpeXp4KCAqWlpSktLU0FBQXq06ePZsyYIUnyeDyaNWuWFi5cqLi4OA0cOFCLFi1SRkZGu5vTAADojhy9mexSFi9erMbGRs2ZM0d1dXUaM2aMtm3bppiYGLvPihUrFBERoenTp6uxsVHjx49XSUmJevXq5WDlAACEhlFBvWPHjqB1l8ul/Px85efnX/Az0dHRKi4uVnFxcdcWBwCAAxx/jhoAAFwYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgEU4XgPZazzXL5/MFtWVmZsrtdjtUEQDAKQS1gfxfH1Px0UZ5D7skSadOHtKqOVJWVpbDlQEArjWC2lAx3hTFp2Y4XQYAwGFcowYAwGCOBvXatWs1fPhw9e/fX/3799fYsWP13nvv2dsty1J+fr6SkpLUu3dvZWdnq6qqKmgfgUBAubm5io+PV9++fTV16lSdOHHiWg8FAIAu4WhQ33TTTXrhhRe0Z88e7dmzR/fdd58eeOABO4yXL1+uoqIirV69WhUVFfJ6vZo4caIaGhrsfeTl5WnLli0qLS3Vzp07dfr0aU2ZMkUtLS1ODQsAgJBxNKjvv/9+/fSnP9Wtt96qW2+9Vc8//7z69eun3bt3y7IsrVy5UkuXLtW0adOUnp6ujRs36uzZs9q8ebMkqb6+Xhs2bNCLL76oCRMmaOTIkdq0aZN8Pp+2b99+wZ8bCATk9/uDFgAATGTMNeqWlhaVlpbqzJkzGjt2rI4cOaKamhrl5OTYfdxut8aNG6ddu3ZJkiorK9Xc3BzUJykpSenp6XafjhQWFsrj8dhLcnJy1w0MAICr4HhQ+3w+9evXT263W7Nnz9aWLVs0dOhQ1dTUSJISEhKC+ickJNjbampqFBUVpdjY2Av26ciSJUtUX19vL8ePHw/xqAAACA3HH8+67bbbtHfvXp06dUpvvPGGZs6cqfLycnu7y+UK6m9ZVru2ti7Vx+128/IQAEC30Kkz6sGDB+ubb75p137q1CkNHjz4ivYVFRWlIUOGaNSoUSosLNSIESP029/+Vl6vV5LanRnX1tbaZ9ler1dNTU2qq6u7YB8AALqzTgX10aNHO7yrOhAI6OTJk1dVkGVZCgQCSklJkdfrVVlZmb2tqalJ5eXl9hu6MjMzFRkZGdSnurpa+/fv5y1eAIAe4Yq++n7nnXfsf2/dulUej8deb2lp0QcffKBbbrnlsvf361//WpMnT1ZycrIaGhpUWlqqHTt26P3335fL5VJeXp4KCgqUlpamtLQ0FRQUqE+fPpoxY4YkyePxaNasWVq4cKHi4uI0cOBALVq0SBkZGZowYcKVDA0AACNdUVA/+OCDkr6/bjxz5sygbZGRkbrlllv04osvXvb+vv76az322GOqrq6Wx+PR8OHD9f7772vixImSpMWLF6uxsVFz5sxRXV2dxowZo23btikmJsbex4oVKxQREaHp06ersbFR48ePV0lJiXr16nUlQwMAwEhXFNStra2SpJSUFFVUVCg+Pv6qfviGDRsuut3lcik/P1/5+fkX7BMdHa3i4mIVFxdfVS0AAJioU3d9HzlyJNR1AACADnT68awPPvhAH3zwgWpra+0z7fN+97vfXXVhAACgk0H9zDPP6Nlnn9WoUaOUmJh4yeeaAQBA53QqqF9++WWVlJToscceC3U9AADgBzr1HHVTUxPPKQMAcA10Kqh/+ctf2jNYAQCArtOpr76/++47rVu3Ttu3b9fw4cMVGRkZtL2oqCgkxQEAEO46FdT79u3Tj3/8Y0nS/v37g7ZxYxkAAKHTqaD+6KOPQl0HAADogOPzUQMAgAvr1Bn1vffee9GvuD/88MNOFwQAAP6iU0F9/vr0ec3Nzdq7d6/279/fbrIOAADQeZ0K6hUrVnTYnp+fr9OnT19VQQAA4C9Ceo360Ucf5T3fAACEUEiD+g9/+IOio6NDuUsAAMJap776njZtWtC6ZVmqrq7Wnj179M///M8hKQwAAHQyqD0eT9D6ddddp9tuu03PPvuscnJyQlIYAADoZFC/+uqroa4DAAB0oFNBfV5lZaW++OILuVwuDR06VCNHjgxVXfiB1nPN8vl87dozMzPldrsdqAgAcK10Kqhra2v18MMPa8eOHRowYIAsy1J9fb3uvfdelZaW6vrrrw91nWHN//UxFR9tlPfwX14yc+rkIa2aI6YbBYAerlN3fefm5srv96uqqkrffvut6urqtH//fvn9fs2fPz/UNUJSjDdF8akZ9jLgxlSnSwIAXAOdOqN+//33tX37dv3oRz+y24YOHaqXXnqJm8kAAAihTp1Rt7a2tpuDWpIiIyPV2tp61UUBAIDvdSqo77vvPj311FP605/+ZLedPHlS//AP/6Dx48eHrDgAAMJdp4J69erVamho0C233KLU1FQNGTJEKSkpamhoUHFxcahrBAAgbHXqGnVycrI+++wzlZWV6b//+79lWZaGDh2qCRMmhLo+AADC2hWdUX/44YcaOnSo/H6/JGnixInKzc3V/PnzNXr0aA0bNkyffPJJlxQKAEA4uqKgXrlypR5//HH179+/3TaPx6MnnnhCRUVFISsOAIBwd0VB/V//9V/667/+6wtuz8nJUWVl5VUXBQAAvndFQf311193+FjWeREREfrf//3fqy4KAAB874qC+sYbb+zwndPn7du3T4mJiVddFAAA+N4VBfVPf/pTPf300/ruu+/abWtsbNSyZcs0ZcqUkBUHAEC4u6LHs/7pn/5Jb775pm699VbNmzdPt912m1wul7744gu99NJLamlp0dKlS7uqVgAAws4VBXVCQoJ27dqlJ598UkuWLJFlWZIkl8ulSZMmac2aNUpISOiSQgEACEdX/MKTQYMG6fe//73q6ur0xz/+UZZlKS0tTbGxsV1RHwAAYa1TbyaTpNjYWI0ePTqUtQAAgDY69a5vAABwbRDUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYLMLpAtA5reea5fP5gtoyMzPldrsdqggA0BUI6m7K//UxFR9tlPewS5J06uQhrZojZWVlOVwZACCUCOpuLMabovjUDKfLAAB0Ia5RAwBgMIIaAACDORrUhYWFGj16tGJiYnTDDTfowQcf1JdffhnUx7Is5efnKykpSb1791Z2draqqqqC+gQCAeXm5io+Pl59+/bV1KlTdeLEiWs5FAAAuoSjQV1eXq65c+dq9+7dKisr07lz55STk6MzZ87YfZYvX66ioiKtXr1aFRUV8nq9mjhxohoaGuw+eXl52rJli0pLS7Vz506dPn1aU6ZMUUtLixPDAgAgZBy9mez9998PWn/11Vd1ww03qLKyUvfcc48sy9LKlSu1dOlSTZs2TZK0ceNGJSQkaPPmzXriiSdUX1+vDRs26PXXX9eECRMkSZs2bVJycrK2b9+uSZMmtfu5gUBAgUDAXvf7/V04SgAAOs+oa9T19fWSpIEDB0qSjhw5opqaGuXk5Nh93G63xo0bp127dkmSKisr1dzcHNQnKSlJ6enpdp+2CgsL5fF47CU5ObmrhgQAwFUxJqgty9KCBQt09913Kz09XZJUU1MjSUpISAjqm5CQYG+rqalRVFSUYmNjL9inrSVLlqi+vt5ejh8/HurhAAAQEsY8Rz1v3jzt27dPO3fubLfN5XIFrVuW1a6trYv1cbvdvMELANAtGHFGnZubq3feeUcfffSRbrrpJrvd6/VKUrsz49raWvss2+v1qqmpSXV1dRfsAwBAd+VoUFuWpXnz5unNN9/Uhx9+qJSUlKDtKSkp8nq9Kisrs9uamppUXl5uvyozMzNTkZGRQX2qq6u1f/9+XqcJAOj2HP3qe+7cudq8ebPefvttxcTE2GfOHo9HvXv3lsvlUl5engoKCpSWlqa0tDQVFBSoT58+mjFjht131qxZWrhwoeLi4jRw4EAtWrRIGRkZ9l3gAAB0V44G9dq1ayVJ2dnZQe2vvvqq/vZv/1aStHjxYjU2NmrOnDmqq6vTmDFjtG3bNsXExNj9V6xYoYiICE2fPl2NjY0aP368SkpK1KtXr2s1FAAAuoSjQW1Z1iX7uFwu5efnKz8//4J9oqOjVVxcrOLi4hBWBwCA84y4mQwAAHSMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwRydPQuh03quWT6fr117Zmam3G63AxUBAEKBoO4h/F8fU/HRRnkPu+y2UycPadUcKSsry8HKAABXg6DuQWK8KYpPzXC6DABACHGNGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGCwCKcLQNdpPdcsn88X1JaZmSm32+1QRQCAK0VQ92D+r4+p+GijvIddkqRTJw9p1RwpKyvL4coAAJeLoO7hYrwpik/NcLoMAEAncY0aAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgvOs7jDCbFgB0PwR1GGE2LQDofgjqEAsEAqqsrLTXfT6fWlsdLKgNZtMCgO6FoA6xyspKzV/ztgbcmCpJOrH3E8UOyXS4KgBAd+XozWQff/yx7r//fiUlJcnlcumtt94K2m5ZlvLz85WUlKTevXsrOztbVVVVQX0CgYByc3MVHx+vvn37aurUqTpx4sQ1HEV7A25MVXxqhuJTM9Tv+hsdrQUA0L05GtRnzpzRiBEjtHr16g63L1++XEVFRVq9erUqKirk9Xo1ceJENTQ02H3y8vK0ZcsWlZaWaufOnTp9+rSmTJmilpaWazUMAAC6jKNffU+ePFmTJ0/ucJtlWVq5cqWWLl2qadOmSZI2btyohIQEbd68WU888YTq6+u1YcMGvf7665owYYIkadOmTUpOTtb27ds1adKkazYWAAC6grHPUR85ckQ1NTXKycmx29xut8aNG6ddu3ZJ+v56cHNzc1CfpKQkpaen2306EggE5Pf7gxYAAExk7M1kNTU1kqSEhISg9oSEBH311Vd2n6ioKMXGxrbrc/7zHSksLNQzzzwT4oq7n46eq25qapIkRUVF2W08aw0AzjE2qM9zuVxB65ZltWtr61J9lixZogULFtjrfr9fycnJV1doN9T2uWpJOrH3Y0X0GyjvkHRJPGsNAE4zNqi9Xq+k78+aExMT7fba2lr7LNvr9aqpqUl1dXVBZ9W1tbUXDRa3280Z4v9p+1z1qZOHFOnx8qw1ABjC2GvUKSkp8nq9Kisrs9uamppUXl5uh3BmZqYiIyOD+lRXV2v//v2cAQIAegRHz6hPnz6tP/7xj/b6kSNHtHfvXg0cOFA333yz8vLyVFBQoLS0NKWlpamgoEB9+vTRjBkzJEkej0ezZs3SwoULFRcXp4EDB2rRokXKyMiw7wIHAKA7czSo9+zZo3vvvddeP3/deObMmSopKdHixYvV2NioOXPmqK6uTmPGjNG2bdsUExNjf2bFihWKiIjQ9OnT1djYqPHjx6ukpES9evW65uMBACDUHA3q7OxsWZZ1we0ul0v5+fnKz8+/YJ/o6GgVFxeruLi4CyoEAMBZxl6jBgAABDUAAEYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABgswukC0L0EAgFVVla2a8/MzJTb7XagIgDo2QhqXFTruWb5fD573efzad3HhxR70xC77dTJQ1o1R8rKynKiRADo0QhqXJT/62MqPtoo72GXJOnE3k8UOyRT8akZDlcGAOGBoMYlxXhT7GA+dfKQw9V0vY6+3uerfQBOIaiBNiorKzV/zdsacGOqJL7aB+AsghrowIAbU/l6H4AReDwLAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAzGc9TockzkAQCdR1Cjy7V905fE274A4HIR1Ai5tmfQPp9P/RMH86YvAOgEghpX7VJTYZ6fcQsAcOUIaly1S02FGQ4zbgFAVyGoERLhNhUmAFwrPJ4FAIDBCGoAAAxGUAMAYDCCGgAAg3EzGbqNjt5wxtvNAPR0BDW6jbZvOOPtZgDCAUGNbmXAjam84QxAWOEaNQAABuOMGmGvo3eTt7Y6WBAA/ABBjbDX9to37yYHYBKCGkbo6I7upqYmSVJUVJSk9me6bScDOa8zd4L/8No3r0AFYBKCGo641IxbknRi78eK6DdQ3iHp/7cefKbbdjIQiTvBAfQ8BDUccakZt6TvQzfS473ome4PJwMBgJ6IoIZjmHELAC6NoEaP1vbad9vr3hJ3eQMwG0GNHq39Hd3B172/b7v4Xd6hvGkNAK4UQY0epaOb1PonDg76iv2H173Pt10MN60BcBJBjR7lQjepXS1uWgPgFIIaPQ43qQHoSXjXNwAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDDu+gZCoKPZvyReigLg6hHUQCdczuxfvBQFQCgQ1EAnXM7sXwAQCgQ10Em8WAXAtcDNZAAAGIygBgDAYAQ1AAAG4xo1YJCOHvPiES8gvPWYoF6zZo1+85vfqLq6WsOGDdPKlSv1k5/8xOmyEMbaPsLV1NQkSYqKiupwXWr/mFfbR7wu53ltwh7oWXpEUP/bv/2b8vLytGbNGt1111165ZVXNHnyZB04cEA333yz0+UhTLV/hOtjRfQbKO+Q9A7Xv2+7+GNelZWVmr/mbQ24MdVuaxvmbft8e+xLPZHtU0ZG8D4vFt498QUu/AGD7qpHBHVRUZFmzZqlX/7yl5KklStXauvWrVq7dq0KCwsdrg7hrO0jXJEe7wXXz7f9UEcvVumfODjoM5fqc+rkIRVvq7L/YJDah3fbs/vLeYFLqML8WgVo2z9geCHN5emJf7Rdimlj7vZB3dTUpMrKSv3qV78Kas/JydGuXbs6/EwgEFAgELDX6+vrJUl+v/+q6zlz5oy+OXpA5wKN3++7+qgi/PVyR17X4frl9OnMZ7pqv9R/bes/6dul53b6NcD7mSTpm6MH5Bk0TK3N39mfuVSf+uqjiugba/9OSlJD7Qk997sDQZ/pFd1PA7w3B+0j5gefaWkO6NNPP9WZM2ckSVVVVSp+4yP1Gei1+5z9tka5/+9eDRs2TJer7X46s4/L/TktzQH7OLQdDzoWqv/O3cmFxvzy0/M0ZsyYkP2cmJgYuVyuS3e0urmTJ09akqz//M//DGp//vnnrVtvvbXDzyxbtsySxMLCwsLC4thSX19/WTnX7c+oz2v7V4llWRf8S2XJkiVasGCBvd7a2qpvv/1WcXFxl/fXzUX4/X4lJyfr+PHj6t+//1XtqzsK9/FLHAPGH97jlzgGlzv+mJiYy9pftw/q+Ph49erVSzU1NUHttbW1SkhI6PAzbre73XWGAQMGhLSu/v37h+Uv6HnhPn6JY8D4w3v8EscgVOPv9i88iYqKUmZmpsrKyoLay8rKuEkEANDtdfszaklasGCBHnvsMY0aNUpjx47VunXrdOzYMc2ePdvp0gAAuCo9Iqh//vOf65tvvtGzzz6r6upqpaen6/e//70GDRp0zWtxu91atmxZj31s4VLCffwSx4Dxh/f4JY5BqMfvsizLCsmeAABAyHX7a9QAAPRkBDUAAAYjqAEAMBhBDQCAwQjqEFqzZo1SUlIUHR2tzMxMffLJJ06X1GU+/vhj3X///UpKSpLL5dJbb70VtN2yLOXn5yspKUm9e/dWdna2qqqqnCm2CxQWFmr06NGKiYnRDTfcoAcffFBffvllUJ+efAzWrl2r4cOH2y90GDt2rN577z17e08ee0cKCwvlcrmUl5dnt/X0Y5Cfny+XyxW0eL1/eTd2Tx//eSdPntSjjz6quLg49enTRz/+8Y+DJvQIxXEgqEPk/FSbS5cu1eeff66f/OQnmjx5so4dO+Z0aV3izJkzGjFihFavXt3h9uXLl6uoqEirV69WRUWFvF6vJk6cqIaGhmtcadcoLy/X3LlztXv3bpWVlencuXPKyckJmuChJx+Dm266SS+88IL27NmjPXv26L777tMDDzxg/w+oJ4+9rYqKCq1bt07Dhw8Pag+HYzBs2DBVV1fbyw9ncQuH8dfV1emuu+5SZGSk3nvvPR04cEAvvvhi0JsuQ3IcOjsZBoL91V/9lTV79uygtttvv9361a9+5VBF144ka8uWLfZ6a2ur5fV6rRdeeMFu++677yyPx2O9/PLLDlTY9Wpray1JVnl5uWVZ4XkMYmNjrX/5l38Jq7E3NDRYaWlpVllZmTVu3DjrqaeesiwrPP77L1u2zBoxYkSH28Jh/JZlWf/4j/9o3X333RfcHqrjwBl1CJyfajMnJyeo/WJTbfZkR44cUU1NTdDxcLvdGjduXI89HuenSh04cKCk8DoGLS0tKi0t1ZkzZzR27NiwGvvcuXP1s5/9TBMmTAhqD5djcPDgQSUlJSklJUUPP/ywDh8+LCl8xv/OO+9o1KhReuihh3TDDTdo5MiRWr9+vb09VMeBoA6BP//5z2ppaWk3CUhCQkK7yULCwfkxh8vxsCxLCxYs0N1336309HRJ4XEMfD6f+vXrJ7fbrdmzZ2vLli0aOnRoWIxdkkpLS/XZZ5+psLCw3bZwOAZjxozRa6+9pq1bt2r9+vWqqalRVlaWvvnmm7AYvyQdPnxYa9euVVpamrZu3arZs2dr/vz5eu211ySF7vegR7xC1BRXMtVmOAiX4zFv3jzt27dPO3fubLetJx+D2267TXv37tWpU6f0xhtvaObMmSovL7e39+SxHz9+XE899ZS2bdum6OjoC/brycdg8uTJ9r8zMjI0duxYpaamauPGjbrzzjsl9ezxS99PkTxq1CgVFBRIkkaOHKmqqiqtXbtWf/M3f2P3u9rjwBl1CHRmqs2e7Pydn+FwPHJzc/XOO+/oo48+0k033WS3h8MxiIqK0pAhQzRq1CgVFhZqxIgR+u1vfxsWY6+srFRtba0yMzMVERGhiIgIlZeXa9WqVYqIiLDH2ZOPQVt9+/ZVRkaGDh48GBa/A5KUmJiooUOHBrX96Ec/sm8iDtVxIKhDgKk2g6WkpMjr9QYdj6amJpWXl/eY42FZlubNm6c333xTH374oVJSUoK2h8MxaMuyLAUCgbAY+/jx4+Xz+bR37157GTVqlB555BHt3btXgwcP7vHHoK1AIKAvvvhCiYmJYfE7IEl33XVXu8cy/+d//seeECpkx6ETN7qhA6WlpVZkZKS1YcMG68CBA1ZeXp7Vt29f6+jRo06X1iUaGhqszz//3Pr8888tSVZRUZH1+eefW1999ZVlWZb1wgsvWB6Px3rzzTctn89n/eIXv7ASExMtv9/vcOWh8eSTT1oej8fasWOHVV1dbS9nz561+/TkY7BkyRLr448/to4cOWLt27fP+vWvf21dd9111rZt2yzL6tljv5Af3vVtWT3/GCxcuNDasWOHdfjwYWv37t3WlClTrJiYGPv/eT19/JZlWZ9++qkVERFhPf/889bBgwetf/3Xf7X69Oljbdq0ye4TiuNAUIfQSy+9ZA0aNMiKioqy7rjjDvtRnZ7oo48+siS1W2bOnGlZ1vePJSxbtszyer2W2+227rnnHsvn8zlbdAh1NHZJ1quvvmr36cnH4O///u/t3/Xrr7/eGj9+vB3SltWzx34hbYO6px+Dn//851ZiYqIVGRlpJSUlWdOmTbOqqqrs7T19/Oe9++67Vnp6uuV2u63bb7/dWrduXdD2UBwHprkEAMBgXKMGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBnBZduzYIZfLpVOnTkmSSkpKNGDAAEdrAsIBQQ3gsmRlZam6uloej8fpUoCwwnzUAC5LVFSUPW0fgGuHM2ogTGVnZys3N1d5eXmKjY1VQkKC1q1bpzNnzujv/u7vFBMTo9TUVL333nuS2n/13ZF3331XmZmZio6O1uDBg/XMM8/o3Llz9vb8/HzdfPPNcrvdSkpK0vz587t6mEC3R1ADYWzjxo2Kj4/Xp59+qtzcXD355JN66KGHlJWVpc8++0yTJk3SY489prNnz15yX1u3btWjjz6q+fPn68CBA3rllVdUUlKi559/XpL07//+71qxYoVeeeUVHTx4UG+99ZYyMjK6eohAt8fsWUCYys7OVktLiz755BNJUktLizwej6ZNm6bXXntNklRTU6PExET94Q9/0Hfffad7771XdXV1GjBggEpKSpSXl2efYd9zzz2aPHmylixZYv+MTZs2afHixfrTn/6koqIivfLKK9q/f78iIyOv+XiB7oozaiCMDR8+3P53r169FBcXF3SWm5CQIEmqra295L4qKyv17LPPql+/fvby+OOPq7q6WmfPntVDDz2kxsZGDR48WI8//ri2bNkS9LU4gI5xMxkQxtqe2bpcrqA2l8slSWptbb3kvlpbW/XMM89o2rRp7bZFR0crOTlZX375pcrKyrR9+3bNmTNHv/nNb1ReXs4ZNnARBDWAkLjjjjv05ZdfasiQIRfs07t3b02dOlVTp07V3Llzdfvtt8vn8+mOO+64hpUC3QtBDSAknn76aU2ZMkXJycl66KGHdN1112nfvn3y+Xx67rnnVFJSopaWFo0ZM0Z9+vTR66+/rt69e2vQoEFOlw4YjWvUAEJi0qRJ+o//+A+VlZVp9OjRuvPOO1VUVGQH8YABA7R+/XrdddddGj58uD744AO9++67iouLc7hywGzc9Q0AgME4owYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMNj/Bz4bV3+TCl9lAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "sns.displot(sample_df, x=\"miles\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "43beea36-d574-484a-909d-11698c9e43c8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHqCAYAAADLbQ06AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwQUlEQVR4nO3dfVSVZb7/8c9OYIsIJBhPSYilJYHmKMenSk3FLHPMVvbo2DnWqqOoDDqV2jlhp6TT+flwDpozdRytzB+tOelkZ8rCTCcjTWnEB8qxCU0TpAx5MAWF6/eHP+9xI2rihn0B79dae63u6/7uvb/3tVh9vPf95DLGGAEAACtd4esGAADA+RHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxglqSMUbl5eXi3i8AANsQ1JIqKioUGhqqiooKX7cCAIAHghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYzM/XDcBTdXW18vPzPcZ69uypgIAAH3UEAPAlgtoy+fn5Sl38jkJi4iVJ5YcKtWiylJyc7OPOAAC+QFBbKCQmXuGdE3zdBgDAAhyjBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDEec2m52ppTKigo8Bjr2bOnAgICfNQRAKApEdSWqzh8QPP3n1DEnlOSpPJDhVo0WUpOTvZxZwCApkBQNwPtI+MU3jnB120AAHyAY9QAAFiMoAYAwGIENQAAFuMYdTPDWeAA0LoQ1M0MZ4EDQOvi05++lyxZoh49eigkJEQhISHq37+/3n//fWe9MUYZGRmKiYlRYGCgBg8erN27d3t8RlVVlaZMmaKOHTsqKChIo0eP1sGDB5t6U5rUmbPAwzsnKCQm3tftAAAakU+DulOnTnrxxRe1bds2bdu2Tbfddpt++ctfOmH80ksvaf78+Vq0aJG2bt2qqKgoDR8+XBUVFc5npKWlafXq1crOztamTZtUWVmpUaNGqaamxlebBQCA1/g0qO+66y7dcccd6tatm7p166YXXnhB7du31+bNm2WM0cKFCzV79myNHTtWiYmJeu211/TTTz9p5cqVkqSysjItXbpU8+bN07Bhw9SrVy+tWLFCO3fu1Lp163y5aQAAeIU1Z33X1NQoOztbx44dU//+/VVYWKji4mKlpKQ4NW63W4MGDVJubq4kKS8vTydPnvSoiYmJUWJiolNTn6qqKpWXl3u8AACwkc9PJtu5c6f69++vEydOqH379lq9erUSEhKcoI2MjPSoj4yM1P79+yVJxcXFCggIUIcOHc6pKS4uPu93ZmZmas6cOV7ekoaprq5Wfn6+s1xQUCDV+rAhAIBVfB7U119/vbZv366jR4/q7bff1oQJE7Rx40Znvcvl8qg3xpwzVtfFambOnKn09HRnuby8XLGxsQ3cgsuTn5+v1MXvOCeFHdrxqa68tpfCfdINAMA2Pg/qgIAAXXfddZKkPn36aOvWrfrP//xPPfXUU5JO7zVHR0c79SUlJc5edlRUlKqrq1VaWuqxV11SUqIBAwac9zvdbrfcbndjbE6DhMTEO/fyLjtU6ONuAAA2seYY9RnGGFVVVSk+Pl5RUVHKyclx1lVXV2vjxo1OCPfu3Vv+/v4eNUVFRdq1a9cFgxoAgObCp3vUs2bN0siRIxUbG6uKigplZ2drw4YNWrt2rVwul9LS0jR37lx17dpVXbt21dy5c9WuXTs9+OCDkqTQ0FBNnDhR06dPV3h4uMLCwjRjxgwlJSVp2LBhvtw0AAC8wqdBffjwYY0fP15FRUUKDQ1Vjx49tHbtWg0fPlyS9OSTT+r48eOaNGmSSktL1bdvX3344YcKDg52PmPBggXy8/PTuHHjdPz4cQ0dOlTLly9XmzZtfLVZAAB4jU+DeunSpRdc73K5lJGRoYyMjPPWtG3bVllZWcrKyvJydwAA+J51x6gBAMDf+fysb1wenqYFAC0bQd3M8TQtAGjZCOoW4MzTtAAALQ/HqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABbzaVBnZmYqOTlZwcHBioiI0JgxY7Rnzx6PmkceeUQul8vj1a9fP4+aqqoqTZkyRR07dlRQUJBGjx6tgwcPNuWmAADQKHwa1Bs3btTkyZO1efNm5eTk6NSpU0pJSdGxY8c86m6//XYVFRU5r/fee89jfVpamlavXq3s7Gxt2rRJlZWVGjVqlGpqappycwAA8Do/X3752rVrPZaXLVumiIgI5eXl6dZbb3XG3W63oqKi6v2MsrIyLV26VG+88YaGDRsmSVqxYoViY2O1bt06jRgxovE2AACARmbVMeqysjJJUlhYmMf4hg0bFBERoW7duumxxx5TSUmJsy4vL08nT55USkqKMxYTE6PExETl5ubW+z1VVVUqLy/3eAEAYCNrgtoYo/T0dN18881KTEx0xkeOHKk333xT69ev17x587R161bddtttqqqqkiQVFxcrICBAHTp08Pi8yMhIFRcX1/tdmZmZCg0NdV6xsbGNt2EAAFwGn/70fbbU1FTt2LFDmzZt8hi/7777nP9OTExUnz59FBcXpz/96U8aO3bseT/PGCOXy1XvupkzZyo9Pd1ZLi8vJ6wBAFayYo96ypQpWrNmjT7++GN16tTpgrXR0dGKi4vT3r17JUlRUVGqrq5WaWmpR11JSYkiIyPr/Qy3262QkBCPFwAANvJpUBtjlJqaqlWrVmn9+vWKj4+/6HuOHDmiAwcOKDo6WpLUu3dv+fv7Kycnx6kpKirSrl27NGDAgEbrHQCApuDTn74nT56slStX6p133lFwcLBzTDk0NFSBgYGqrKxURkaG7rnnHkVHR2vfvn2aNWuWOnbsqLvvvtupnThxoqZPn67w8HCFhYVpxowZSkpKcs4CBwCgufJpUC9ZskSSNHjwYI/xZcuW6ZFHHlGbNm20c+dOvf766zp69Kiio6M1ZMgQvfXWWwoODnbqFyxYID8/P40bN07Hjx/X0KFDtXz5crVp06YpNwcAAK/zaVAbYy64PjAwUB988MFFP6dt27bKyspSVlaWt1oDAMAKVpxMBgAA6kdQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDFrnkfdWlRXVys/P99ZLigokGp92BAAwGoEdRPLz89X6uJ3FBJz+pGeh3Z8qiuv7aVwH/cFALATQe0DITHxCu+cIEkqO1To424AADbjGDUAABYjqAEAsBg/fbcwtTWnTp+gdpaePXsqICDARx0BAC4HQd3CVBw+oPn7TyhizylJUvmhQi2aLCUnJ/u4MwBAQxDULVD7yDjnZDUAQPPGMWoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxnwZ1ZmamkpOTFRwcrIiICI0ZM0Z79uzxqDHGKCMjQzExMQoMDNTgwYO1e/duj5qqqipNmTJFHTt2VFBQkEaPHq2DBw825aYAANAofBrUGzdu1OTJk7V582bl5OTo1KlTSklJ0bFjx5yal156SfPnz9eiRYu0detWRUVFafjw4aqoqHBq0tLStHr1amVnZ2vTpk2qrKzUqFGjVFNT44vNAgDAa/x8+eVr1671WF62bJkiIiKUl5enW2+9VcYYLVy4ULNnz9bYsWMlSa+99poiIyO1cuVKPf744yorK9PSpUv1xhtvaNiwYZKkFStWKDY2VuvWrdOIESOafLsAAPAWq45Rl5WVSZLCwsIkSYWFhSouLlZKSopT43a7NWjQIOXm5kqS8vLydPLkSY+amJgYJSYmOjV1VVVVqby83OPVWlRXV2vr1q0er+rqal+3BQA4D5/uUZ/NGKP09HTdfPPNSkxMlCQVFxdLkiIjIz1qIyMjtX//fqcmICBAHTp0OKfmzPvryszM1Jw5c7y9Cc1Cfn6+Uhe/o5CYeElS+aFCLZosJScn+7gzAEB9rAnq1NRU7dixQ5s2bTpnncvl8lg2xpwzVteFambOnKn09HRnuby8XLGxsQ3ounkKiYlXeOcEX7cBAPgZrPjpe8qUKVqzZo0+/vhjderUyRmPioqSpHP2jEtKSpy97KioKFVXV6u0tPS8NXW53W6FhIR4vAAAsJFPg9oYo9TUVK1atUrr169XfHy8x/r4+HhFRUUpJyfHGauurtbGjRs1YMAASVLv3r3l7+/vUVNUVKRdu3Y5NQAANFc+/el78uTJWrlypd555x0FBwc7e86hoaEKDAyUy+VSWlqa5s6dq65du6pr166aO3eu2rVrpwcffNCpnThxoqZPn67w8HCFhYVpxowZSkpKcs4CBwCgufJpUC9ZskSSNHjwYI/xZcuW6ZFHHpEkPfnkkzp+/LgmTZqk0tJS9e3bVx9++KGCg4Od+gULFsjPz0/jxo3T8ePHNXToUC1fvlxt2rRpqk0BAKBR+DSojTEXrXG5XMrIyFBGRsZ5a9q2bausrCxlZWV5sTsAAHzPipPJAABA/QhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMZ/e6xuNr7bmlAoKCpzlgoICqdaHDQEALglB3cJVHD6g+ftPKGLPKUnSoR2f6spreyncx30BAH4egroVaB8Zp/DOCZKkskOFPu4GAHApGnSMukuXLjpy5Mg540ePHlWXLl0uuykAAHBag4J63759qqmpOWe8qqpK33333WU3BQAATrukn77XrFnj/PcHH3yg0NBQZ7mmpkYfffSROnfu7LXmAABo7S4pqMeMGSNJcrlcmjBhgsc6f39/de7cWfPmzfNacwAAtHaXFNS1taev64mPj9fWrVvVsWPHRmkKAACc1qCzvgsLOXMYAICm0ODLsz766CN99NFHKikpcfa0z/j9739/2Y0BAIAGBvWcOXP03HPPqU+fPoqOjpbL5fJ2XwAAQA0M6t/+9rdavny5xo8f7+1+AADAWRp0HXV1dbUGDBjg7V4AAEAdDQrqRx99VCtXrvR2LwAAoI4G/fR94sQJvfLKK1q3bp169Oghf39/j/Xz58/3SnMAALR2DQrqHTt26KabbpIk7dq1y2MdJ5YBAOA9DQrqjz/+2Nt9AACAejToGDUAAGgaDdqjHjJkyAV/4l6/fn2DGwIAAH/XoKA+c3z6jJMnT2r79u3atWvXOQ/rAAAADdegoF6wYEG94xkZGaqsrLyshgAAwN959Rj1ww8/zH2+AQDwIq8G9Weffaa2bdt68yMBAGjVGvTT99ixYz2WjTEqKirStm3b9C//8i9eaQwAADQwqENDQz2Wr7jiCl1//fV67rnnlJKS4pXGAABAA4N62bJl3u4DAADUo0FBfUZeXp6+/PJLuVwuJSQkqFevXt7qCwAAqIFBXVJSovvvv18bNmzQlVdeKWOMysrKNGTIEGVnZ+uqq67ydp9oJLU1p1RQUOAx1rNnTwUEBPioIwDA2Rp01veUKVNUXl6u3bt368cff1Rpaal27dql8vJyTZ061ds9ohFVHD6g+e/v1KzVOzRr9Q6lLn5H+fn5vm4LAPD/NWiPeu3atVq3bp26d+/ujCUkJGjx4sWcTNYMtY+MU3jnBF+3AQCoR4P2qGtra895BrUk+fv7q7a29rKbAgAApzUoqG+77TZNmzZNhw4dcsa+++47/frXv9bQoUO91hwAAK1dg4J60aJFqqioUOfOnXXttdfquuuuU3x8vCoqKpSVleXtHgEAaLUadIw6NjZWX3zxhXJycvTVV1/JGKOEhAQNGzbM2/0BANCqXdIe9fr165WQkKDy8nJJ0vDhwzVlyhRNnTpVycnJuvHGG/XJJ580SqMAALRGlxTUCxcu1GOPPaaQkJBz1oWGhurxxx/X/PnzvdYcAACt3SUFdX5+vm6//fbzrk9JSVFeXt5lNwUAAE67pKA+fPhwvZdlneHn56fvv//+spsCAACnXVJQX3311dq5c+d51+/YsUPR0dGX3RQAADjtkoL6jjvu0L/+67/qxIkT56w7fvy4nn32WY0aNcprzQEA0Npd0uVZzzzzjFatWqVu3bopNTVV119/vVwul7788kstXrxYNTU1mj17dmP1CgBAq3NJe9SRkZHKzc1VYmKiZs6cqbvvvltjxozRrFmzlJiYqE8//VSRkZE/+/P+/Oc/66677lJMTIxcLpf++Mc/eqx/5JFH5HK5PF79+vXzqKmqqtKUKVPUsWNHBQUFafTo0Tp48OClbBYAANa65BuexMXF6b333lNpaam+/vprGWPUtWtXdejQ4ZK//NixY+rZs6f+8R//Uffcc0+9NbfffruWLVvmLNd9/GJaWpreffddZWdnKzw8XNOnT9eoUaOUl5enNm3aXHJPAADYpEF3JpOkDh06KDk5+bK+fOTIkRo5cuQFa9xut6KioupdV1ZWpqVLl+qNN95w7oq2YsUKxcbGat26dRoxYsRl9QcAgK816F7fTWnDhg2KiIhQt27d9Nhjj6mkpMRZl5eXp5MnT3o8WjMmJkaJiYnKzc0972dWVVWpvLzc4wUAgI2sDuqRI0fqzTff1Pr16zVv3jxt3bpVt912m6qqqiRJxcXFCggIOOdn98jISBUXF5/3czMzMxUaGuq8YmNjG3U7AABoqAb/9N0U7rvvPue/ExMT1adPH8XFxelPf/qTxo4de973GWPkcrnOu37mzJlKT093lsvLywlrAICVrN6jris6OlpxcXHau3evJCkqKkrV1dUqLS31qCspKbng2edut1shISEeLwAAbNSsgvrIkSM6cOCAc/ez3r17y9/fXzk5OU5NUVGRdu3apQEDBviqTQAAvManP31XVlbq66+/dpYLCwu1fft2hYWFKSwsTBkZGbrnnnsUHR2tffv2adasWerYsaPuvvtuSaef2DVx4kRNnz5d4eHhCgsL04wZM5SUlMSzsQEALYJPg3rbtm0aMmSIs3zmuPGECRO0ZMkS7dy5U6+//rqOHj2q6OhoDRkyRG+99ZaCg4Od9yxYsEB+fn4aN26cjh8/rqFDh2r58uVcQw0AaBF8GtSDBw+WMea86z/44IOLfkbbtm2VlZWlrKwsb7YGAIAVmtUxagAAWhuCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsJifrxuAXWprTqmgoMBjrGfPngoICPBRRwDQuhHU8FBx+IDm7z+hiD2nJEnlhwq1aLKUnJzs484AoHUiqHGO9pFxCu+c4Os2AADiGDUAAFZjjxqXpLq6Wvn5+R5jHMMGgMZDUOOS5OfnK3XxOwqJiZfEMWwAaGwENS5ZSEw8x7ABoIlwjBoAAIsR1AAAWIyfvnFBdW+AUlBQINX6sCEAaGUIalxQ3RugHNrxqa68tpfCfdwXALQWBDUu6uwboJQdKvRxNwDQunCMGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWMynQf3nP/9Zd911l2JiYuRyufTHP/7RY70xRhkZGYqJiVFgYKAGDx6s3bt3e9RUVVVpypQp6tixo4KCgjR69GgdPHiwCbcCAIDG49OgPnbsmHr27KlFixbVu/6ll17S/PnztWjRIm3dulVRUVEaPny4KioqnJq0tDStXr1a2dnZ2rRpkyorKzVq1CjV1NQ01WYAANBofPpQjpEjR2rkyJH1rjPGaOHChZo9e7bGjh0rSXrttdcUGRmplStX6vHHH1dZWZmWLl2qN954Q8OGDZMkrVixQrGxsVq3bp1GjBjRZNsCAEBjsPYYdWFhoYqLi5WSkuKMud1uDRo0SLm5uZKkvLw8nTx50qMmJiZGiYmJTg0AAM2ZtY+5LC4uliRFRkZ6jEdGRmr//v1OTUBAgDp06HBOzZn316eqqkpVVVXOcnl5ubfaBgDAq6wN6jNcLpfHsjHmnLG6LlaTmZmpOXPmeKW/i6murlZ+fr6zXFBQINU2yVcDAFoAa3/6joqKkqRz9oxLSkqcveyoqChVV1ertLT0vDX1mTlzpsrKypzXgQMHvNz93+Xn5yt18TuatXqHZq3eoZf+sFE/Hf+p0b4PANCyWBvU8fHxioqKUk5OjjNWXV2tjRs3asCAAZKk3r17y9/f36OmqKhIu3btcmrq43a7FRIS4vFqTCEx8QrvnKDwzgkK6hjTqN8FAGhZfPrTd2Vlpb7++mtnubCwUNu3b1dYWJiuueYapaWlae7cueratau6du2quXPnql27dnrwwQclSaGhoZo4caKmT5+u8PBwhYWFacaMGUpKSnLOAgcAoDnzaVBv27ZNQ4YMcZbT09MlSRMmTNDy5cv15JNP6vjx45o0aZJKS0vVt29fffjhhwoODnbes2DBAvn5+WncuHE6fvy4hg4dquXLl6tNmzZNvj0AAHibT4N68ODBMsacd73L5VJGRoYyMjLOW9O2bVtlZWUpKyurEToEAMC3rD1GDQAACGoAAKxGUAMAYDGCGgAAixHUAABYjKAGAMBi1t/rG3arrTl1+v7lZ+nZs6cCAgJ81BEAtCwENS5LxeEDmr//hCL2nJIklR8q1KLJUnJyso87A4CWgaDGZWsfGafwzgm+bgMAWiSOUQMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFvPzdQNoWWprTqmgoOCc8Z49eyogIMAHHQFA80ZQw6sqDh/Q/P0nFLHnlDNWfqhQiyZLycnJPuwMAJonghpe1z4yTuGdE3zdBgC0CByjBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMS7PQqOr7yYo3AAFAH4eghqNru5NULgBCgD8fAQ1mgQ3QQGAhuEYNQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsJjVQZ2RkSGXy+XxioqKctYbY5SRkaGYmBgFBgZq8ODB2r17tw87BgDAu6wOakm68cYbVVRU5Lx27tzprHvppZc0f/58LVq0SFu3blVUVJSGDx+uiooKH3YMAID3WP9QDj8/P4+96DOMMVq4cKFmz56tsWPHSpJee+01RUZGauXKlXr88cebulX8THUfe3ny5ElJkr+/vzPGYzAB4DTrg3rv3r2KiYmR2+1W3759NXfuXHXp0kWFhYUqLi5WSkqKU+t2uzVo0CDl5uYS1Bar+9jLQzs+lV/7MEV06S6Jx2ACwNmsDuq+ffvq9ddfV7du3XT48GE9//zzGjBggHbv3q3i4mJJUmRkpMd7IiMjtX///gt+blVVlaqqqpzl8vJy7zePCzr7sZdlhwrlHxrJYzABoB5WB/XIkSOd/05KSlL//v117bXX6rXXXlO/fv0kSS6Xy+M9xphzxurKzMzUnDlzvN8wAABeZv3JZGcLCgpSUlKS9u7d6xy3PrNnfUZJSck5e9l1zZw5U2VlZc7rwIEDjdYzLt2ZY9hbt251XtXV1b5uCwB8wuo96rqqqqr05Zdf6pZbblF8fLyioqKUk5OjXr16SZKqq6u1ceNG/fu///sFP8ftdsvtdjdFy2iAusewOWYNoDWzOqhnzJihu+66S9dcc41KSkr0/PPPq7y8XBMmTJDL5VJaWprmzp2rrl27qmvXrpo7d67atWunBx980Net4zKdfQwbAFozq4P64MGDeuCBB/TDDz/oqquuUr9+/bR582bFxcVJkp588kkdP35ckyZNUmlpqfr27asPP/xQwcHBPu4cAADvsDqos7OzL7je5XIpIyNDGRkZTdMQAABNrFmdTAYAQGtDUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALCY1c+jBiSptuaUCgoKPMZ69uypgIAAH3UEAE2HoIb1Kg4f0Pz9JxSx55QkqfxQoRZNlpKTk33cGQA0PoIazUL7yDiFd07wdRsA0OQ4Rg0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGJcnoUWp7q6Wvn5+c7yyZMnJUn+/v7OGDdMAdBcENRo9uoGc0FBgRav/6tCr+4iSTq041P5tQ9TRJfukrhhCoDmhaBGs5efn6/Uxe8oJCZe0ulgvvLaXs4NUsoOFco/NJIbpgBolghqtAghMfEewQwALQUnkwEAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBiXZ6HVqa05pYKCAo8x7lQGwFYENVqdisMHNH//CUXsOSWJO5UBsBtBjWan7h5xQUGBVHtpn9E+Mo47lQFoFghqNDt194idW4b6uC8AaAwENZqls/eIL/eWoRyzBmAzghqtHsesAdiMoAbEMWsA9uI6agAALMYeNXAR1dXVys/P9xjjGDaApkJQe1nd/6k35NIh+FZ9l38tXv9XhV7dRZJ09MDXSh1WoISEv/9UTnADaCwEtZfl5+crdfE7ComJl8SlQ83ReS//Ouss8/nv7+TkMwBNgqBuBCEx8V67dAi+cbHLvzj5DEBTIaiBy3Sp12FzzBvApSCogct0qddh1z080hx/OucfG0DTIagBLzj7p/Cfs4d99uGR5nhntJbwjw2guSCoAS+71D3shtwZzYY92rP/sQGg8RDUQCO41JPNLrWePVqg9SCogWaKPVqgdWgxQf3yyy/rP/7jP1RUVKQbb7xRCxcu1C233OLrtoBLVveY9cmTJyVJ/v7+zhg30gFajxYR1G+99ZbS0tL08ssva+DAgfrd736nkSNHqqCgQNdcc42v20MrV9+dzi4UsvXdcMWvfZgiunR3aureSOfnhLvtJ6gBqF+LCOr58+dr4sSJevTRRyVJCxcu1AcffKAlS5YoMzPTx92htTvvnc4u8J66N1zxD430+Jm77k1YLhbudW97WjfICXY7TtCDXWz5m2j2QV1dXa28vDw9/fTTHuMpKSnKzc31UVeAp4vd6awxvuPscK9729O6QV53uTWenMYJeqjLlr+JZh/UP/zwg2pqahQZGekxHhkZqeLi4nrfU1VVpaqqKme5rKxMklReXn7Z/VRWVqp031c6VXX89GcW7ZNfRZkC/FytctmGHlracoM/o30H5++y5mS1XCerzr9cXaW8vDxVVlaqPnv27FHpvr859RVF+5WXd/K89c3Bnj17VFP98+cALV99fxOVlZVeyYozgoOD5XK5LljT7IP6jLobaow578ZnZmZqzpw554zHxsY2Sm9Ac5T3fxu3vjloiduEy3Pb//0/Xv28srIyhYSEXLCm2Qd1x44d1aZNm3P2nktKSs7Zyz5j5syZSk9Pd5Zra2v1448/Kjw8/KL/srmQ8vJyxcbG6sCBAxedeNSPObx8zOHlYw4vH3P48wQHB1+0ptkHdUBAgHr37q2cnBzdfffdznhOTo5++ctf1vset9stt9vtMXbllVd6raeQkBD+MC8Tc3j5mMPLxxxePubw8jX7oJak9PR0jR8/Xn369FH//v31yiuv6Ntvv9UTTzzh69YAALgsLSKo77vvPh05ckTPPfecioqKlJiYqPfee09xcXG+bg0AgMvSIoJakiZNmqRJkyb5tAe3261nn332nJ/V8fMxh5ePObx8zOHlYw69x2WMMb5uAgAA1O8KXzcAAADOj6AGAMBiBDUAABYjqL3o5ZdfVnx8vNq2bavevXvrk08+8XVLTS4zM1PJyckKDg5WRESExowZoz179njUGGOUkZGhmJgYBQYGavDgwdq9e7dHTVVVlaZMmaKOHTsqKChIo0eP1sGDBz1qSktLNX78eIWGhio0NFTjx4/X0aNHG3sTm1xmZqZcLpfS0tKcMebw4r777js9/PDDCg8PV7t27XTTTTcpLy/PWc8cXtipU6f0zDPPKD4+XoGBgerSpYuee+451db+/dFvzGETMfCK7Oxs4+/vb1599VVTUFBgpk2bZoKCgsz+/ft93VqTGjFihFm2bJnZtWuX2b59u7nzzjvNNddcYyorK52aF1980QQHB5u3337b7Ny509x3330mOjralJeXOzVPPPGEufrqq01OTo754osvzJAhQ0zPnj3NqVOnnJrbb7/dJCYmmtzcXJObm2sSExPNqFGjmnR7G9vnn39uOnfubHr06GGmTZvmjDOHF/bjjz+auLg488gjj5gtW7aYwsJCs27dOvP11187NczhhT3//PMmPDzc/O///q8pLCw0f/jDH0z79u3NwoULnRrmsGkQ1F7yD//wD+aJJ57wGLvhhhvM008/7aOO7FBSUmIkmY0bNxpjjKmtrTVRUVHmxRdfdGpOnDhhQkNDzW9/+1tjjDFHjx41/v7+Jjs726n57rvvzBVXXGHWrl1rjDGmoKDASDKbN292aj777DMjyXz11VdNsWmNrqKiwnTt2tXk5OSYQYMGOUHNHF7cU089ZW6++ebzrmcOL+7OO+80//RP/+QxNnbsWPPwww8bY5jDpsRP315w5lGbKSkpHuM8avPvTyYLCwuTJBUWFqq4uNhjrtxutwYNGuTMVV5enk6ePOlRExMTo8TERKfms88+U2hoqPr27evU9OvXT6GhoS1mzidPnqw777xTw4YN8xhnDi9uzZo16tOnj+69915FRESoV69eevXVV531zOHF3Xzzzfroo4/017/+VdLpRz5u2rRJd9xxhyTmsCm1mBue+FJDHrXZGhhjlJ6erptvvlmJiYmS5MxHfXO1f/9+pyYgIEAdOnQ4p+bM+4uLixUREXHOd0ZERLSIOc/OztYXX3yhrVu3nrOOOby4b775RkuWLFF6erpmzZqlzz//XFOnTpXb7davfvUr5vBneOqpp1RWVqYbbrhBbdq0UU1NjV544QU98MADkvg7bEoEtRddyqM2W4PU1FTt2LFDmzZtOmddQ+aqbk199S1hzg8cOKBp06bpww8/VNu2bc9bxxyeX21trfr06aO5c+dKknr16qXdu3dryZIl+tWvfuXUMYfn99Zbb2nFihVauXKlbrzxRm3fvl1paWmKiYnRhAkTnDrmsPHx07cXNORRmy3dlClTtGbNGn388cfq1KmTMx4VFSVJF5yrqKgoVVdXq7S09II1hw8fPud7v//++2Y/53l5eSopKVHv3r3l5+cnPz8/bdy4Uf/1X/8lPz8/Z/uYw/OLjo5WQkKCx1j37t317bffSuLv8Of4zW9+o6efflr333+/kpKSNH78eP36179WZmamJOawKRHUXnD2ozbPlpOTowEDBvioK98wxig1NVWrVq3S+vXrFR8f77E+Pj5eUVFRHnNVXV2tjRs3OnPVu3dv+fv7e9QUFRVp165dTk3//v1VVlamzz//3KnZsmWLysrKmv2cDx06VDt37tT27dudV58+ffTQQw9p+/bt6tKlC3N4EQMHDjznssC//vWvzoN6+Du8uJ9++klXXOEZEW3atHEuz2IOm5APTmBrkc5cnrV06VJTUFBg0tLSTFBQkNm3b5+vW2tS//zP/2xCQ0PNhg0bTFFRkfP66aefnJoXX3zRhIaGmlWrVpmdO3eaBx54oN5LOjp16mTWrVtnvvjiC3PbbbfVe0lHjx49zGeffWY+++wzk5SU1GIv6Tj7rG9jmMOL+fzzz42fn5954YUXzN69e82bb75p2rVrZ1asWOHUMIcXNmHCBHP11Vc7l2etWrXKdOzY0Tz55JNODXPYNAhqL1q8eLGJi4szAQEB5he/+IVzSVJrIqne17Jly5ya2tpa8+yzz5qoqCjjdrvNrbfeanbu3OnxOcePHzepqakmLCzMBAYGmlGjRplvv/3Wo+bIkSPmoYceMsHBwSY4ONg89NBDprS0tAm2sunVDWrm8OLeffddk5iYaNxut7nhhhvMK6+84rGeObyw8vJyM23aNHPNNdeYtm3bmi5dupjZs2ebqqoqp4Y5bBo8PQsAAItxjBoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIagM9t2LBBLpdLR48e9XUrgHUIagAALEZQAwBgMYIaaIH+53/+R0lJSQoMDFR4eLiGDRumY8eOSZKWLVum7t27q23btrrhhhv08ssve7z34MGDuv/++xUWFqagoCD16dNHW7ZscdYvWbJE1157rQICAnT99dfrjTfe8Hi/y+XSf//3f+vuu+9Wu3bt1LVrV61Zs8aj5r333lO3bt0UGBioIUOGaN++fR7r9+/fr7vuuksdOnRQUFCQbrzxRr333ntenCGgGfH1U0EAeNehQ4eMn5+fmT9/viksLDQ7duwwixcvNhUVFeaVV14x0dHR5u233zbffPONefvtt01YWJhZvny5McaYiooK06VLF3PLLbeYTz75xOzdu9e89dZbJjc31xhjzKpVq4y/v79ZvHix2bNnj5k3b55p06aNWb9+vfP9kkynTp3MypUrzd69e83UqVNN+/btzZEjR4wxxnz77bfG7XabadOmma+++sqsWLHCREZGGknOE5PuvPNOM3z4cLNjxw7zt7/9zbz77rut8ml0gDE85hJocfLy8oykep+FHhsba1auXOkx9m//9m+mf//+xhhjfve735ng4GAnVOsaMGCAeeyxxzzG7r33XnPHHXc4y5LMM8884yxXVlYal8tl3n//fWOMMTNnzjTdu3c3tbW1Ts1TTz3lEdRJSUkmIyPjErYaaLn46RtoYXr27KmhQ4cqKSlJ9957r1599VWVlpbq+++/14EDBzRx4kS1b9/eeT3//PP629/+Jknavn27evXqpbCwsHo/+8svv9TAgQM9xgYOHKgvv/zSY6xHjx7OfwcFBSk4OFglJSXOZ/Tr108ul8up6d+/v8f7p06dqueff14DBw7Us88+qx07djR8QoBmjqAGWpg2bdooJydH77//vhISEpSVlaXrr79e33zzjSTp1Vdf1fbt253Xrl27tHnzZklSYGDgRT//7ICVJGPMOWP+/v7nvKe2ttapv5hHH31U33zzjcaPH6+dO3eqT58+ysrKuuj7gJaIoAZaIJfLpYEDB2rOnDn6y1/+ooCAAH366ae6+uqr9c033+i6667zeMXHx0s6vSe8fft2/fjjj/V+bvfu3bVp0yaPsdzcXHXv3v1n95aQkOD8w+CMusuSFBsbqyeeeEKrVq3S9OnT9eqrr/7s7wBaEj9fNwDAu7Zs2aKPPvpIKSkpioiI0JYtW/T999+re/fuysjI0NSpUxUSEqKRI0eqqqpK27ZtU2lpqdLT0/XAAw9o7ty5GjNmjDIzMxUdHa2//OUviomJUf/+/fWb3/xG48aN0y9+8QsNHTpU7777rlatWqV169b97P6eeOIJzZs3T+np6Xr88ceVl5en5cuXe9SkpaVp5MiR6tatm0pLS7V+/fpL+scA0KL4+iA5AO8qKCgwI0aMMFdddZVxu92mW7duJisry1n/5ptvmptuuskEBASYDh06mFtvvdWsWrXKWb9v3z5zzz33mJCQENOuXTvTp08fs2XLFmf9yy+/bLp06WL8/f1Nt27dzOuvv+7x/ZLM6tWrPcZCQ0PNsmXLnOV3333XXHfddcbtdptbbrnF/P73v/c4mSw1NdVce+21xu12m6uuusqMHz/e/PDDD96bJKAZcRnzMw4YAQAAn+AYNQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAs9v8AnhidWO8qB3sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(sample_df, x=\"seconds\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "d1a92dc5-2b9b-45cf-b4d0-e5a6732b281f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHpCAYAAABN+X+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAq/0lEQVR4nO3df1RU54H/8c8oMCDBCaAwTkIMSTAbgxoXrZX+0EQgMUts6n5rUtNEe2yP1khK1OPWurvS7BYSzxFtIZqvWVeM1rLtrnRztqkRo9Ia110ksQrJZs1KE3WZTLSEH0oGZe73j3y9zQj4AwfmAd6vc+aczL3PjM99zoQ3d2aYcViWZQkAABhpSLgnAAAAukeoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghFqSZVlqbm4Wf1IOADANoZbU0tIil8ullpaWcE8FAIAghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoDRAIBOT1ehUIBMI9FQCAYQi1AXw+nx5/4Rfy+XzhngoAwDCE2hDOm1zhngIAwECEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAg0WEewKDUSAQsP8UKykpKcyzAQCYjFCHgc/n0/wNlZKkssXZYZ4NAMBkhDpMnHHx4Z4CAKAfCPtr1KdPn9a3vvUtJSYmatiwYbrvvvtUU1Nj77csSwUFBfJ4PIqJidH06dNVV1cXdB9+v195eXkaMWKEYmNjNWvWLJ06daqvDwUAgJALa6gbGxv1pS99SZGRkfrNb36jd955R2vXrtXNN99sj1mzZo2Ki4tVWlqq6upqud1uZWdnq6WlxR6Tn5+viooKlZeX68CBA2ptbVVubq46OjrCcFQAAIROWJ/6fuGFF5SSkqItW7bY226//Xb7vy3L0vr167Vq1SrNnj1bkrR161YlJydrx44dWrhwoZqamrR582Zt27ZNWVlZkqTt27crJSVFe/bs0YMPPtjp3/X7/fL7/fb15ubmXjpCAABuTFjPqF999VVNmjRJ3/jGN5SUlKSJEyfq5ZdftvfX19fL6/UqJyfH3uZ0OjVt2jQdPHhQklRTU6MLFy4EjfF4PEpPT7fHXK6oqEgul8u+pKSk9NIRAgBwY8Ia6hMnTmjjxo1KS0vT66+/rkWLFumZZ57RK6+8Iknyer2SpOTk5KDbJScn2/u8Xq+ioqIUHx/f7ZjLrVy5Uk1NTfbl5MmToT40AABCIqxPfQcCAU2aNEmFhYWSpIkTJ6qurk4bN27UU089ZY9zOBxBt7Msq9O2y11pjNPplNPpvMHZAwDQ+8J6Rj1q1CiNHTs2aNs999yjDz/8UJLkdrslqdOZsc/ns8+y3W632tvb1djY2O0YAAD6q7CG+ktf+pLee++9oG3//d//rdGjR0uSUlNT5Xa7VVlZae9vb29XVVWVMjMzJUkZGRmKjIwMGtPQ0KDa2lp7DAAA/VVYn/p+9tlnlZmZqcLCQs2ZM0f/+Z//qU2bNmnTpk2SPnvKOz8/X4WFhUpLS1NaWpoKCws1bNgwzZ07V5Lkcrm0YMECLVu2TImJiUpISNDy5cs1btw4+13gAAD0V2EN9eTJk1VRUaGVK1fqueeeU2pqqtavX68nnnjCHrNixQq1tbVp8eLFamxs1JQpU7R7927FxcXZY9atW6eIiAjNmTNHbW1tmjFjhsrKyjR06NBwHBYAACHjsCzLCvckwq25uVkul0tNTU0aPnx4r/97Xq9XC7cdliT93ycnSZLmvfi6tj79oP26PAAAkgEfIQoAALpHqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDRYR7AggWCATk8/kkSUlJSRoyhN+lAGAwowKG8fl8mr+hUvM3VNrBBgAMXmENdUFBgRwOR9DF7Xbb+y3LUkFBgTwej2JiYjR9+nTV1dUF3Yff71deXp5GjBih2NhYzZo1S6dOnerrQwkpZ1y8nHHx4Z4GAMAAYT+jvvfee9XQ0GBfjh07Zu9bs2aNiouLVVpaqurqarndbmVnZ6ulpcUek5+fr4qKCpWXl+vAgQNqbW1Vbm6uOjo6wnE4AACEVNhfo46IiAg6i77EsiytX79eq1at0uzZsyVJW7duVXJysnbs2KGFCxeqqalJmzdv1rZt25SVlSVJ2r59u1JSUrRnzx49+OCDfXosAACEWtjPqI8fPy6Px6PU1FQ9/vjjOnHihCSpvr5eXq9XOTk59lin06lp06bp4MGDkqSamhpduHAhaIzH41F6ero9pit+v1/Nzc1BFwAATBTWUE+ZMkWvvPKKXn/9db388svyer3KzMzU2bNn5fV6JUnJyclBt0lOTrb3eb1eRUVFKT4+vtsxXSkqKpLL5bIvKSkpIT4yAABCI6yhnjlzpv7yL/9S48aNU1ZWln79619L+uwp7kscDkfQbSzL6rTtclcbs3LlSjU1NdmXkydP3sBRAADQe8L+1PfnxcbGaty4cTp+/Lj9uvXlZ8Y+n88+y3a73Wpvb1djY2O3Y7ridDo1fPjwoAsAACYyKtR+v1/vvvuuRo0apdTUVLndblVWVtr729vbVVVVpczMTElSRkaGIiMjg8Y0NDSotrbWHgMAQH8W1nd9L1++XI888ohuu+02+Xw+/f3f/72am5s1b948ORwO5efnq7CwUGlpaUpLS1NhYaGGDRumuXPnSpJcLpcWLFigZcuWKTExUQkJCVq+fLn9VDoAAP1dWEN96tQpffOb39SZM2c0cuRIffGLX9ShQ4c0evRoSdKKFSvU1tamxYsXq7GxUVOmTNHu3bsVFxdn38e6desUERGhOXPmqK2tTTNmzFBZWZmGDh0arsMCACBkwhrq8vLyK+53OBwqKChQQUFBt2Oio6NVUlKikpKSEM8OAIDwM+o1agAAEIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBjAl1UVGRHA6H8vPz7W2WZamgoEAej0cxMTGaPn266urqgm7n9/uVl5enESNGKDY2VrNmzdKpU6f6ePYAAPQOI0JdXV2tTZs2afz48UHb16xZo+LiYpWWlqq6ulput1vZ2dlqaWmxx+Tn56uiokLl5eU6cOCAWltblZubq46Ojr4+DAAAQi7soW5tbdUTTzyhl19+WfHx8fZ2y7K0fv16rVq1SrNnz1Z6erq2bt2q8+fPa8eOHZKkpqYmbd68WWvXrlVWVpYmTpyo7du369ixY9qzZ0+4DgkAgJAJe6iffvpp/cVf/IWysrKCttfX18vr9SonJ8fe5nQ6NW3aNB08eFCSVFNTowsXLgSN8Xg8Sk9Pt8d0xe/3q7m5OegCAICJIsL5j5eXl+utt95SdXV1p31er1eSlJycHLQ9OTlZH3zwgT0mKioq6Ez80phLt+9KUVGRfvSjH93o9AEA6HVhO6M+efKkvv/972v79u2Kjo7udpzD4Qi6bllWp22Xu9qYlStXqqmpyb6cPHny+iYPAEAfCVuoa2pq5PP5lJGRoYiICEVERKiqqko//elPFRERYZ9JX35m7PP57H1ut1vt7e1qbGzsdkxXnE6nhg8fHnQBAMBEYQv1jBkzdOzYMR05csS+TJo0SU888YSOHDmiO+64Q263W5WVlfZt2tvbVVVVpczMTElSRkaGIiMjg8Y0NDSotrbWHgMAQH8Wtteo4+LilJ6eHrQtNjZWiYmJ9vb8/HwVFhYqLS1NaWlpKiws1LBhwzR37lxJksvl0oIFC7Rs2TIlJiYqISFBy5cv17hx4zq9OQ0AgP4orG8mu5oVK1aora1NixcvVmNjo6ZMmaLdu3crLi7OHrNu3TpFRERozpw5amtr04wZM1RWVqahQ4eGceYAAISGUaHev39/0HWHw6GCggIVFBR0e5vo6GiVlJSopKSkdycHAEAYhP3vqAEAQPcINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGCwiHBPYDAIBALy+XySpKSkpDDPBgDQnxDqPuDz+TR/Q6UkqWxxdphnAwDoTwh1H3HGxYd7CgCAfojXqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMFiPQn3HHXfo7NmznbZ/8sknuuOOO254UgAA4DM9CvUf/vAHdXR0dNru9/t1+vTpG54UAAD4zHX9HfWrr75q//frr78ul8tlX+/o6NAbb7yh22+/PWSTQ+dPNRsyhFcrAGAwua5QP/roo5Ikh8OhefPmBe2LjIzU7bffrrVr14Zscuj8qWZutzvMMwIA9KXrCnUgEJAkpaamqrq6WiNGjOiVSSEYn2oGAINXjz5CtL6+PtTzAAAAXejxZ32/8cYbeuONN+Tz+ewz7Uv+8R//8YYnBgAAehjqH/3oR3ruuec0adIkjRo1Sg6HI9TzAgAA6mGoX3rpJZWVlenJJ58M9XwAAMDn9Ohvfdrb25WZmRnquQAAgMv0KNTf+c53tGPHjlDPBQAAXKZHT31/+umn2rRpk/bs2aPx48crMjIyaH9xcXFIJgcAwGDXo1AfPXpU9913nySptrY2aB9vLAMAIHR6FOp9+/aFeh4AAKALfHA0AAAG69EZ9f3333/Fp7j37t3b4wkBAIA/6VGoL70+fcmFCxd05MgR1dbWdvqyDgAA0HM9CvW6deu63F5QUKDW1tYbmhAAAPiTkL5G/a1vfYvP+QYAIIRCGup///d/V3R0dCjvEgCAQa1HT33Pnj076LplWWpoaNDhw4f1N3/zNyGZGAAA6GGoXS5X0PUhQ4bo7rvv1nPPPaecnJyQTAwAAPQw1Fu2bAn1PAAAQBd6FOpLampq9O6778rhcGjs2LGaOHFiqOYFAADUw1D7fD49/vjj2r9/v26++WZZlqWmpibdf//9Ki8v18iRI0M9TwAABqUeves7Ly9Pzc3Nqqur0x//+Ec1NjaqtrZWzc3NeuaZZ0I9RwAABq0enVHv2rVLe/bs0T333GNvGzt2rF588UXeTAYAQAj16Iw6EAh0+g5qSYqMjFQgELjhSQEAgM/0KNQPPPCAvv/97+t///d/7W2nT5/Ws88+qxkzZoRscgAADHY9CnVpaalaWlp0++23684779Rdd92l1NRUtbS0qKSkJNRzBABg0OrRa9QpKSl66623VFlZqf/6r/+SZVkaO3assrKyQj0/AAAGtes6o967d6/Gjh2r5uZmSVJ2drby8vL0zDPPaPLkybr33nv1u9/97prvb+PGjRo/fryGDx+u4cOHa+rUqfrNb35j77csSwUFBfJ4PIqJidH06dNVV1cXdB9+v195eXkaMWKEYmNjNWvWLJ06dep6DgsAAGNdV6jXr1+v7373uxo+fHinfS6XSwsXLlRxcfE139+tt96q559/XocPH9bhw4f1wAMP6Gtf+5od4zVr1qi4uFilpaWqrq6W2+1Wdna2Wlpa7PvIz89XRUWFysvLdeDAAbW2tio3N1cdHR3Xc2gAABjpukL9+9//Xg899FC3+3NyclRTU3PN9/fII4/o4Ycf1pgxYzRmzBj9+Mc/1k033aRDhw7JsiytX79eq1at0uzZs5Wenq6tW7fq/Pnz2rFjhySpqalJmzdv1tq1a5WVlaWJEydq+/btOnbsmPbs2dPtv+v3+9Xc3Bx0AQDARNcV6o8++qjLP8u6JCIiQh9//HGPJtLR0aHy8nKdO3dOU6dOVX19vbxeb9DfZTudTk2bNk0HDx6U9NlHmF64cCFojMfjUXp6uj2mK0VFRXK5XPYlJSWlR3MGAKC3XVeob7nlFh07dqzb/UePHtWoUaOuawLHjh3TTTfdJKfTqUWLFqmiokJjx46V1+uVJCUnJweNT05Otvd5vV5FRUUpPj6+2zFdWblypZqamuzLyZMnr2vOAAD0let61/fDDz+sv/3bv9XMmTMVHR0dtK+trU2rV69Wbm7udU3g7rvv1pEjR/TJJ5/oX/7lXzRv3jxVVVXZ+x0OR9B4y7I6bbvc1cY4nU45nc7rmicAAOFwXaH+67/+a+3cuVNjxozRkiVLdPfdd8vhcOjdd9/Viy++qI6ODq1ateq6JhAVFaW77rpLkjRp0iRVV1frJz/5if7qr/5K0mdnzZ8/S/f5fPZZttvtVnt7uxobG4POqn0+nzIzM69rHgAAmOi6nvpOTk7WwYMHlZ6erpUrV+rrX/+6Hn30Uf3whz9Uenq63nzzzU5PVV8vy7Lk9/uVmpoqt9utyspKe197e7uqqqrsCGdkZCgyMjJoTENDg2prawk1AGBAuO4PPBk9erRee+01NTY26v3335dlWUpLS+v0OvG1+OEPf6iZM2cqJSVFLS0tKi8v1/79+7Vr1y45HA7l5+ersLBQaWlpSktLU2FhoYYNG6a5c+dK+uxPwhYsWKBly5YpMTFRCQkJWr58ucaNG8eHrwAABoQefTKZJMXHx2vy5Mk39I9/9NFHevLJJ9XQ0CCXy6Xx48dr165dys7OliStWLFCbW1tWrx4sRobGzVlyhTt3r1bcXFx9n2sW7dOERERmjNnjtra2jRjxgyVlZVp6NChNzQ3AABM0ONQh8LmzZuvuN/hcKigoEAFBQXdjomOjlZJSQmfMQ4AGJB69KUcAACgbxBqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMFhHuCeD6BAIB+Xw+SVJSUpKGDOF3LQAYyPgp38/4fD7N31Cp+Rsq7WADAAYuzqj7IWdcfLinAADoI5xRAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgsLCGuqioSJMnT1ZcXJySkpL06KOP6r333gsaY1mWCgoK5PF4FBMTo+nTp6uuri5ojN/vV15enkaMGKHY2FjNmjVLp06d6stDAQCgV4Q11FVVVXr66ad16NAhVVZW6uLFi8rJydG5c+fsMWvWrFFxcbFKS0tVXV0tt9ut7OxstbS02GPy8/NVUVGh8vJyHThwQK2trcrNzVVHR0c4DgsAgJCJCOc/vmvXrqDrW7ZsUVJSkmpqavTVr35VlmVp/fr1WrVqlWbPni1J2rp1q5KTk7Vjxw4tXLhQTU1N2rx5s7Zt26asrCxJ0vbt25WSkqI9e/bowQcf7PPjAgAgVIx6jbqpqUmSlJCQIEmqr6+X1+tVTk6OPcbpdGratGk6ePCgJKmmpkYXLlwIGuPxeJSenm6PuZzf71dzc3PQBQAAExkTasuytHTpUn35y19Wenq6JMnr9UqSkpOTg8YmJyfb+7xer6KiohQfH9/tmMsVFRXJ5XLZl5SUlFAfDgAAIWFMqJcsWaKjR4/q5z//ead9Docj6LplWZ22Xe5KY1auXKmmpib7cvLkyZ5PPIwCgYC8Xq+8Xq8CgUC4pwMA6AVGhDovL0+vvvqq9u3bp1tvvdXe7na7JanTmbHP57PPst1ut9rb29XY2NjtmMs5nU4NHz486NIfnTlzRvM3VGr+hkr5fL5wTwcA0AvCGmrLsrRkyRLt3LlTe/fuVWpqatD+1NRUud1uVVZW2tva29tVVVWlzMxMSVJGRoYiIyODxjQ0NKi2ttYeM5A54+LljIu/+kAAQL8U1nd9P/3009qxY4f+9V//VXFxcfaZs8vlUkxMjBwOh/Lz81VYWKi0tDSlpaWpsLBQw4YN09y5c+2xCxYs0LJly5SYmKiEhAQtX75c48aNs98FDgBAfxXWUG/cuFGSNH369KDtW7Zs0fz58yVJK1asUFtbmxYvXqzGxkZNmTJFu3fvVlxcnD1+3bp1ioiI0Jw5c9TW1qYZM2aorKxMQ4cO7atDAQCgV4Q11JZlXXWMw+FQQUGBCgoKuh0THR2tkpISlZSUhHB2AACEnxFvJgMAAF0j1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBIsI9AYROIBCQz+eTJCUlJWnIEH4PA4D+jp/kA4jP59P8DZWav6HSDjYAoH/jjHqAccbFh3sKAIAQ4owaAACDEWoAAAxGqAEAMBivUQ9gvAscAPo/fnIPYLwLHAD6P86oBzjeBQ4A/Rtn1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgsLCG+re//a0eeeQReTweORwO/epXvwrab1mWCgoK5PF4FBMTo+nTp6uuri5ojN/vV15enkaMGKHY2FjNmjVLp06d6sOjAACg94Q11OfOndOECRNUWlra5f41a9aouLhYpaWlqq6ultvtVnZ2tlpaWuwx+fn5qqioUHl5uQ4cOKDW1lbl5uaqo6Ojrw4DAIBeExHOf3zmzJmaOXNml/ssy9L69eu1atUqzZ49W5K0detWJScna8eOHVq4cKGampq0efNmbdu2TVlZWZKk7du3KyUlRXv27NGDDz7Y5X37/X75/X77enNzc4iPDACA0DD2Ner6+np5vV7l5OTY25xOp6ZNm6aDBw9KkmpqanThwoWgMR6PR+np6faYrhQVFcnlctmXlJSU3jsQAABugLGh9nq9kqTk5OSg7cnJyfY+r9erqKgoxcfHdzumKytXrlRTU5N9OXnyZIhnDwBAaIT1qe9r4XA4gq5bltVp2+WuNsbpdMrpdIZkfgAA9CZjz6jdbrckdToz9vl89lm22+1We3u7Ghsbux0DAEB/ZmyoU1NT5Xa7VVlZaW9rb29XVVWVMjMzJUkZGRmKjIwMGtPQ0KDa2lp7DAAA/VlYn/pubW3V+++/b1+vr6/XkSNHlJCQoNtuu035+fkqLCxUWlqa0tLSVFhYqGHDhmnu3LmSJJfLpQULFmjZsmVKTExUQkKCli9frnHjxtnvAgcAoD8La6gPHz6s+++/376+dOlSSdK8efNUVlamFStWqK2tTYsXL1ZjY6OmTJmi3bt3Ky4uzr7NunXrFBERoTlz5qitrU0zZsxQWVmZhg4d2ufHAwBAqIU11NOnT5dlWd3udzgcKigoUEFBQbdjoqOjVVJSopKSkl6YIQAA4WXsa9QAAIBQAwBgNEINAIDBCDUAAAYj1AAAGIxQAwBgMOM/6xuhEQgE7I9jTUpK0pAh/I4GAP0BoR4kzpw5oxX//HtJUtnibPuz1AEAZiPUg4gzLv7qgwAARuH5TwAADEaoAQAwGKEGAMBghBoAAIPxZjJI+uzPt3w+nyT+fAsATMJPY0iSfD6f5m+o1PwNlXawAQDhxxk1bPz5FgCYhzNqAAAMRqgBADAYT30PUpe/eQwAYCZCPUhdevOY9NlnfwMAzESoBzHePAYA5uM1agAADMYZNYJYfPAJABiFn8II4j/XpGd/fpgPPgEAQ3BGjU6ccTcrMjIq3NMAAIgzagAAjEaoAQAwGKHuJYFAQF6vV4FAINxTAQD0Y4S6l/h8Pj3+wi94QxYA4IYQ6l7kvMkV7ikAAPo5Qg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABuP7qNGtS18sIklJSUkaMoTf6wCgrxFqdOvMmTNa8c+/lySVLc6W2+0O84wAYPAh1LgiZ1x8uKcAAIMaocY1CwQC9td28lQ4APQNftLimvl8Ps3fUKn5Gyr5nm0A6COcUeO6dPdUOGfbANA7+GmKkOBsGwB6B2fUCBneeAYAoUeo0WOff7o7EAiEeTYAMDARavTYpae7JWnN/5kQtI/XrAEgNAg1bkh3T3d/PuJ8WAoA9ByhRq/5fMQ5wwaAniHU6BNXOsO+POKXxl+6/vmoE3wAgw2hRp/p6gw7KSmpU8QldRv17oJPwAEMVAPmp9mGDRuUmpqq6OhoZWRk6He/+124p4Qr8Pl8evyFX9hxdcbFB4X88uuf19W+y/+O+9I3f/FudAD93YAI9T/90z8pPz9fq1at0ttvv62vfOUrmjlzpj788MNwTw1X4LzJdU3jrjW6nw/45b8I9EeXjptfOIDBbUCEuri4WAsWLNB3vvMd3XPPPVq/fr1SUlK0cePGPp/LpR+uPp9Psvr8nx+QrhTdK633pV8ELg/elQJ4PWN7G5/2Bpgh3L809/vXqNvb21VTU6Mf/OAHQdtzcnJ08ODBLm/j9/vl9/vt601NTZKk5ubmG57PRx99pG+vq1D7+WYNiYrRiRMnJEnnzvyvJHV//exH1z72/1//4ANL5840hHSsv/UTDXHGKjIyslfuv6fHfNH/aZf7Tpw4oRXbD6j9fLNiEkYpMjKy0/1fGiNJa771ZUkKuj5y5Ehd8vHHH1/z2N728ccf66K/TdJnx9rS0tJn/zaAP/n8z4Utz35dycnJIbvvuLg4ORyOKw+y+rnTp09bkqw333wzaPuPf/xja8yYMV3eZvXq1ZY+O//iwoULFy5cwnZpamq6auf6/Rn1JZf/RmJZVre/paxcuVJLly61rwcCAf3xj39UYmLi1X+zuYrm5malpKTo5MmTGj58+A3d10DD2nSPtekea9M91qZ7/WVt4uLirjqm34d6xIgRGjp0qLxeb9B2n8/X7dMTTqdTTqczaNvNN98c0nkNHz7c6AdHOLE23WNtusfadI+16d5AWJt+/2ayqKgoZWRkqLKyMmh7ZWWlMjMzwzQrAABCo9+fUUvS0qVL9eSTT2rSpEmaOnWqNm3apA8//FCLFi0K99QAALghAyLUjz32mM6ePavnnntODQ0NSk9P12uvvabRo0f3+VycTqdWr17d6al1sDZXwtp0j7XpHmvTvYG0Ng7LsqxwTwIAAHSt379GDQDAQEaoAQAwGKEGAMBghBoAAIMR6hDiqzalgoICORyOoMvnv0/asiwVFBTI4/EoJiZG06dPV11dXRhn3Ht++9vf6pFHHpHH45HD4dCvfvWroP3XshZ+v195eXkaMWKEYmNjNWvWLJ06daoPj6J3XG1t5s+f3+lx9MUvfjFozEBdm6KiIk2ePFlxcXFKSkrSo48+qvfeey9ozGB97FzL2gzExw6hDhG+avNP7r33XjU0NNiXY8eO2fvWrFmj4uJilZaWqrq6Wm63W9nZ2QPyCyfOnTunCRMmqLS0tMv917IW+fn5qqioUHl5uQ4cOKDW1lbl5uaqo6Ojrw6jV1xtbSTpoYceCnocvfbaa0H7B+raVFVV6emnn9ahQ4dUWVmpixcvKicnR+fOnbPHDNbHzrWsjTQAHzs3+J0Y+P++8IUvWIsWLQra9md/9mfWD37wgzDNKDxWr15tTZgwoct9gUDAcrvd1vPPP29v+/TTTy2Xy2W99NJLfTTD8JBkVVRU2NevZS0++eQTKzIy0iovL7fHnD592hoyZIi1a9euPpt7b7t8bSzLsubNm2d97Wtf6/Y2g2VtLMuyfD6fJcmqqqqyLIvHzuddvjaWNTAfO5xRh8Clr9rMyckJ2n6lr9ocyI4fPy6Px6PU1FQ9/vjj9tdO1tfXy+v1Bq2T0+nUtGnTBt06Xcta1NTU6MKFC0FjPB6P0tPTB8V67d+/X0lJSRozZoy++93vBn0n92Bam0tfw5uQkCCJx87nXb42lwy0xw6hDoEzZ86oo6Oj05eAJCcnd/qykIFuypQpeuWVV/T666/r5ZdfltfrVWZmps6ePWuvBeuka1oLr9erqKgoxcfHdztmoJo5c6Z+9rOfae/evVq7dq2qq6v1wAMP2N8jP1jWxrIsLV26VF/+8peVnp4uicfOJV2tjTQwHzsD4iNETXE9X7U5UM2cOdP+73Hjxmnq1Km68847tXXrVvsNHazTn/RkLQbDej322GP2f6enp2vSpEkaPXq0fv3rX2v27Nnd3m6grc2SJUt09OhRHThwoNO+wf7Y6W5tBuJjhzPqEOjJV20OFrGxsRo3bpyOHz9uv/ubddI1rYXb7VZ7e7saGxu7HTNYjBo1SqNHj9bx48clDY61ycvL06uvvqp9+/bp1ltvtbfz2Ol+bboyEB47hDoE+KrN7vn9fr377rsaNWqUUlNT5Xa7g9apvb1dVVVVg26drmUtMjIyFBkZGTSmoaFBtbW1g269zp49q5MnT2rUqFGSBvbaWJalJUuWaOfOndq7d69SU1OD9g/mx87V1qYrA+KxE573sA085eXlVmRkpLV582brnXfesfLz863Y2FjrD3/4Q7in1qeWLVtm7d+/3zpx4oR16NAhKzc314qLi7PX4fnnn7dcLpe1c+dO69ixY9Y3v/lNa9SoUVZzc3OYZx56LS0t1ttvv229/fbbliSruLjYevvtt60PPvjAsqxrW4tFixZZt956q7Vnzx7rrbfesh544AFrwoQJ1sWLF8N1WCFxpbVpaWmxli1bZh08eNCqr6+39u3bZ02dOtW65ZZbBsXafO9737NcLpe1f/9+q6Ghwb6cP3/eHjNYHztXW5uB+tgh1CH04osvWqNHj7aioqKsP//zPw/6k4HB4rHHHrNGjRplRUZGWh6Px5o9e7ZVV1dn7w8EAtbq1astt9ttOZ1O66tf/ap17NixMM649+zbt8+S1Okyb948y7KubS3a2tqsJUuWWAkJCVZMTIyVm5trffjhh2E4mtC60tqcP3/eysnJsUaOHGlFRkZat912mzVv3rxOxz1Q16ardZFkbdmyxR4zWB87V1ubgfrY4WsuAQAwGK9RAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINwDZ//nw5HI5Ol/fffz/cUwMGLb6PGkCQhx56SFu2bAnaNnLkyOu6j46ODjkcDg0ZwrkAcKP4vwhAEKfTKbfbHXT5yU9+onHjxik2NlYpKSlavHixWltb7duUlZXp5ptv1r/9279p7Nixcjqd+uCDD9Te3q4VK1bolltuUWxsrKZMmaL9+/eH7+CAfohQA7iqIUOG6Kc//alqa2u1detW7d27VytWrAgac/78eRUVFekf/uEfVFdXp6SkJH3729/Wm2++qfLych09elTf+MY39NBDD+n48eNhOhKg/+HbswDY5s+fr+3btys6OtreNnPmTP3yl78MGvfLX/5S3/ve93TmzBlJn51Rf/vb39aRI0c0YcIESdL//M//KC0tTadOnZLH47Fvm5WVpS984QsqLCzsgyMC+j9eowYQ5P7779fGjRvt67Gxsdq3b58KCwv1zjvvqLm5WRcvXtSnn36qc+fOKTY2VpIUFRWl8ePH27d76623ZFmWxowZE3T/fr9fiYmJfXMwwABAqAEEiY2N1V133WVf/+CDD/Twww9r0aJF+ru/+zslJCTowIEDWrBggS5cuGCPi4mJkcPhsK8HAgENHTpUNTU1Gjp0aNC/cdNNN/X+gQADBKEGcEWHDx/WxYsXtXbtWvtd3L/4xS+ueruJEyeqo6NDPp9PX/nKV3p7msCAxZvJAFzRnXfeqYsXL6qkpEQnTpzQtm3b9NJLL131dmPGjNETTzyhp556Sjt37lR9fb2qq6v1wgsv6LXXXuuDmQMDA6EGcEX33XefiouL9cILLyg9PV0/+9nPVFRUdE233bJli5566iktW7ZMd999t2bNmqX/+I//UEpKSi/PGhg4eNc3AAAG44waAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMNj/A2eORj8uU4O4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(sample_df, x=\"Fare\")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "42f2cac9-9ba2-4004-b631-64d9c4cc0e4d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHpCAYAAABN+X+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoC0lEQVR4nO3dfVBV94H/8c9VHqIWTkECFyohtFVXg7W76ir+somPRHfRWjPV1CnFrjVpo7isOpnabCrNtupkfsXsltSkWat5MEP+WE3tJKXBJ1KrJMpKfYhx7AQruiAWL/eCxYvR7++PjOeXK6g8yf0C79fMmfGe8+X4/fZ08vbce7nXY4wxAgAAVhoQ7gkAAIBbI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFC3U7GGAUCAfFr5wCAnkSo26mxsVGO46ixsTHcUwEA9COEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsFhHuCfQ3xhj5fD5JUlxcnDweT5hnBACwGXfUPczn8+nbm3br25t2u8EGAOBWuKMOg8jBseGeAgCgl+COGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsFtZQr1+/XhMmTFBMTIwSExM1b948nTp1KmTM4sWL5fF4QrZJkyaFjAkGg8rLy1NCQoKGDBmiuXPn6ty5cyFjfD6fcnJy5DiOHMdRTk6OGhoa7vYSAQDokrCGuqysTMuWLVN5eblKS0v1ySefKCsrS5cvXw4ZN2vWLNXU1LjbO++8E3I8Pz9fO3bsUHFxsfbv36+mpiZlZ2fr2rVr7phFixapsrJSJSUlKikpUWVlpXJycnpknQAAdFZEOP/ykpKSkMdbtmxRYmKiKioq9NBDD7n7o6Oj5fV62zyH3+/X5s2b9dprr2nGjBmSpNdff12pqanatWuXHnnkEZ08eVIlJSUqLy/XxIkTJUkvv/yyMjMzderUKY0cObLVeYPBoILBoPs4EAh0eb0AAHSUVa9R+/1+SVJ8fHzI/n379ikxMVEjRozQ0qVLVVdX5x6rqKjQ1atXlZWV5e5LSUlRRkaGDhw4IEk6ePCgHMdxIy1JkyZNkuM47pibrV+/3n2a3HEcpaamdts6AQBoL2tCbYzRypUr9eCDDyojI8PdP3v2bG3btk179uzRz372Mx06dEjTpk1z73Zra2sVFRWluLi4kPMlJSWptrbWHZOYmNjq70xMTHTH3GzNmjXy+/3uVl1d3V1LBQCg3cL61PdnLV++XEePHtX+/ftD9i9cuND9c0ZGhsaPH6+0tDS9/fbbmj9//i3PZ4yRx+NxH3/2z7ca81nR0dGKjo7u6DIAAOhWVtxR5+XlaefOndq7d6+GDRt227HJyclKS0vT6dOnJUler1ctLS3y+Xwh4+rq6pSUlOSOuXDhQqtzXbx40R0DAICNwhpqY4yWL1+u7du3a8+ePUpPT7/jz9TX16u6ulrJycmSpHHjxikyMlKlpaXumJqaGh0/flyTJ0+WJGVmZsrv9+uDDz5wx7z//vvy+/3uGAAAbBTWp76XLVumN954Q7/+9a8VExPjvl7sOI4GDRqkpqYmFRQU6NFHH1VycrLOnDmjH/7wh0pISNDXv/51d+ySJUu0atUqDR06VPHx8Vq9erXGjBnjvgt81KhRmjVrlpYuXaqXXnpJkvT4448rOzu7zXd8AwBgi7CGetOmTZKkKVOmhOzfsmWLFi9erIEDB+rYsWN69dVX1dDQoOTkZE2dOlVvvvmmYmJi3PEbN25URESEFixYoObmZk2fPl1bt27VwIED3THbtm3TihUr3HeHz507V0VFRXd/kQAAdIHHGGPCPYneIBAIyHEc+f1+xcbGdvo8ly5d0pJXDkmSNudOaPWraAAAfJYVbyYDAABtI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxQg1AAAWI9QAAFiMUAMAYDFCDQCAxcIa6vXr12vChAmKiYlRYmKi5s2bp1OnToWMMcaooKBAKSkpGjRokKZMmaITJ06EjAkGg8rLy1NCQoKGDBmiuXPn6ty5cyFjfD6fcnJy5DiOHMdRTk6OGhoa7vYSAQDokrCGuqysTMuWLVN5eblKS0v1ySefKCsrS5cvX3bHPPfccyosLFRRUZEOHTokr9ermTNnqrGx0R2Tn5+vHTt2qLi4WPv371dTU5Oys7N17do1d8yiRYtUWVmpkpISlZSUqLKyUjk5OT26XgAAOsxYpK6uzkgyZWVlxhhjrl+/brxer9mwYYM75sqVK8ZxHPPiiy8aY4xpaGgwkZGRpri42B1z/vx5M2DAAFNSUmKMMebDDz80kkx5ebk75uDBg0aS+eijj9qcy5UrV4zf73e36upqI8n4/f4urbG+vt7MKywx8wpLTH19fZfOBQDo+6x6jdrv90uS4uPjJUlVVVWqra1VVlaWOyY6OloPP/ywDhw4IEmqqKjQ1atXQ8akpKQoIyPDHXPw4EE5jqOJEye6YyZNmiTHcdwxN1u/fr37NLnjOEpNTe3exQIA0A7WhNoYo5UrV+rBBx9URkaGJKm2tlaSlJSUFDI2KSnJPVZbW6uoqCjFxcXddkxiYmKrvzMxMdEdc7M1a9bI7/e7W3V1ddcWCABAJ0SEewI3LF++XEePHtX+/ftbHfN4PCGPjTGt9t3s5jFtjb/deaKjoxUdHd2eqQMAcNdYcUedl5ennTt3au/evRo2bJi73+v1SlKru966ujr3Ltvr9aqlpUU+n++2Yy5cuNDq77148WKru3UAAGwS1lAbY7R8+XJt375de/bsUXp6esjx9PR0eb1elZaWuvtaWlpUVlamyZMnS5LGjRunyMjIkDE1NTU6fvy4OyYzM1N+v18ffPCBO+b999+X3+93xwAAYKOwPvW9bNkyvfHGG/r1r3+tmJgY987ZcRwNGjRIHo9H+fn5WrdunYYPH67hw4dr3bp1Gjx4sBYtWuSOXbJkiVatWqWhQ4cqPj5eq1ev1pgxYzRjxgxJ0qhRozRr1iwtXbpUL730kiTp8ccfV3Z2tkaOHBmexQMA0A5hDfWmTZskSVOmTAnZv2XLFi1evFiS9NRTT6m5uVlPPvmkfD6fJk6cqHfffVcxMTHu+I0bNyoiIkILFixQc3Ozpk+frq1bt2rgwIHumG3btmnFihXuu8Pnzp2roqKiu7tAAAC6yGOMMeGeRG8QCATkOI78fr9iY2M7fZ5Lly5pySuHJEmbcye4v4oGAEBbrHgzGQAAaBuhBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYp0K9Re/+EXV19e32t/Q0KAvfvGLXZ4UAAD4VKdCfebMGV27dq3V/mAwqPPnz3d5UgAA4FMdCvXOnTu1c+dOSdLvfvc79/HOnTu1Y8cO/fu//7vuv//+dp/vvffe05w5c5SSkiKPx6O33nor5PjixYvl8XhCtkmTJoWMCQaDysvLU0JCgoYMGaK5c+fq3LlzIWN8Pp9ycnLkOI4cx1FOTo4aGho6snQAAMIioiOD582bJ0nyeDzKzc0NORYZGan7779fP/vZz9p9vsuXL2vs2LH6zne+o0cffbTNMbNmzdKWLVvcx1FRUSHH8/Pz9Zvf/EbFxcUaOnSoVq1apezsbFVUVGjgwIGSpEWLFuncuXMqKSmRJD3++OPKycnRb37zm3bPFQCAcOhQqK9fvy5JSk9P16FDh5SQkNClv3z27NmaPXv2bcdER0fL6/W2eczv92vz5s167bXXNGPGDEnS66+/rtTUVO3atUuPPPKITp48qZKSEpWXl2vixImSpJdfflmZmZk6deqURo4c2ea5g8GggsGg+zgQCHRmiQAAdEmnXqOuqqrqcqTba9++fUpMTNSIESO0dOlS1dXVuccqKip09epVZWVluftSUlKUkZGhAwcOSJIOHjwox3HcSEvSpEmT5DiOO6Yt69evd58qdxxHqampd2F1AADcXofuqD9r9+7d2r17t+rq6tw77Rt+9atfdXli0qd33N/4xjeUlpamqqoqPfPMM5o2bZoqKioUHR2t2tpaRUVFKS4uLuTnkpKSVFtbK0mqra1VYmJiq3MnJia6Y9qyZs0arVy50n0cCASINQCgx3Uq1D/+8Y/17LPPavz48UpOTpbH4+nueUmSFi5c6P45IyND48ePV1pamt5++23Nnz//lj9njAmZU1vzu3nMzaKjoxUdHd3JmQMA0D06FeoXX3xRW7duVU5OTnfP57aSk5OVlpam06dPS5K8Xq9aWlrk8/lC7qrr6uo0efJkd8yFCxdanevixYtKSkrqmYkDANBJnXqNuqWlxQ1hT6qvr1d1dbWSk5MlSePGjVNkZKRKS0vdMTU1NTp+/Lg7v8zMTPn9fn3wwQfumPfff19+vz8sawAAoCM6Fervfve7euONN7r8lzc1NamyslKVlZWSPn2TWmVlpc6ePaumpiatXr1aBw8e1JkzZ7Rv3z7NmTNHCQkJ+vrXvy5JchxHS5Ys0apVq7R7924dOXJE3/rWtzRmzBj3XeCjRo3SrFmztHTpUpWXl6u8vFxLly5Vdnb2Ld/xDQCALTr11PeVK1f0y1/+Urt27dJXvvIVRUZGhhwvLCxs13kOHz6sqVOnuo9vvHkrNzdXmzZt0rFjx/Tqq6+qoaFBycnJmjp1qt58803FxMS4P7Nx40ZFRERowYIFam5u1vTp07V161b3d6gladu2bVqxYoX77vC5c+eqqKioM0sHAKBHeYwxpqM/9Nm4tjqhx6M9e/Z0aVI2CgQCchxHfr9fsbGxnT7PpUuXtOSVQ5KkzbkTFB8f311TBAD0QZ26o967d293zwMAALSBr7kEAMBinbqjnjp16m1/B7kvPvUNAEA4dCrUX/3qV0MeX716VZWVlTp+/HirL+sAAACd16lQb9y4sc39BQUFampq6tKEAADA/9etr1F/61vf6rbP+QYAAN0c6oMHD+qee+7pzlMCANCvdeqp75u/EMMYo5qaGh0+fFjPPPNMt0wMAAB0MtSO44Q8HjBggEaOHKlnn3025LuhAQBA13Qq1Fu2bOnueQAAgDZ0KtQ3VFRU6OTJk/J4PBo9erT+9m//trvmBQAA1MlQ19XV6bHHHtO+ffv0+c9/XsYY+f1+TZ06VcXFxbr33nu7e54AAPRLnXrXd15engKBgE6cOKFLly7J5/Pp+PHjCgQCWrFiRXfPEQCAfqtTd9QlJSXatWuXRo0a5e4bPXq0XnjhBd5MBgBAN+rUHfX169dbfQe1JEVGRur69etdnhQAAPhUp0I9bdo0/cu//Iv+93//1913/vx5/eu//qumT5/ebZMDAKC/61Soi4qK1NjYqPvvv19f+tKX9OUvf1np6elqbGzUz3/+8+6eIwAA/VanXqNOTU3V//zP/6i0tFQfffSRjDEaPXq0ZsyY0d3zAwCgX+vQHfWePXs0evRoBQIBSdLMmTOVl5enFStWaMKECXrggQf0+9///q5MFACA/qhDoX7++ee1dOlSxcbGtjrmOI6eeOIJFRYWdtvkAADo7zoU6j/+8Y+aNWvWLY9nZWWpoqKiy5MCAACf6lCoL1y40OavZd0QERGhixcvdnlSAADgUx0K9Re+8AUdO3bslsePHj2q5OTkLk8KAAB8qkOh/sd//Ef96Ec/0pUrV1oda25u1tq1a5Wdnd1tkwMAoL/r0K9n/du//Zu2b9+uESNGaPny5Ro5cqQ8Ho9OnjypF154QdeuXdPTTz99t+YKAEC/06FQJyUl6cCBA/r+97+vNWvWyBgjSfJ4PHrkkUf0i1/8QklJSXdlogAA9Ecd/sCTtLQ0vfPOO/L5fPrTn/4kY4yGDx+uuLi4uzE/AAD6tU59MpkkxcXFacKECd05FwAAcJNOfdY3AADoGYQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsBihBgDAYoQaAACLEWoAACxGqAEAsFhYQ/3ee+9pzpw5SklJkcfj0VtvvRVy3BijgoICpaSkaNCgQZoyZYpOnDgRMiYYDCovL08JCQkaMmSI5s6dq3PnzoWM8fl8ysnJkeM4chxHOTk5amhouMurAwCg68Ia6suXL2vs2LEqKipq8/hzzz2nwsJCFRUV6dChQ/J6vZo5c6YaGxvdMfn5+dqxY4eKi4u1f/9+NTU1KTs7W9euXXPHLFq0SJWVlSopKVFJSYkqKyuVk5Nz19cHAECXGUtIMjt27HAfX79+3Xi9XrNhwwZ335UrV4zjOObFF180xhjT0NBgIiMjTXFxsTvm/PnzZsCAAaakpMQYY8yHH35oJJny8nJ3zMGDB40k89FHH7V7fn6/30gyfr+/s0s0xhhTX19v5hWWmHmFJaa+vr5L5wIA9H3WvkZdVVWl2tpaZWVlufuio6P18MMP68CBA5KkiooKXb16NWRMSkqKMjIy3DEHDx6U4ziaOHGiO2bSpElyHMcd05ZgMKhAIBCyAQDQ06wNdW1trSQpKSkpZH9SUpJ7rLa2VlFRUYqLi7vtmMTExFbnT0xMdMe0Zf369e5r2o7jKDU1tUvrAQCgM6wN9Q0ejyfksTGm1b6b3TymrfF3Os+aNWvk9/vdrbq6uoMzBwCg66wNtdfrlaRWd711dXXuXbbX61VLS4t8Pt9tx1y4cKHV+S9evNjqbv2zoqOjFRsbG7IBANDTrA11enq6vF6vSktL3X0tLS0qKyvT5MmTJUnjxo1TZGRkyJiamhodP37cHZOZmSm/368PPvjAHfP+++/L7/e7YwAAsFVEOP/ypqYm/elPf3IfV1VVqbKyUvHx8brvvvuUn5+vdevWafjw4Ro+fLjWrVunwYMHa9GiRZIkx3G0ZMkSrVq1SkOHDlV8fLxWr16tMWPGaMaMGZKkUaNGadasWVq6dKleeuklSdLjjz+u7OxsjRw5sucXDQBAB4Q11IcPH9bUqVPdxytXrpQk5ebmauvWrXrqqafU3NysJ598Uj6fTxMnTtS7776rmJgY92c2btyoiIgILViwQM3NzZo+fbq2bt2qgQMHumO2bdumFStWuO8Onzt37i1/dxsAAJt4jDEm3JPoDQKBgBzHkd/v79Lr1ZcuXdKSVw5JkjbnTlB8fHx3TREA0AdZ+xo1AAAg1AAAWI1QAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFrA51QUGBPB5PyOb1et3jxhgVFBQoJSVFgwYN0pQpU3TixImQcwSDQeXl5SkhIUFDhgzR3Llzde7cuZ5eCgAAnWJ1qCXpgQceUE1NjbsdO3bMPfbcc8+psLBQRUVFOnTokLxer2bOnKnGxkZ3TH5+vnbs2KHi4mLt379fTU1Nys7O1rVr18KxHAAAOiQi3BO4k4iIiJC76BuMMXr++ef19NNPa/78+ZKkV155RUlJSXrjjTf0xBNPyO/3a/PmzXrttdc0Y8YMSdLrr7+u1NRU7dq1S4888kiPrgUAgI6y/o769OnTSklJUXp6uh577DF9/PHHkqSqqirV1tYqKyvLHRsdHa2HH35YBw4ckCRVVFTo6tWrIWNSUlKUkZHhjrmVYDCoQCAQsgEA0NOsDvXEiRP16quv6ne/+51efvll1dbWavLkyaqvr1dtba0kKSkpKeRnkpKS3GO1tbWKiopSXFzcLcfcyvr16+U4jrulpqZ248oAAGgfq0M9e/ZsPfrooxozZoxmzJiht99+W9KnT3Hf4PF4Qn7GGNNq383aM2bNmjXy+/3uVl1d3clVAADQeVaH+mZDhgzRmDFjdPr0afd165vvjOvq6ty7bK/Xq5aWFvl8vluOuZXo6GjFxsaGbAAA9LReFepgMKiTJ08qOTlZ6enp8nq9Ki0tdY+3tLSorKxMkydPliSNGzdOkZGRIWNqamp0/PhxdwwAADaz+l3fq1ev1pw5c3Tfffeprq5OP/nJTxQIBJSbmyuPx6P8/HytW7dOw4cP1/Dhw7Vu3ToNHjxYixYtkiQ5jqMlS5Zo1apVGjp0qOLj47V69Wr3qXQAAGxndajPnTunb37zm/rLX/6ie++9V5MmTVJ5ebnS0tIkSU899ZSam5v15JNPyufzaeLEiXr33XcVExPjnmPjxo2KiIjQggUL1NzcrOnTp2vr1q0aOHBguJYFAEC7eYwxJtyT6A0CgYAcx5Hf7+/S69WXLl3SklcOSZI2505QfHx8d00RANAH9arXqAEA6G8INQAAFiPUAABYjFADAGAxQg0AgMUINQAAFiPUAABYjFADAGAxQg0AgMUINQAAFiPUAABYjFADAGAxQg0AgMUINQAAFiPUAABYjFADAGAxQg0AgMUINQAAFiPUAABYjFADAGAxQg0AgMUINQAAFiPUAABYjFD3M8YYXbp0ScaYcE8FANAOhLqf8fl8euz/viWfzxfuqQAA2oFQ90ORg2PCPQUAQDsRagAALEaoAQCwGKEGAMBihBoAAIsRagAALEaoAQCwGKEGAMBihBoAAIsRagAALEaoAQCwGKEGAMBihBoAAIsRagAALEaoAQCwGKEGAMBihBoAAItFhHsC6N2MMfL5fJKkuLg4eTyeMM8IAPoW7qjRJT6fT9/etFvf3rTbDTYAoPtwR40uixwcG+4pAECfxR01AAAWI9QAAFiMUAMAYDFCDQCAxQi1pYwxunTpkowx4Z4KACCMCLWlfD6fHvu/b/ErTwDQzxFqi0UOjgn3FAAAYUaoAQCwGKEGAMBihLoP4I1nANB3Eeo+gDeeAUDfRaj7CN54BgB9E1/KgVb46koAsAd31GiFr64EAHtwR4028dWVAGAHQo0ew1PqANBxPPWNHsNT6gDQcdxRo0fZ/pQ6d/0AbMMdNazTkQ9w6e4Pe+GuH4Bt+lWof/GLXyg9PV333HOPxo0bp9///vfhnhLa0JEPcOnI2PZGPXJwbLvu/G+cj0+FA3A39ZtQv/nmm8rPz9fTTz+tI0eO6B/+4R80e/ZsnT17NtxTQxs68gEu7R3b3Z/g1pvuvvmYWaD36jehLiws1JIlS/Td735Xo0aN0vPPP6/U1FRt2rQp3FNDD+ruT3Dr7rvvu/W0f3f/I4VnE4Ce0y/eTNbS0qKKigr94Ac/CNmflZWlAwcOtPkzwWBQwWDQfez3+yVJgUCgS3MJBAL666VaSdLZs2dveb6GhgY1++puO+ZujW1oaGjXHO/W2L669pWv/UGSVJjzf/T5z3/+luPyfvmufv541i3HdHbsJ8Hmdv3v1B7tXQ/QF8XHx3fbuWJiYu78plXTD5w/f95IMn/4wx9C9v/0pz81I0aMaPNn1q5daySxsbGxsbHdtc3v99+xYf3ijvqGm//VYoy55b9k1qxZo5UrV7qPr1+/rkuXLmno0KFd+pWdQCCg1NRUVVdXKzbW7l9Vaq++tqa+th6JNfUGfW09Emtqj5iYO78c1y9CnZCQoIEDB6q2tjZkf11dnZKSktr8mejoaEVHR4fs686n92JjY/vM/3Fv6Gtr6mvrkVhTb9DX1iOxpq7qF28mi4qK0rhx41RaWhqyv7S0VJMnTw7TrAAAuLN+cUctSStXrlROTo7Gjx+vzMxM/fKXv9TZs2f1ve99L9xTAwDglvpNqBcuXKj6+no9++yzqqmpUUZGht555x2lpaX16Dyio6O1du3aVk+r92Z9bU19bT0Sa+oN+tp6JNbUXTzG8EuQAADYql+8Rg0AQG9FqAEAsBihBgDAYoQaAACLEeoe1le+arOgoEAejydk83q94Z5Wh7z33nuaM2eOUlJS5PF49NZbb4UcN8aooKBAKSkpGjRokKZMmaITJ06EZ7LtdKc1LV68uNV1mzRpUngm2w7r16/XhAkTFBMTo8TERM2bN0+nTp0KGdObrlN71tPbrtGmTZv0la98xf0AkMzMTP32t791j/em63PDndbU09eIUPegvvZVmw888IBqamrc7dixY+GeUodcvnxZY8eOVVFRUZvHn3vuORUWFqqoqEiHDh2S1+vVzJkz1djY2MMzbb87rUmSZs2aFXLd3nnnnR6cYceUlZVp2bJlKi8vV2lpqT755BNlZWXp8uXL7pjedJ3asx6pd12jYcOGacOGDTp8+LAOHz6sadOm6Wtf+5ob4950fW6405qkHr5GXfy+C3TA3//935vvfe97Ifv+5m/+xvzgBz8I04w6b+3atWbs2LHhnka3kWR27NjhPr5+/brxer1mw4YN7r4rV64Yx3HMiy++GIYZdtzNazLGmNzcXPO1r30tLPPpDnV1dUaSKSsrM8b0/ut083qM6f3XyBhj4uLizH/913/1+uvzWTfWZEzPXyPuqHvIja/azMrKCtl/u6/atN3p06eVkpKi9PR0PfbYY/r444/DPaVuU1VVpdra2pDrFR0drYcffrjXXq8b9u3bp8TERI0YMUJLly5VXV1duKfUbje+bvbG1wz29ut083pu6K3X6Nq1ayouLtbly5eVmZnZ66+P1HpNN/TkNeo3n0wWbn/5y1907dq1Vl8CkpSU1OrLQnqDiRMn6tVXX9WIESN04cIF/eQnP9HkyZN14sQJDR06NNzT67Ib16St6/XnP/85HFPqFrNnz9Y3vvENpaWlqaqqSs8884ymTZumiooK6z89yhijlStX6sEHH1RGRoak3n2d2lqP1Duv0bFjx5SZmakrV67oc5/7nHbs2KHRo0e7Me6N1+dWa5J6/hoR6h7Wka/atNns2bPdP48ZM0aZmZn60pe+pFdeeSXk60F7u75yvW5YuHCh++eMjAyNHz9eaWlpevvttzV//vwwzuzOli9frqNHj2r//v2tjvXG63Sr9fTGazRy5EhVVlaqoaFB//3f/63c3FyVlZW5x3vj9bnVmkaPHt3j14invntIZ75qszcZMmSIxowZo9OnT4d7Kt3ixjvY++r1uiE5OVlpaWnWX7e8vDzt3LlTe/fu1bBhw9z9vfU63Wo9bekN1ygqKkpf/vKXNX78eK1fv15jx47Vf/zHf/Ta6yPdek1tudvXiFD3kL7+VZvBYFAnT55UcnJyuKfSLdLT0+X1ekOuV0tLi8rKyvrE9bqhvr5e1dXV1l43Y4yWL1+u7du3a8+ePUpPTw853tuu053W0xbbr1FbjDEKBoO97vrczo01teWuX6Mee9saTHFxsYmMjDSbN282H374ocnPzzdDhgwxZ86cCffUOmzVqlVm37595uOPPzbl5eUmOzvbxMTE9Kq1NDY2miNHjpgjR44YSaawsNAcOXLE/PnPfzbGGLNhwwbjOI7Zvn27OXbsmPnmN79pkpOTTSAQCPPMb+12a2psbDSrVq0yBw4cMFVVVWbv3r0mMzPTfOELX7B2Td///veN4zhm3759pqamxt3++te/umN603W603p64zVas2aNee+990xVVZU5evSo+eEPf2gGDBhg3n33XWNM77o+N9xuTeG4RoS6h73wwgsmLS3NREVFmb/7u78L+bWM3mThwoUmOTnZREZGmpSUFDN//nxz4sSJcE+rQ/bu3Wsktdpyc3ONMZ/+6s/atWuN1+s10dHR5qGHHjLHjh0L76Tv4HZr+utf/2qysrLMvffeayIjI819991ncnNzzdmzZ8M97Vtqay2SzJYtW9wxvek63Wk9vfEa/fM//7P737R7773XTJ8+3Y20Mb3r+txwuzWF4xrxNZcAAFiM16gBALAYoQYAwGKEGgAAixFqAAAsRqgBALAYoQYAwGKEGgAAixFqAAAsRqgBdJuCggJ99atfDfc0gD6FTyYD0C53+lrC3NxcFRUVKRgM9onvJAdsQagBtMtnv6rwzTff1I9+9COdOnXK3Tdo0CA5jhOOqQF9Gk99A2gXr9frbo7jyOPxtNp381Pfixcv1rx58/TjH/9YiYmJio2N1RNPPKGWlpbwLQToZSLCPQEAfdvu3bt1zz33aO/evTpz5oy+853vKCEhQT/96U/DPTWgV+COGsBdFRUVpV/96ld64IEH9E//9E969tln9Z//+Z+6fv16uKcG9AqEGsBdNXbsWA0ePNh9nJmZqaamJlVXV4dxVkDvQagBhMWd3kUO4FOEGsBd9cc//lHNzc3u4/Lycn3uc5/TsGHDwjgroPcg1ADuqpaWFi1ZskQffvihfvvb32rt2rVavny5BgzgPz9Ae/CubwB31fTp0zV8+HA99NBDCgaDeuyxx1RQUBDuaQG9Bh94AuCuWbx4sRoaGvTWW2+FeypAr8VzTwAAWIxQAwBgMZ76BgDAYtxRAwBgMUINAIDFCDUAABYj1AAAWIxQAwBgMUINAIDFCDUAABYj1AAAWOz/AedvbMeP/5FsAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(sample_df, x=\"Tip\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "2ae6d6b2-9001-4ded-ba3a-225861cbe451", + "metadata": {}, + "outputs": [], + "source": [ + "# get rides that occurred within hyde park\n", + "# add kenwood and woodlawn to this list - only if the other location is hyde park \n", + "df_hp = df_2023.filter((df_2023.pickup_area == 41) & (df_2023.dropoff_area == 41))\n", + "df_kw = df_2023.filter(((df_2023.pickup_area == 41) & (df_2023.dropoff_area == 42)) | ((df_2023.pickup_area == 42) & (df_2023.dropoff_area == 41)))\n", + "df_wl = df_2023.filter(((df_2023.pickup_area == 41) & (df_2023.dropoff_area == 39)) | ((df_2023.pickup_area == 39) & (df_2023.dropoff_area == 41)))\n", + "df_area = df_hp.union(df_kw).union(df_wl)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "67a9c9c1-dd4e-41b6-9d29-b475a1189268", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 21:=======================================================>(90 + 1) / 91]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+--------------------+-------------------+-------------------+-------+-----+--------------------+------------------------+------------+-------------+-----------+------------+----+---+-----+-----------------+-------------+--------------+-------------+--------------+-----+------------+----+---+\n", + "| ID| start_timestamp| end_timestamp|seconds|miles|Percent Time Chicago|Percent Distance Chicago|pickup_tract|dropoff_tract|pickup_area|dropoff_area|Fare|Tip|total|Shared Trip Match| pickup_lat| pickup_lon| dropoff_lat| dropoff_lon|month|day_of_month|hour|day|\n", + "+--------------------+-------------------+-------------------+-------+-----+--------------------+------------------------+------------+-------------+-----------+------------+----+---+-----+-----------------+-------------+--------------+-------------+--------------+-----+------------+----+---+\n", + "|93e3fca3d805c31c8...|2023-09-21 12:00:00|2023-09-21 12:00:00| 249| 0.9| 1| 1| 17031411000| 17031411200| 41| 41| 7.5| 0| 8.73| false|41.7905062613|-87.5831437169|41.7905666284|-87.5940154442| 9| 21| 12| 5|\n", + "|94a26286210a19426...|2023-09-09 17:15:00|2023-09-09 17:15:00| 360| 1.6| 1| 1| 17031410100| 17031836200| 41| 41| 7.5| 0| 8.73| false|41.8012268363|-87.5853031602|41.7904693995|-87.6012851221| 9| 9| 17| 7|\n", + "|96929eac44841686d...|2023-09-06 09:15:00|2023-09-06 09:30:00| 292| 1.0| 1| 1| 17031411000| 17031836200| 41| 41| 5.0| 0| 7.32| false|41.7905062613|-87.5831437169|41.7904693995|-87.6012851221| 9| 6| 9| 4|\n", + "|97327601bbd02ceff...|2023-09-25 17:30:00|2023-09-25 17:30:00| 349| 0.7| 1| 1| 17031410600| 17031410100| 41| 41| 7.5| 3|11.73| false|41.7979711911|-87.5989445134|41.8012268363|-87.5853031602| 9| 25| 17| 2|\n", + "|9773519b3819884aa...|2023-09-27 16:45:00|2023-09-27 16:45:00| 286| 1.0| 1| 1| 17031410700| 17031411200| 41| 41| 7.5| 0| 8.73| false|41.7980417164|-87.5941966274|41.7905666284|-87.5940154442| 9| 27| 16| 4|\n", + "+--------------------+-------------------+-------------------+-------+-----+--------------------+------------------------+------------+-------------+-----------+------------+----+---+-----+-----------------+-------------+--------------+-------------+--------------+-----+------------+----+---+\n", + "only showing top 5 rows\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "df_area.show(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "a4969a36-7c79-422e-a1b1-cf2017208b55", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAIhCAYAAAAhCnmjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP50lEQVR4nO3de1xVdb7/8feWm4iwFRCQERUVSUVLsRAtpbzndZyTdijKxltH01A5mjUpWWGpmJOOVlbejTpjVqOF6GiWeTcZUxlPFwstEC8I3gLE9fuj4/q5BY2t4FJ4PR+P/Xiwv+uzv+uztvuxH737rrW2zTAMQwAAAACAm66a1Q0AAAAAQFVFIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgA4DbxKJFi2Sz2VS9enX99NNPJbbHxMQoIiLCgs6kzz//XDabTX//+98t2b+zfvzxR/Xq1Uu+vr6y2WyKj4+/am3Dhg1ls9nMh5eXl9q0aaO5c+fKMAyH2kvvw+eff/67PQwePFgNGza8sQNxUkxMjMOxeHp66s4779Ts2bN18eLFCt9/w4YN1bt371K37dq1SzabTYsWLarwPgDgVkIgA4DbTEFBgf7yl79Y3cZtbezYsdq+fbveffddbd26VWPHjr1mfYcOHbR161Zt3bpVS5cuVY0aNTR69GhNmzbNoa5NmzbaunWr2rRpU5Ht35BGjRqZx/L+++/rD3/4g8aOHatJkyZZ3RoAVEkEMgC4zfTo0UMrVqzQv/71L6tbuenOnz9fYlXqeuzbt0/33HOP+vfvr3bt2qlBgwbXrK9Vq5batWundu3aacCAAfr0009lt9v15ptvOtT5+PioXbt28vHxueEeK4qnp6d5LH379tXHH3+sRo0aae7cuSoqKrqhuYuLi1VQUFBOnd4858+ft7oFAFUYgQwAbjMTJkyQn5+fJk6ceM26H3/88aqngNlsNiUmJprPExMTZbPZtHfvXj300EOy2+3y9fXVuHHjdOHCBR08eFA9evSQt7e3GjZsqOnTp5e6z19//VXjxo1TUFCQPD091alTJ+3Zs6dE3a5du9S3b1/5+vqqevXqat26tT744AOHmkunaKalpenPf/6z6tSpoxo1alzzP/gzMzP16KOPKiAgQB4eHmrWrJmSk5PN0/EunVL43Xff6bPPPjNP3fvxxx+v+V5eycfHR02bNtXRo0cdxq92yuKiRYsUHh5u9rRkyZJS5y0sLNRLL72kO+64Qx4eHqpTp46eeOIJHTt2zKFuw4YNiomJkZ+fnzw9PVW/fn396U9/0rlz55w6Dklyc3NTZGSkzp07Z+4nOztbI0aMUL169eTu7q7Q0FC98MILunDhgvm6S5+v6dOn66WXXlJoaKg8PDy0ceNGp3u4ls2bN6tz587y9vZWjRo11L59e61Zs8ah5tLn90qXPkOX//teOm3yww8/VOvWrVW9enW98MIL5dozADjD1eoGAADO8fb21l/+8hc9/fTT2rBhgx544IFym3vgwIF69NFHNWLECK1bt07Tp09XUVGR1q9fr5EjRyohIUErVqzQxIkT1aRJEw0YMMDh9c8++6zatGmjt99+W3l5eUpMTFRMTIz27NmjRo0aSZI2btyoHj16KCoqSm+88YbsdrtSUlI0aNAgnTt3ToMHD3aY889//rN69eqlpUuX6uzZs3Jzcyu192PHjql9+/YqLCzUiy++qIYNG2r16tVKSEjQ999/r3nz5pmnFP7xj39U48aNNXPmTElS3bp1nXqfLly4oMOHD6tp06a/W7to0SI98cQT6tevn5KTk833paCgQNWq/f//L3rx4kX169dPX375pSZMmKD27dvrp59+0pQpUxQTE6Ndu3bJ09PTvP7tvvvu07vvvqtatWrp559/VmpqqgoLC1WjRg2njkWSvv/+e7m6uqp27drKzs7WPffco2rVqmny5Mlq3Lixtm7dqpdeekk//vijFi5c6PDa119/XU2bNtXMmTPl4+OjsLCwa+7LMAyHYHdJcXFxibFNmzapa9euatWqld555x15eHho3rx56tOnj9577z0NGjTI6WOVpK+//loZGRn6y1/+otDQUHl5eV3XPABQLgwAwG1h4cKFhiRj586dRkFBgdGoUSOjbdu2xsWLFw3DMIxOnToZLVq0MOsPHTpkSDIWLlxYYi5JxpQpU8znU6ZMMSQZycnJDnV33XWXIcn48MMPzbGioiKjTp06xoABA8yxjRs3GpKMNm3amP0YhmH8+OOPhpubmzF06FBz7I477jBat25tFBUVOeyrd+/eRt26dY3i4mKH433sscfK9P4888wzhiRj+/btDuP/9V//ZdhsNuPgwYPmWIMGDYxevXqVad4GDRoYDz74oFFUVGQUFRUZP/30kzFs2DDDzc3NWL16tUPtpfdh48aNhmEYRnFxsREcHHzV96VBgwbm2HvvvWdIMlauXOkw586dOw1Jxrx58wzDMIy///3vhiQjPT29TP1f7tJn5NKx/PLLL+b79tBDDxmGYRgjRowwatasafz0008Or505c6Yhydi/f79hGP//89W4cWOjsLCwTPtv0KCBIemaj8s/r+3atTMCAgKM06dPm2MXLlwwIiIijHr16pnv6aXP75UufYYOHTrk0IOLi4vD5wEArMQpiwBwG3J3d9dLL72kXbt2lTjV70ZceQe8Zs2ayWazqWfPnuaYq6urmjRpUuqdHmNjYx1OHWvQoIHat29vnsb23Xff6d///rceeeQRSb+tNF16PPjgg8rKytLBgwcd5vzTn/5Upt43bNig5s2b65577nEYHzx4sAzD0IYNG8o0T2k+/fRTubm5yc3NTQ0aNNCCBQs0Z84c9erV65qvO3jwoH755Zervi+XW716tWrVqqU+ffo4vC933XWXgoKCzNMg77rrLrm7u2v48OFavHixfvjhB6eOZf/+/eaxBAcHKzk5WY888ogWLFhg9nH//fcrODjYoY9Ln4FNmzY5zNe3b9+rrlqW5t5779XOnTtLPK48jfPs2bPavn27/uM//kM1a9Y0x11cXBQXF6cjR46U+KyUVatWrcq0ugkANwOnLALAberhhx/WzJkz9dxzz5U4dfB6+fr6Ojx3d3dXjRo1VL169RLj+fn5JV4fFBRU6tilG5BcuuYqISFBCQkJpfZw/Phxh+dlPZ3wxIkTpd5GPjg42Nx+ve6991699tprKi4u1rfffqvnn39eTz31lFq0aKF77733mj1JV39fLr+26ejRozp16pTc3d1LnevS+9K4cWOtX79e06dP16hRo3T27Fk1atRIY8aM0dNPP/27x9K4cWOlpKSYP6EQGhrqcJrj0aNH9Y9//OOqIet6/30usdvtatu27e/W5ebmyjCMUue/0X9TZ3sGgIpEIAOA25TNZtOrr76qrl276q233iqx/VKIuvImGDcSTH5PdnZ2qWN+fn6SJH9/f0nSpEmTrhoiw8PDHZ6XdrOG0vj5+SkrK6vE+C+//OKw7+txeYiIiopSVFSU7rzzTo0cOVLp6ekO14Jd2ZN09fflcv7+/vLz81Nqamqpc3l7e5t/33fffbrvvvtUXFysXbt2ac6cOYqPj1dgYKAefvjhax5L9erVrxmI/P391apVK7388sulbr8Uhi4p67+Ps2rXrq1q1aqV6d/08s+6h4eHWXdleLykonoGgOvBKYsAcBvr0qWLunbtqqlTp+rMmTMO2wIDA1W9enXt3bvXYfzjjz+usH7ee+89h9vS//TTT9qyZYtiYmIk/Ra2wsLC9K9//Utt27Yt9XF58HBG586ddeDAAX399dcO40uWLJHNZtP9999/3cd1pbCwME2YMEHffPON3n///avWhYeHq27duld9Xy7Xu3dvnThxQsXFxaW+L1cGVem30/eioqL0t7/9TZJKHPv16N27t/bt26fGjRuX2seVgayieHl5KSoqSh9++KHDbekvXryoZcuWqV69euZph5dWRq/8rP/jH/+4Kb0CwI1ghQwAbnOvvvqqIiMjlZOToxYtWpjjNptNjz76qN599101btxYd955p3bs2KEVK1ZUWC85OTn64x//qGHDhikvL09TpkxR9erVHX50+M0331TPnj3VvXt3DR48WH/4wx908uRJZWRk6Ouvv9b//M//XNe+x44dqyVLlqhXr16aOnWqGjRooDVr1mjevHn6r//6r3K/ZighIUFvvPGGXnjhBQ0cOFAuLi4laqpVq6YXX3xRQ4cONd+XU6dOKTExscRpjA8//LCWL1+uBx98UE8//bTuueceubm56ciRI9q4caP69eunP/7xj3rjjTe0YcMG9erVS/Xr19evv/6qd999V9JvAf1GTZ06VevWrVP79u01ZswYhYeH69dff9WPP/6oTz/9VG+88Ybq1at3w/spi2nTpqlr1666//77lZCQIHd3d82bN0/79u3Te++9Z650Pfjgg/L19dWQIUM0depUubq6atGiRTp8+PBN6RMAbgSBDABuc61bt9Z//ud/lhq0kpOTJUnTp0/XmTNn9MADD2j16tWlXmtVHpKSkrRz50498cQTys/P1z333KOUlBQ1btzYrLn//vu1Y8cOvfzyy4qPj1dubq78/PzUvHlzDRw48Lr3XadOHW3ZskWTJk3SpEmTlJ+fr0aNGmn69OkaN25ceRyeg5o1a2ry5MkaNWqUli9frscee6zUuiFDhkj6LTgPGDBADRs21LPPPqtNmzY5/F6Zi4uLPvnkE/31r3/V0qVLNW3aNLm6uqpevXrq1KmTWrZsKem3m3qkpaVpypQpys7OVs2aNRUREaFPPvlE3bp1u+Hjqlu3rnbt2qUXX3xRM2bM0JEjR+Tt7a3Q0FD16NFDtWvXvuF9lFWnTp20YcMGTZkyRYMHD9bFixd155136pNPPnG4AY2Pj49SU1MVHx+vRx99VLVq1dLQoUPVs2dPDR069Kb1CwDXw2Zcfg4FAAAAAOCm4RoyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACzC75CVo4sXL+qXX36Rt7e3+WOVAAAAAKoewzB0+vRpBQcHq1q1q6+DEcjK0S+//KKQkBCr2wAAAABwizh8+LDq1at31e0EsnLk7e0t6bc33cfHx+JuAAAAAFglPz9fISEhZka4GgJZObp0mqKPjw+BDAAAAMDvXsrETT0AAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAs4mp1AwAAALi1vbLneIXN/Uxr/5u+z2vtF7jZWCEDAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLWB7Ifv75Zz366KPy8/NTjRo1dNddd2n37t3mdsMwlJiYqODgYHl6eiomJkb79+93mKOgoECjR4+Wv7+/vLy81LdvXx05csShJjc3V3FxcbLb7bLb7YqLi9OpU6ccajIzM9WnTx95eXnJ399fY8aMUWFhYYUdOwAAAICqzdJAlpubqw4dOsjNzU2fffaZDhw4oOTkZNWqVcusmT59umbNmqW5c+dq586dCgoKUteuXXX69GmzJj4+XqtWrVJKSoo2b96sM2fOqHfv3iouLjZrYmNjlZ6ertTUVKWmpio9PV1xcXHm9uLiYvXq1Utnz57V5s2blZKSopUrV2r8+PE35b0AAAAAUPXYDMMwrNr5M888o6+++kpffvllqdsNw1BwcLDi4+M1ceJESb+thgUGBurVV1/ViBEjlJeXpzp16mjp0qUaNGiQJOmXX35RSEiIPv30U3Xv3l0ZGRlq3ry5tm3bpqioKEnStm3bFB0drX//+98KDw/XZ599pt69e+vw4cMKDg6WJKWkpGjw4MHKycmRj49Pif4KCgpUUFBgPs/Pz1dISIjy8vJKrQcAALgdvbLneIXN/Uxr/5u+z2vtFygv+fn5stvtv5sNLF0h++STT9S2bVs99NBDCggIUOvWrbVgwQJz+6FDh5Sdna1u3bqZYx4eHurUqZO2bNkiSdq9e7eKioocaoKDgxUREWHWbN26VXa73QxjktSuXTvZ7XaHmoiICDOMSVL37t1VUFDgcArl5aZNm2aeAmm32xUSElIO7woAAACAqsLSQPbDDz9o/vz5CgsL09q1a/Xkk09qzJgxWrJkiSQpOztbkhQYGOjwusDAQHNbdna23N3dVbt27WvWBAQElNh/QECAQ82V+6ldu7bc3d3NmitNmjRJeXl55uPw4cPOvgUAAAAAqjBXK3d+8eJFtW3bVklJSZKk1q1ba//+/Zo/f74ee+wxs85mszm8zjCMEmNXurKmtPrrqbmch4eHPDw8rtkHAAAAAFyNpStkdevWVfPmzR3GmjVrpszMTElSUFCQJJVYocrJyTFXs4KCglRYWKjc3Nxr1hw9erTE/o8dO+ZQc+V+cnNzVVRUVGLlDAAAAADKg6WBrEOHDjp48KDD2P/+7/+qQYMGkqTQ0FAFBQVp3bp15vbCwkJt2rRJ7du3lyRFRkbKzc3NoSYrK0v79u0za6Kjo5WXl6cdO3aYNdu3b1deXp5Dzb59+5SVlWXWpKWlycPDQ5GRkeV85AAAAABg8SmLY8eOVfv27ZWUlKSBAwdqx44deuutt/TWW29J+u0Uwvj4eCUlJSksLExhYWFKSkpSjRo1FBsbK0my2+0aMmSIxo8fLz8/P/n6+iohIUEtW7ZUly5dJP226tajRw8NGzZMb775piRp+PDh6t27t8LDwyVJ3bp1U/PmzRUXF6cZM2bo5MmTSkhI0LBhw7hjIgAAAIAKYWkgu/vuu7Vq1SpNmjRJU6dOVWhoqGbPnq1HHnnErJkwYYLOnz+vkSNHKjc3V1FRUUpLS5O3t7dZ89prr8nV1VUDBw7U+fPn1blzZy1atEguLi5mzfLlyzVmzBjzbox9+/bV3Llzze0uLi5as2aNRo4cqQ4dOsjT01OxsbGaOXPmTXgnAAAAAFRFlv4OWWVT1t8aAAAAuJ1Upd8h4/fPUF5ui98hAwAAAICqjEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYxNXqBgAAAICq7pU9xyts7mda+1fY3LhxrJABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhN8hAwAAuE1U5G9VSfxeFWAFVsgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLWBrIEhMTZbPZHB5BQUHmdsMwlJiYqODgYHl6eiomJkb79+93mKOgoECjR4+Wv7+/vLy81LdvXx05csShJjc3V3FxcbLb7bLb7YqLi9OpU6ccajIzM9WnTx95eXnJ399fY8aMUWFhYYUdOwAAAABYvkLWokULZWVlmY9vvvnG3DZ9+nTNmjVLc+fO1c6dOxUUFKSuXbvq9OnTZk18fLxWrVqllJQUbd68WWfOnFHv3r1VXFxs1sTGxio9PV2pqalKTU1Venq64uLizO3FxcXq1auXzp49q82bNyslJUUrV67U+PHjb86bAAAAAKBKcrW8AVdXh1WxSwzD0OzZs/Xcc89pwIABkqTFixcrMDBQK1as0IgRI5SXl6d33nlHS5cuVZcuXSRJy5YtU0hIiNavX6/u3bsrIyNDqamp2rZtm6KioiRJCxYsUHR0tA4ePKjw8HClpaXpwIEDOnz4sIKDgyVJycnJGjx4sF5++WX5+PjcpHcDAAAAQFVi+QrZt99+q+DgYIWGhurhhx/WDz/8IEk6dOiQsrOz1a1bN7PWw8NDnTp10pYtWyRJu3fvVlFRkUNNcHCwIiIizJqtW7fKbrebYUyS2rVrJ7vd7lATERFhhjFJ6t69uwoKCrR79+6r9l5QUKD8/HyHBwAAAACUlaWBLCoqSkuWLNHatWu1YMECZWdnq3379jpx4oSys7MlSYGBgQ6vCQwMNLdlZ2fL3d1dtWvXvmZNQEBAiX0HBAQ41Fy5n9q1a8vd3d2sKc20adPM69LsdrtCQkKcfAcAAAAAVGWWBrKePXvqT3/6k1q2bKkuXbpozZo1kn47NfESm83m8BrDMEqMXenKmtLqr6fmSpMmTVJeXp75OHz48DX7AgAAAIDLWX7K4uW8vLzUsmVLffvtt+Z1ZVeuUOXk5JirWUFBQSosLFRubu41a44ePVpiX8eOHXOouXI/ubm5KioqKrFydjkPDw/5+Pg4PAAAAACgrG6pQFZQUKCMjAzVrVtXoaGhCgoK0rp168zthYWF2rRpk9q3by9JioyMlJubm0NNVlaW9u3bZ9ZER0crLy9PO3bsMGu2b9+uvLw8h5p9+/YpKyvLrElLS5OHh4ciIyMr9JgBAAAAVF2W3mUxISFBffr0Uf369ZWTk6OXXnpJ+fn5evzxx2Wz2RQfH6+kpCSFhYUpLCxMSUlJqlGjhmJjYyVJdrtdQ4YM0fjx4+Xn5ydfX18lJCSYp0BKUrNmzdSjRw8NGzZMb775piRp+PDh6t27t8LDwyVJ3bp1U/PmzRUXF6cZM2bo5MmTSkhI0LBhw1j1AgAAAFBhLA1kR44c0X/+53/q+PHjqlOnjtq1a6dt27apQYMGkqQJEybo/PnzGjlypHJzcxUVFaW0tDR5e3ubc7z22mtydXXVwIEDdf78eXXu3FmLFi2Si4uLWbN8+XKNGTPGvBtj3759NXfuXHO7i4uL1qxZo5EjR6pDhw7y9PRUbGysZs6ceZPeCQAAAABVkc0wDMPqJiqL/Px82e125eXlsbIGAADK3St7jlfo/M+09r/p+7Vin1Vtv1fbJypWWbPBLXUNGQAAAABUJQQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxi6Q9DAwAAALCGVb+5BkeskAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFnG1ugEAAAAAVccre45X2NzPtPavsLkrCitkAAAAAGARpwPZ+fPnde7cOfP5Tz/9pNmzZystLa1cGwMAAACAys7pQNavXz8tWbJEknTq1ClFRUUpOTlZ/fr10/z588u9QQAAAACorJwOZF9//bXuu+8+SdLf//53BQYG6qefftKSJUv0+uuvl3uDAAAAAFBZOR3Izp07J29vb0lSWlqaBgwYoGrVqqldu3b66aefyr1BAAAAAKisnA5kTZo00UcffaTDhw9r7dq16tatmyQpJydHPj4+5d4gAAAAAFRWTgeyyZMnKyEhQQ0bNtQ999yj6OhoSb+tlrVu3fq6G5k2bZpsNpvi4+PNMcMwlJiYqODgYHl6eiomJkb79+93eF1BQYFGjx4tf39/eXl5qW/fvjpy5IhDTW5uruLi4mS322W32xUXF6dTp0451GRmZqpPnz7y8vKSv7+/xowZo8LCwus+HgAAAAD4PU4Hsv/4j/9QZmamdu3apbVr15rjnTt31muvvXZdTezcuVNvvfWWWrVq5TA+ffp0zZo1S3PnztXOnTsVFBSkrl276vTp02ZNfHy8Vq1apZSUFG3evFlnzpxR7969VVxcbNbExsYqPT1dqampSk1NVXp6uuLi4sztxcXF6tWrl86ePavNmzcrJSVFK1eu1Pjx46/reAAAAACgLK7rd8iCgoLk7e2tdevW6fz585Kku+++W3fccYfTc505c0aPPPKIFixYoNq1a5vjhmFo9uzZeu655zRgwABFRERo8eLFOnfunFasWCFJysvL0zvvvKPk5GR16dJFrVu31rJly/TNN99o/fr1kqSMjAylpqbq7bffVnR0tKKjo7VgwQKtXr1aBw8elPTb6t6BAwe0bNkytW7dWl26dFFycrIWLFig/Pz863mLAAAAAOB3OR3ITpw4oc6dO6tp06Z68MEHlZWVJUkaOnToda0ojRo1Sr169VKXLl0cxg8dOqTs7GzzGjVJ8vDwUKdOnbRlyxZJ0u7du1VUVORQExwcrIiICLNm69atstvtioqKMmvatWsnu93uUBMREaHg4GCzpnv37iooKNDu3buv2ntBQYHy8/MdHgAAAABQVk4HsrFjx8rNzU2ZmZmqUaOGOT5o0CClpqY6NVdKSoq+/vprTZs2rcS27OxsSVJgYKDDeGBgoLktOztb7u7uDitrpdUEBASUmD8gIMCh5sr91K5dW+7u7mZNaaZNm2Zel2a32xUSEvJ7hwwAAAAAJqcDWVpaml599VXVq1fPYTwsLMyp294fPnxYTz/9tJYtW6bq1atftc5mszk8NwyjxNiVrqwprf56aq40adIk5eXlmY/Dhw9fsy8AAAAAuJzTgezs2bMOK2OXHD9+XB4eHmWeZ/fu3crJyVFkZKRcXV3l6uqqTZs26fXXX5erq6u5YnXlClVOTo65LSgoSIWFhcrNzb1mzdGjR0vs/9ixYw41V+4nNzdXRUVFJVbOLufh4SEfHx+HBwAAAACUldOBrGPHjlqyZIn53Gaz6eLFi5oxY4buv//+Ms/TuXNnffPNN0pPTzcfbdu21SOPPKL09HQ1atRIQUFBWrdunfmawsJCbdq0Se3bt5ckRUZGys3NzaEmKytL+/btM2uio6OVl5enHTt2mDXbt29XXl6eQ82+ffvM6+Gk31YCPTw8FBkZ6eQ7BAAAAABl4+rsC2bMmKGYmBjt2rVLhYWFmjBhgvbv36+TJ0/qq6++KvM83t7eioiIcBjz8vKSn5+fOR4fH6+kpCSFhYUpLCxMSUlJqlGjhmJjYyVJdrtdQ4YM0fjx4+Xn5ydfX18lJCSoZcuW5k1CmjVrph49emjYsGF68803JUnDhw9X7969FR4eLknq1q2bmjdvrri4OM2YMUMnT55UQkKChg0bxqoXAAAAgArjdCBr3ry59u7dq/nz58vFxUVnz57VgAEDNGrUKNWtW7dcm5swYYLOnz+vkSNHKjc3V1FRUUpLS5O3t7dZ89prr8nV1VUDBw7U+fPn1blzZy1atEguLi5mzfLlyzVmzBjzbox9+/bV3Llzze0uLi5as2aNRo4cqQ4dOsjT01OxsbGaOXNmuR4PAAAAAFzO6UAm/XbN1QsvvFDevejzzz93eG6z2ZSYmKjExMSrvqZ69eqaM2eO5syZc9UaX19fLVu27Jr7rl+/vlavXu1MuwAAAABwQ8oUyPbu3VvmCVu1anXdzQAAAABAVVKmQHbXXXfJZrOVuA28YRiSHG8ZX1xcXM4tAgAAAEDlVKa7LB46dEg//PCDDh06pJUrVyo0NFTz5s0z7444b948NW7cWCtXrqzofgEAAACg0ijTClmDBg3Mvx966CG9/vrrevDBB82xVq1aKSQkRM8//7z69+9f7k0CAAAAQGXk9O+QffPNNwoNDS0xHhoaqgMHDpRLUwAAAABQFTgdyJo1a6aXXnpJv/76qzlWUFCgl156Sc2aNSvX5gAAAACgMnP6tvdvvPGG+vTpo5CQEN15552SpH/961+y2WzcNh4AAAAAnOB0ILvnnnt06NAhLVu2TP/+979lGIYGDRqk2NhYeXl5VUSPAAAAAFApXdcPQ9eoUUPDhw8v714AAAAAoEopUyD75JNP1LNnT7m5uemTTz65Zm3fvn3LpTEAAAAAqOzKFMj69++v7OxsBQQEXPO29jabjR+GBgAAAIAyKlMgu3jxYql/AwAAAACun9O3vb+Wn3/+uTynAwAAAIBKrVwCWXZ2tkaPHq0mTZqUx3QAAAAAUCWUOZCdOnVKjzzyiOrUqaPg4GC9/vrrunjxoiZPnqxGjRpp27ZtevfddyuyVwAAAACoVMp82/tnn31WX3zxhR5//HGlpqZq7NixSk1N1a+//qrPPvtMnTp1qsg+AQAAAKDSKXMgW7NmjRYuXKguXbpo5MiRatKkiZo2barZs2dXYHsAAAAAUHmV+ZTFX375Rc2bN5ckNWrUSNWrV9fQoUMrrDEAAAAAqOzKHMguXrwoNzc387mLi4u8vLwqpCkAAAAAqArKfMqiYRgaPHiwPDw8JEm//vqrnnzyyRKh7MMPPyzfDgEAAACgkipzIHv88ccdnj/66KPl3gwAAAAAVCVlDmQLFy6syD4AAAAAoMoplx+GBgAAAAA4j0AGAAAAABYhkAEAAACARQhkAAAAAGCRMgWyNm3aKDc3V5I0depUnTt3rkKbAgAAAICqoEyBLCMjQ2fPnpUkvfDCCzpz5kyFNgUAAAAAVUGZbnt/11136YknntC9994rwzA0c+ZM1axZs9TayZMnl2uDAAAAAFBZlSmQLVq0SFOmTNHq1atls9n02WefydW15EttNhuBDAAAAADKqEyBLDw8XCkpKZKkatWq6Z///KcCAgIqtDEAAAAAqOzKFMgud/HixYroAwAAAACqHKcDmSR9//33mj17tjIyMmSz2dSsWTM9/fTTaty4cXn3BwAAAACVltO/Q7Z27Vo1b95cO3bsUKtWrRQREaHt27erRYsWWrduXUX0CAAAAACVktMrZM8884zGjh2rV155pcT4xIkT1bVr13JrDgAAAAAqM6dXyDIyMjRkyJAS43/+85914MCBcmkKAAAAAKoCpwNZnTp1lJ6eXmI8PT2dOy8CAAAAgBOcPmVx2LBhGj58uH744Qe1b99eNptNmzdv1quvvqrx48dXRI8AAAAAUCk5Hcief/55eXt7Kzk5WZMmTZIkBQcHKzExUWPGjCn3BgEAAACgsnI6kNlsNo0dO1Zjx47V6dOnJUne3t7l3hgAAAAAVHbX9TtklxDEAAAAAOD6OX1TDwAAAABA+SCQAQAAAIBFCGQAAAAAYBGnAllRUZHuv/9+/e///m9F9QMAAAAAVYZTgczNzU379u2TzWarqH4AAAAAoMpw+pTFxx57TO+8805F9AIAAAAAVYrTt70vLCzU22+/rXXr1qlt27by8vJy2D5r1qxyaw4AAAAAKjOnA9m+ffvUpk0bSSpxLRmnMgIAAABA2TkdyDZu3FgRfQAAAABAlXPdt73/7rvvtHbtWp0/f16SZBhGuTUFAAAAAFWB04HsxIkT6ty5s5o2baoHH3xQWVlZkqShQ4dq/Pjx5d4gAAAAAFRWTgeysWPHys3NTZmZmapRo4Y5PmjQIKWmppZrcwAAAABQmTl9DVlaWprWrl2revXqOYyHhYXpp59+KrfGAAAAAKCyc3qF7OzZsw4rY5ccP35cHh4e5dIUAAAAAFQFTgeyjh07asmSJeZzm82mixcvasaMGbr//vvLtTkAAAAAqMycPmVxxowZiomJ0a5du1RYWKgJEyZo//79OnnypL766quK6BEAAAAAKiWnV8iaN2+uvXv36p577lHXrl119uxZDRgwQHv27FHjxo0rokcAAAAAqJScXiGTpKCgIL3wwgvl3QvK2St7jlfo/M+09q/Q+QEAAIDK7rp+GDo3N1czZ87UkCFDNHToUCUnJ+vkyZNOzzN//ny1atVKPj4+8vHxUXR0tD777DNzu2EYSkxMVHBwsDw9PRUTE6P9+/c7zFFQUKDRo0fL399fXl5e6tu3r44cOVKi37i4ONntdtntdsXFxenUqVMONZmZmerTp4+8vLzk7++vMWPGqLCw0OljAgAAAICycjqQbdq0SaGhoXr99deVm5urkydP6vXXX1doaKg2bdrk1Fz16tXTK6+8ol27dmnXrl164IEH1K9fPzN0TZ8+XbNmzdLcuXO1c+dOBQUFqWvXrjp9+rQ5R3x8vFatWqWUlBRt3rxZZ86cUe/evVVcXGzWxMbGKj09XampqUpNTVV6erri4uLM7cXFxerVq5fOnj2rzZs3KyUlRStXruSHrgEAAABUKKdPWRw1apQGDhyo+fPny8XFRdJvgWbkyJEaNWqU9u3bV+a5+vTp4/D85Zdf1vz587Vt2zY1b95cs2fP1nPPPacBAwZIkhYvXqzAwECtWLFCI0aMUF5ent555x0tXbpUXbp0kSQtW7ZMISEhWr9+vbp3766MjAylpqZq27ZtioqKkiQtWLBA0dHROnjwoMLDw5WWlqYDBw7o8OHDCg4OliQlJydr8ODBevnll+Xj4+Ps2wQAAAAAv8vpFbLvv/9e48ePN8OYJLm4uGjcuHH6/vvvr7uR4uJipaSk6OzZs4qOjtahQ4eUnZ2tbt26mTUeHh7q1KmTtmzZIknavXu3ioqKHGqCg4MVERFh1mzdulV2u90MY5LUrl072e12h5qIiAgzjElS9+7dVVBQoN27d1+154KCAuXn5zs8AAAAAKCsnA5kbdq0UUZGRonxjIwM3XXXXU438M0336hmzZry8PDQk08+qVWrVql58+bKzs6WJAUGBjrUBwYGmtuys7Pl7u6u2rVrX7MmICCgxH4DAgIcaq7cT+3ateXu7m7WlGbatGnmdWl2u10hISFOHj0AAACAqqxMpyzu3bvX/HvMmDF6+umn9d1336ldu3aSpG3btulvf/ubXnnlFacbCA8PV3p6uk6dOqWVK1fq8ccfd7gWzWazOdQbhlFi7EpX1pRWfz01V5o0aZLGjRtnPs/PzyeUAQAAACizMgWyu+66SzabTYZhmGMTJkwoURcbG6tBgwY51YC7u7uaNGkiSWrbtq127typv/71r5o4caKk31av6tata9bn5OSYq1lBQUEqLCxUbm6uwypZTk6O2rdvb9YcPXq0xH6PHTvmMM/27dsdtufm5qqoqKjEytnlPDw85OHh4dTxAgAAAMAlZTpl8dChQ/rhhx906NChaz5++OGHG27IMAwVFBQoNDRUQUFBWrdunbmtsLBQmzZtMsNWZGSk3NzcHGqysrK0b98+syY6Olp5eXnasWOHWbN9+3bl5eU51Ozbt09ZWVlmTVpamjw8PBQZGXnDxwQAAAAApSnTClmDBg0qZOfPPvusevbsqZCQEJ0+fVopKSn6/PPPlZqaKpvNpvj4eCUlJSksLExhYWFKSkpSjRo1FBsbK0my2+0aMmSIxo8fLz8/P/n6+iohIUEtW7Y077rYrFkz9ejRQ8OGDdObb74pSRo+fLh69+6t8PBwSVK3bt3UvHlzxcXFacaMGTp58qQSEhI0bNgw7rAIAAAAoMI4fdt7Sfr555/11VdfKScnRxcvXnTYNmbMmDLPc/ToUcXFxSkrK0t2u12tWrVSamqqunbtKum30yLPnz+vkSNHKjc3V1FRUUpLS5O3t7c5x2uvvSZXV1cNHDhQ58+fV+fOnbVo0SKHu0AuX75cY8aMMe/G2LdvX82dO9fc7uLiojVr1mjkyJHq0KGDPD09FRsbq5kzZ17P2wMAAAAAZeJ0IFu4cKGefPJJubu7y8/Pr8SNMZwJZO+88841t9tsNiUmJioxMfGqNdWrV9ecOXM0Z86cq9b4+vpq2bJl19xX/fr1tXr16mvWAAAAAEB5cjqQTZ48WZMnT9akSZNUrZrTd80HAAAAAPwfpxPVuXPn9PDDDxPGAAAAAOAGOZ2qhgwZov/5n/+piF4AAAAAoEpx+pTFadOmqXfv3kpNTVXLli3l5ubmsH3WrFnl1hwAAAAAVGZOB7KkpCStXbvWvGX8lTf1AAAAAACUjdOBbNasWXr33Xc1ePDgCmgHAAAAAKoOp68h8/DwUIcOHSqiFwAAAACoUpwOZE8//fQ1f/MLAAAAAFA2Tp+yuGPHDm3YsEGrV69WixYtStzU48MPPyy35gAAAACgMnM6kNWqVUsDBgyoiF4AAAAAoEpxOpAtXLiwIvoAAAAAgCrH6WvIAAAAAADlw+kVstDQ0Gv+3tgPP/xwQw0BAAAAQFXhdCCLj493eF5UVKQ9e/YoNTVV//3f/11efQEAAABAped0IHv66adLHf/b3/6mXbt23XBDAAAAAFBVlNs1ZD179tTKlSvLazoAAAAAqPTKLZD9/e9/l6+vb3lNBwAAAACVntOnLLZu3drhph6GYSg7O1vHjh3TvHnzyrU5AAAAAKjMnA5k/fv3d3herVo11alTRzExMbrjjjvKqy8AAAAAqPScDmRTpkypiD4AAAAAoMrhh6EBAAAAwCJlXiGrVq3aNX8QWpJsNpsuXLhww00BAAAAQFVQ5kC2atWqq27bsmWL5syZI8MwyqUpAAAAAKgKyhzI+vXrV2Ls3//+tyZNmqR//OMfeuSRR/Tiiy+Wa3MAAAAAUJld1zVkv/zyi4YNG6ZWrVrpwoULSk9P1+LFi1W/fv3y7g8AAAAAKi2nAlleXp4mTpyoJk2aaP/+/frnP/+pf/zjH4qIiKio/gAAAACg0irzKYvTp0/Xq6++qqCgIL333nulnsIIAAAAACi7MgeyZ555Rp6enmrSpIkWL16sxYsXl1r34YcflltzAAAAAFCZlTmQPfbYY79723sAAAAAQNmVOZAtWrSoAtsAAAAAgKrnuu6yCAAAAAC4cQQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALOJqdQMAAOu8sud4hc7/TGv/Cp0fAIDbHStkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARSwNZNOmTdPdd98tb29vBQQEqH///jp48KBDjWEYSkxMVHBwsDw9PRUTE6P9+/c71BQUFGj06NHy9/eXl5eX+vbtqyNHjjjU5ObmKi4uTna7XXa7XXFxcTp16pRDTWZmpvr06SMvLy/5+/trzJgxKiwsrJBjBwAAAABLA9mmTZs0atQobdu2TevWrdOFCxfUrVs3nT171qyZPn26Zs2apblz52rnzp0KCgpS165ddfr0abMmPj5eq1atUkpKijZv3qwzZ86od+/eKi4uNmtiY2OVnp6u1NRUpaamKj09XXFxceb24uJi9erVS2fPntXmzZuVkpKilStXavz48TfnzQAAAABQ5bhaufPU1FSH5wsXLlRAQIB2796tjh07yjAMzZ49W88995wGDBggSVq8eLECAwO1YsUKjRgxQnl5eXrnnXe0dOlSdenSRZK0bNkyhYSEaP369erevbsyMjKUmpqqbdu2KSoqSpK0YMECRUdH6+DBgwoPD1daWpoOHDigw4cPKzg4WJKUnJyswYMH6+WXX5aPj89NfGcAAAAAVAW31DVkeXl5kiRfX19J0qFDh5Sdna1u3bqZNR4eHurUqZO2bNkiSdq9e7eKioocaoKDgxUREWHWbN26VXa73QxjktSuXTvZ7XaHmoiICDOMSVL37t1VUFCg3bt3l9pvQUGB8vPzHR4AAAAAUFa3TCAzDEPjxo3Tvffeq4iICElSdna2JCkwMNChNjAw0NyWnZ0td3d31a5d+5o1AQEBJfYZEBDgUHPlfmrXri13d3ez5krTpk0zr0mz2+0KCQlx9rABAAAAVGG3TCB76qmntHfvXr333nslttlsNofnhmGUGLvSlTWl1V9PzeUmTZqkvLw883H48OFr9gQAAAAAl7P0GrJLRo8erU8++URffPGF6tWrZ44HBQVJ+m31qm7duuZ4Tk6OuZoVFBSkwsJC5ebmOqyS5eTkqH379mbN0aNHS+z32LFjDvNs377dYXtubq6KiopKrJxd4uHhIQ8Pj+s5ZAAAcJt7Zc/xCpv7mdb+FTY3gFuLpYHMMAyNHj1aq1at0ueff67Q0FCH7aGhoQoKCtK6devUunVrSVJhYaE2bdqkV199VZIUGRkpNzc3rVu3TgMHDpQkZWVlad++fZo+fbokKTo6Wnl5edqxY4fuueceSdL27duVl5dnhrbo6Gi9/PLLysrKMsNfWlqaPDw8FBkZWfFvBgAAuC4VGYwkwhGAimVpIBs1apRWrFihjz/+WN7e3ua1Wna7XZ6enrLZbIqPj1dSUpLCwsIUFhampKQk1ahRQ7GxsWbtkCFDNH78ePn5+cnX11cJCQlq2bKledfFZs2aqUePHho2bJjefPNNSdLw4cPVu3dvhYeHS5K6deum5s2bKy4uTjNmzNDJkyeVkJCgYcOGcYdFAAAAABXC0kA2f/58SVJMTIzD+MKFCzV48GBJ0oQJE3T+/HmNHDlSubm5ioqKUlpamry9vc361157Ta6urho4cKDOnz+vzp07a9GiRXJxcTFrli9frjFjxph3Y+zbt6/mzp1rbndxcdGaNWs0cuRIdejQQZ6enoqNjdXMmTMr6OgBAAAAVHWWn7L4e2w2mxITE5WYmHjVmurVq2vOnDmaM2fOVWt8fX21bNmya+6rfv36Wr169e/2BADArY7rmwDg9nBL3NQDlQfn8QOAI74XAQDXcsvc9h4AAAAAqhoCGQAAAABYhFMWAQA3HafxAQDwG1bIAAAAAMAiBDIAAAAAsAinLAIAgHLBqagA4DxWyAAAAADAIgQyAAAAALAIpywCAKqMijyljtPpAADXgxUyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCKuVjcAAPjNK3uOV9jcz7T2r7C5AQDA9WOFDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALOJqdQNAeXhlz/EKnf+Z1v4VOj8AAACqJlbIAAAAAMAiBDIAAAAAsIilgeyLL75Qnz59FBwcLJvNpo8++shhu2EYSkxMVHBwsDw9PRUTE6P9+/c71BQUFGj06NHy9/eXl5eX+vbtqyNHjjjU5ObmKi4uTna7XXa7XXFxcTp16pRDTWZmpvr06SMvLy/5+/trzJgxKiwsrIjDBgAAAABJFgeys2fP6s4779TcuXNL3T59+nTNmjVLc+fO1c6dOxUUFKSuXbvq9OnTZk18fLxWrVqllJQUbd68WWfOnFHv3r1VXFxs1sTGxio9PV2pqalKTU1Venq64uLizO3FxcXq1auXzp49q82bNyslJUUrV67U+PHjK+7gAQAAAFR5lt7Uo2fPnurZs2ep2wzD0OzZs/Xcc89pwIABkqTFixcrMDBQK1as0IgRI5SXl6d33nlHS5cuVZcuXSRJy5YtU0hIiNavX6/u3bsrIyNDqamp2rZtm6KioiRJCxYsUHR0tA4ePKjw8HClpaXpwIEDOnz4sIKDgyVJycnJGjx4sF5++WX5+PjchHcDAAAAQFVzy15DdujQIWVnZ6tbt27mmIeHhzp16qQtW7ZIknbv3q2ioiKHmuDgYEVERJg1W7duld1uN8OYJLVr1052u92hJiIiwgxjktS9e3cVFBRo9+7dV+2xoKBA+fn5Dg8AAAAAKKtbNpBlZ2dLkgIDAx3GAwMDzW3Z2dlyd3dX7dq1r1kTEBBQYv6AgACHmiv3U7t2bbm7u5s1pZk2bZp5XZrdbldISIiTRwkAAACgKrtlA9klNpvN4blhGCXGrnRlTWn111NzpUmTJikvL898HD58+Jp9AQAAAMDlbtlAFhQUJEklVqhycnLM1aygoCAVFhYqNzf3mjVHjx4tMf+xY8ccaq7cT25uroqKikqsnF3Ow8NDPj4+Dg8AAAAAKKtbNpCFhoYqKChI69atM8cKCwu1adMmtW/fXpIUGRkpNzc3h5qsrCzt27fPrImOjlZeXp527Nhh1mzfvl15eXkONfv27VNWVpZZk5aWJg8PD0VGRlbocQIAAACouiy9y+KZM2f03Xffmc8PHTqk9PR0+fr6qn79+oqPj1dSUpLCwsIUFhampKQk1ahRQ7GxsZIku92uIUOGaPz48fLz85Ovr68SEhLUsmVL866LzZo1U48ePTRs2DC9+eabkqThw4erd+/eCg8PlyR169ZNzZs3V1xcnGbMmKGTJ08qISFBw4YNY9ULAAAAQIWxNJDt2rVL999/v/l83LhxkqTHH39cixYt0oQJE3T+/HmNHDlSubm5ioqKUlpamry9vc3XvPbaa3J1ddXAgQN1/vx5de7cWYsWLZKLi4tZs3z5co0ZM8a8G2Pfvn0dfvvMxcVFa9as0ciRI9WhQwd5enoqNjZWM2fOrOi3AAAAAEAVZmkgi4mJkWEYV91us9mUmJioxMTEq9ZUr15dc+bM0Zw5c65a4+vrq2XLll2zl/r162v16tW/2zMAAAAAlJdb9hoyAAAAAKjsCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFXK1uAABuNa/sOV6h8z/T2r9C5wcAALcPVsgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwiKvVDQC3s1f2HK+wuZ9p7V9hcwMAAODWQCADcMuqyMArEXoBAID1OGURAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAs4mp1AwCc88qe4xU6/zOt/W+p/QIAAFRmrJABAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRAdoV58+YpNDRU1atXV2RkpL788kurWwIAAABQSRHILvP+++8rPj5ezz33nPbs2aP77rtPPXv2VGZmptWtAQAAAKiECGSXmTVrloYMGaKhQ4eqWbNmmj17tkJCQjR//nyrWwMAAABQCbla3cCtorCwULt379YzzzzjMN6tWzdt2bKl1NcUFBSooKDAfJ6XlydJys/Pr7hGnfDrmdMVOn9+vvstsc/Kut+qdKxX229VOtaK3m9VOlar9suxVs5jtWq/HGvlPFar9suxWuNSJjAM45p1NuP3KqqIX375RX/4wx/01VdfqX379uZ4UlKSFi9erIMHD5Z4TWJiol544YWb2SYAAACA28jhw4dVr169q25nhewKNpvN4blhGCXGLpk0aZLGjRtnPr948aJOnjwpPz+/q77mVpWfn6+QkBAdPnxYPj4+VreD2xyfJ5QnPk8oT3yeUJ74POFaDMPQ6dOnFRwcfM06Atn/8ff3l4uLi7Kzsx3Gc3JyFBgYWOprPDw85OHh4TBWq1atimrxpvDx8eELBeWGzxPKE58nlCc+TyhPfJ5wNXa7/XdruKnH/3F3d1dkZKTWrVvnML5u3TqHUxgBAAAAoLywQnaZcePGKS4uTm3btlV0dLTeeustZWZm6sknn7S6NQAAAACVEIHsMoMGDdKJEyc0depUZWVlKSIiQp9++qkaNGhgdWsVzsPDQ1OmTClxCiZwPfg8oTzxeUJ54vOE8sTnCeWBuywCAAAAgEW4hgwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMmjdvnkJDQ1W9enVFRkbqyy+/tLol3IYSExNls9kcHkFBQVa3hdvEF198oT59+ig4OFg2m00fffSRw3bDMJSYmKjg4GB5enoqJiZG+/fvt6ZZ3PJ+7/M0ePDgEt9X7dq1s6ZZ3PKmTZumu+++W97e3goICFD//v118OBBhxq+o3AjCGRV3Pvvv6/4+Hg999xz2rNnj+677z717NlTmZmZVreG21CLFi2UlZVlPr755hurW8Jt4uzZs7rzzjs1d+7cUrdPnz5ds2bN0ty5c7Vz504FBQWpa9euOn369E3uFLeD3/s8SVKPHj0cvq8+/fTTm9ghbiebNm3SqFGjtG3bNq1bt04XLlxQt27ddPbsWbOG7yjcCG57X8VFRUWpTZs2mj9/vjnWrFkz9e/fX9OmTbOwM9xuEhMT9dFHHyk9Pd3qVnCbs9lsWrVqlfr37y/pt//zHBwcrPj4eE2cOFGSVFBQoMDAQL366qsaMWKEhd3iVnfl50n6bYXs1KlTJVbOgLI4duyYAgICtGnTJnXs2JHvKNwwVsiqsMLCQu3evVvdunVzGO/WrZu2bNliUVe4nX377bcKDg5WaGioHn74Yf3www9Wt4RK4NChQ8rOznb4rvLw8FCnTp34rsJ1+/zzzxUQEKCmTZtq2LBhysnJsbol3Cby8vIkSb6+vpL4jsKNI5BVYcePH1dxcbECAwMdxgMDA5WdnW1RV7hdRUVFacmSJVq7dq0WLFig7OxstW/fXidOnLC6NdzmLn0f8V2F8tKzZ08tX75cGzZsUHJysnbu3KkHHnhABQUFVreGW5xhGBo3bpzuvfdeRURESOI7CjfO1eoGYD2bzebw3DCMEmPA7+nZs6f5d8uWLRUdHa3GjRtr8eLFGjdunIWdobLguwrlZdCgQebfERERatu2rRo0aKA1a9ZowIABFnaGW91TTz2lvXv3avPmzSW28R2F68UKWRXm7+8vFxeXEv/3Jicnp8T/5QGc5eXlpZYtW+rbb7+1uhXc5i7drZPvKlSUunXrqkGDBnxf4ZpGjx6tTz75RBs3blS9evXMcb6jcKMIZFWYu7u7IiMjtW7dOofxdevWqX379hZ1hcqioKBAGRkZqlu3rtWt4DYXGhqqoKAgh++qwsJCbdq0ie8qlIsTJ07o8OHDfF+hVIZh6KmnntKHH36oDRs2KDQ01GE731G4UZyyWMWNGzdOcXFxatu2raKjo/XWW28pMzNTTz75pNWt4TaTkJCgPn36qH79+srJydFLL72k/Px8Pf7441a3htvAmTNn9N1335nPDx06pPT0dPn6+qp+/fqKj49XUlKSwsLCFBYWpqSkJNWoUUOxsbEWdo1b1bU+T76+vkpMTNSf/vQn1a1bVz/++KOeffZZ+fv7649//KOFXeNWNWrUKK1YsUIff/yxvL29zZUwu90uT09P2Ww2vqNwYwxUeX/729+MBg0aGO7u7kabNm2MTZs2Wd0SbkODBg0y6tata7i5uRnBwcHGgAEDjP3791vdFm4TGzduNCSVeDz++OOGYRjGxYsXjSlTphhBQUGGh4eH0bFjR+Obb76xtmncsq71eTp37pzRrVs3o06dOoabm5tRv3594/HHHzcyMzOtbhu3qNI+S5KMhQsXmjV8R+FG8DtkAAAAAGARriEDAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMA4Dq89dZbCgkJUbVq1TR79uwyv27w4MHq379/hfUFALi9EMgAAJa5Wjj5/PPPZbPZdOrUqZveU1nk5+frqaee0sSJE/Xzzz9r+PDhJWp+/PFH2Ww2paen35SeGjZsKJvNJpvNJk9PTzVs2FADBw7Uhg0bbsr+AQDXh0AGAKiyioqKrut1mZmZKioqUq9evVS3bl3VqFGjnDu7PlOnTlVWVpYOHjyoJUuWqFatWurSpYtefvllq1sDAFwFgQwAcFtYuXKlWrRoIQ8PDzVs2FDJyckO2202mz766COHsVq1amnRokWS/v+K1QcffKCYmBhVr15dy5YtK3VfmZmZ6tevn2rWrCkfHx8NHDhQR48elSQtWrRILVu2lCQ1atRINptNP/74Y4k5QkNDJUmtW7eWzWZTTEyMw/aZM2eqbt268vPz06hRoxzCYWFhoSZMmKA//OEP8vLyUlRUlD7//PPffY+8vb0VFBSk+vXrq2PHjnrrrbf0/PPPa/LkyTp48KAkqbi4WEOGDFFoaKg8PT0VHh6uv/71r+YcX3zxhdzc3JSdne0w9/jx49WxY8ff7QEA4BwCGQDglrd7924NHDhQDz/8sL755hslJibq+eefN8OWMyZOnKgxY8YoIyND3bt3L7HdMAz1799fJ0+e1KZNm7Ru3Tp9//33GjRokCRp0KBBWr9+vSRpx44dysrKUkhISIl5duzYIUlav369srKy9OGHH5rbNm7cqO+//14bN27U4sWLtWjRIodjeeKJJ/TVV18pJSVFe/fu1UMPPaQePXro22+/dfp4n376aRmGoY8//liSdPHiRdWrV08ffPCBDhw4oMmTJ+vZZ5/VBx98IEnq2LGjGjVqpKVLl5pzXLhwQcuWLdMTTzzh9P4BANfmanUDAICqbfXq1apZs6bDWHFxscPzWbNmqXPnznr++eclSU2bNtWBAwc0Y8YMDR482Kn9xcfHa8CAAVfdvn79eu3du1eHDh0yg9bSpUvVokUL7dy5U3fffbf8/PwkSXXq1FFQUFCp89SpU0eS5OfnV6Kmdu3amjt3rlxcXHTHHXeoV69e+uc//6lhw4bp+++/13vvvacjR44oODhYkpSQkKDU1FQtXLhQSUlJTh2vr6+vAgICzFU8Nzc3vfDCC+b20NBQbdmyRR988IEGDhwoSRoyZIgWLlyo//7v/5YkrVmzRufOnTO3AwDKDytkAABL3X///UpPT3d4vP322w41GRkZ6tChg8NYhw4d9O2335YIb7+nbdu219yekZGhkJAQh1Wv5s2bq1atWsrIyHBqX1fTokULubi4mM/r1q2rnJwcSdLXX38twzDUtGlT1axZ03xs2rRJ33///XXtzzAM2Ww28/kbb7yhtm3bqk6dOqpZs6YWLFigzMxMc/vgwYP13Xffadu2bZKkd999VwMHDpSXl9d17R8AcHWskAEALOXl5aUmTZo4jB05csTh+ZWB4tLY5Ww2W4mx0m7a8XuhorR9XWv8eri5uTk8t9lsunjxoqTfTil0cXHR7t27HUKbpBIriWVx4sQJHTt2zLym7YMPPtDYsWOVnJys6OhoeXt7a8aMGdq+fbv5moCAAPXp00cLFy5Uo0aN9Omnn5bpGjYAgPMIZACAW17z5s21efNmh7EtW7aoadOmZmipU6eOsrKyzO3ffvutzp07d137yszM1OHDh81VsgMHDigvL0/NmjUr8zzu7u6SSp5++Xtat26t4uJi5eTk6L777nPqtaX561//qmrVqpk/L/Dll1+qffv2GjlypFlT2srb0KFD9fDDD6tevXpq3LhxiRVKAED5IJABAG5548eP1913360XX3xRgwYN0tatWzV37lzNmzfPrHnggQc0d+5ctWvXThcvXtTEiRNLrESVRZcuXdSqVSs98sgjmj17ti5cuKCRI0eqU6dOv3u64+UCAgLk6emp1NRU1atXT9WrV5fdbv/d1zVt2lSPPPKIHnvsMSUnJ6t169Y6fvy4NmzYoJYtW+rBBx+86mtPnz6t7OxsFRUV6dChQ1q2bJnefvttTZs2zVyFbNKkiZYsWaK1a9cqNDRUS5cu1c6dO80VtEu6d+8uu92ul156SVOnTi3zcQMAnMM1ZACAW16bNm30wQcfKCUlRREREZo8ebKmTp3qcEOP5ORkhYSEqGPHjoqNjVVCQsJ1/T7Ypdvn165dWx07dlSXLl3UqFEjvf/++07N4+rqqtdff11vvvmmgoOD1a9fvzK/duHChXrsscc0fvx4hYeHq2/fvtq+fXupd3O83OTJk1W3bl01adJEcXFxysvL0z//+U9NnDjRrHnyySc1YMAADRo0SFFRUTpx4oTDatkl1apV0+DBg1VcXKzHHnus7AcOAHCKzbjyhHsAAABJw4YN09GjR/XJJ59Y3QoAVFqcsggAABzk5eVp586dWr58ufn7ZQCAikEgAwAADvr166cdO3ZoxIgR6tq1q9XtAEClximLAAAAAGARbuoBAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEUIZAAAAABgEQIZAAAAAFjk/wFsHEFOHSWWNwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# rides per hour:\n", + "rides_per_hour = df_area.groupBy(\"hour\").count().orderBy(\"hour\")\n", + "\n", + "# Convert the result to Pandas for local plotting\n", + "rides_per_hour_pd = rides_per_hour.toPandas()\n", + "\n", + "# Plot the data\n", + "plt.figure(figsize=(10, 6))\n", + "plt.bar(rides_per_hour_pd[\"hour\"], rides_per_hour_pd[\"count\"], color=\"skyblue\")\n", + "plt.xlabel(\"Hour of the Day\")\n", + "plt.ylabel(\"Number of Rides\")\n", + "plt.title(\"Number of Rides Per Hour\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "880c5d7d-6e3f-4780-80ef-9d993a65eff0", + "metadata": {}, + "outputs": [], + "source": [ + "# when rides were 15.0 and 10 rides a month- till end June\n", + "df_area_program_till_end_June = df_area.filter((\n", + " df_area.Fare <= 15.0) & ((df_area.hour >= 17) | (df_area.hour < 4)) & ((df_area.month <= 6)))\n", + "\n", + "df_area_program_July_onwards = df_area.filter(\n", + " (df_area.Fare <= 10.0) & ((df_area.hour >= 17) | (df_area.hour < 4)) & ((df_area.month > 6)))\n", + "\n", + "\n", + "df_area_program = df_area.filter((df_area.Fare <= 15.0) & ((df_area.hour >= 17) | (df_area.hour < 4)))" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "a1b60972-6242-4259-8209-87d9fe9e750f", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 80:===================================> (25 + 12) / 39]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-------------------------+\n", + "|approx_count_distinct(ID)|\n", + "+-------------------------+\n", + "| 397041|\n", + "+-------------------------+\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "from pyspark.sql.functions import approxCountDistinct\n", + "\n", + "df_area_program_till_end_June.select(approxCountDistinct(\"ID\", rsd = 0.05)).show()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "b13d265a-d601-48b2-a676-e8d82695c314", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 86:======================================================> (89 + 2) / 91]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-------------------------+\n", + "|approx_count_distinct(ID)|\n", + "+-------------------------+\n", + "| 21256|\n", + "+-------------------------+\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "from pyspark.sql.functions import approxCountDistinct\n", + "\n", + "df_area_program_July_onwards.select(approxCountDistinct(\"ID\", rsd = 0.05)).show()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "4170f6ac-afca-44c9-9e2e-7e78670de3d1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGwCAYAAACgi8/jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0tElEQVR4nO3dd3xT9f4/8Fd2k7QNHbSlUNoCZZYls4AClylLXKhgZen9KshQAfV6veICL7ju1SuKP2WogIOLgyXoRZRZNpQyZBdoKaNN27TN/Pz+CA0NHbQl7UnS1/Px+DxITz45533S0+TN+SyZEEKAiIiIyA/JpQ6AiIiIqKYw0SEiIiK/xUSHiIiI/BYTHSIiIvJbTHSIiIjIbzHRISIiIr/FRIeIiIj8llLqAKTkcDhw8eJFBAUFQSaTSR0OERERVYIQAnl5eYiOjoZcXvE9mzqd6Fy8eBExMTFSh0FERETVkJ6ejkaNGlVYp04nOkFBQQCcb1RwcLDE0RARVY7JYkL0O9EAgIvPXYRerZc4IqIymExAtPM6xcWLgN5z12lubi5iYmJc3+MVqdOJTnFzVXBwMBMdIvIZCosCCHA+Dg4OZqJD3kmhuPE4ONijiU6xynQ7YWdkIiIi8ltMdIiIiMhv1emmKyIiX6SUKzG2/VjXYyKvpFQCY8feeCwRmRBCSHZ0ieXm5sJgMMBoNFbYR8dut8NqtdZiZEREVBtUKhUUJfuSkE+o7Pc3wDs6FRJCIDMzEzk5OVKHQkRENaRevXqIiorifGp+iolOBYqTnIiICOh0Ov4REJFXEELAIRwAALlMzs+mahJCoKCgAFlZWQCABg0aSByRnxECKChwPtbpAImuUyY65bDb7a4kJywsTOpwiIhc7A479mXuAwB0jOoIhZxNL9Wl1WoBAFlZWYiIiGAzlicVFACBgc7H+fk1Mry8MjjqqhzFfXJ0Op3EkRARUU0q/pxnX0z/xETnFnhLmIjIv/Fz3r8x0SEiIiK/xUSHiIiI/BYTHapVFosFzZo1w9atW297X6tXr0bHjh3hcDg8EBkREfkjJjo1QAiB3EIr6upcjGfOnIFMJsP+/ftLPbdw4ULExsaiZ8+erm0ymQzff/+928/FRa/XIyEhAePGjcOePXvc9jVs2DDIZDIsW7aspk6FiIh8HBOdGpBbZMWZqyacvGxCgcUmdThe5YMPPsDjjz9+y3qLFi1CRkYGDh8+jP/85z/Iz89Ht27dsHTpUrd648ePxwcffFBT4RJ5JZlMhpCAEIQEhLAjLXkvhQJ44AFnkXDYPhOdKhBCoMBiu2XJL7LBYnPgmsmM1AtGHM/Mg7HQUqnXllWqemfI4XDgn//8J5o1awaNRoPGjRvjzTffBAAcOnQIf/nLX6DVahEWFoa//vWvyM/Pd722T58+mD59utv+Ro4ciXHjxrl+jouLw5w5czBhwgQEBQWhcePGWLhwoev5+Ph4AEDHjh0hk8nQp08fAMDevXtx4sQJDB069JbnUDxTaVxcHAYOHIjvvvsOY8aMwdNPP43s7GxXvREjRiAlJQWnTp2q0ntE5MvkMjmahjZF09CmkMv4MU5eKiAA+PZbZwkIkCwMThhYBYVWO1r/4+daP27aa4OgU1f+V/Xiiy/i008/xXvvvYdevXohIyMDR48eRUFBAQYPHozu3btj165dyMrKwuOPP46nn34aixcvrlJM77zzDl5//XX87W9/w3fffYennnoKd911F1q2bImUlBR07doVv/zyC9q0aQO1Wg0A+P3339G8efNbrktSnmeeeQZLly7Fxo0bMWrUKABAbGwsIiIi8Mcff6BJkybV2i8REfkvJjp+Ji8vD//617/w4YcfYuz1VWObNm2KXr164dNPP0VhYSGWLl0K/fUZKj/88EMMHz4c//znPxEZGVnp4wwZMgSTJk0CADz//PN477338Ntvv6Fly5aoX78+ACAsLAxRUVGu15w5cwbR0dHVPreWLVu69lNSw4YNS20jIiICmOhUiValQNprg6r8OiEEcgpsuJRbBNv1EUJBGhWiDBpoVLdut9RWok6xI0eOwGw2o1+/fmU+1759e1eSAwA9e/aEw+HAsWPHqpTotGvXzvVYJpMhKirKtV5MeQoLCxFwG7cvi5vwbu6ToNVqUVC8ngpRHcAlIMgnmExesQQEE50qkMlkVWpCKkl/PbHJyjXjSr4FVocD53OKEB6oRkRQABRyz3QoLF63pSxCiHI7LhZvl8vlpfoElTUtukqlKvX6Ww3zDg8Px6FDhyqsU5EjR44AuNEHqNi1a9dcd5GIiIhKYi+2WqSQy9GgnhYJkYEIClBBCIHLeWYcu5SHbJPFI8PRExISoNVq8euvv5Z6rnXr1ti/fz9MJpNr29atWyGXy9G8eXMAQP369ZGRkeF63m63IzU1tUoxFPfJsdvtbts7duyIo0ePVvs833//fQQHB6N///6ubUVFRTh58iQ6duxYrX0SEZF/Y6IjgQCVAnFhOsSF6aFRymGzO5CeXeCR4egBAQF4/vnnMWvWLCxduhQnT57Ejh078Nlnn2HMmDEICAjA2LFjkZqaik2bNmHKlClITk52NVv95S9/wZo1a7BmzRocPXoUkyZNQk5OTpViiIiIgFarxfr163Hp0iUYjUYAQN++fWEymXD48OFb7iMnJweZmZk4e/YsNm7ciAceeADLli3DggULUK9ePVe9HTt2QKPRICkpqUoxEhFR3VClRMdms+Hvf/874uPjodVq0aRJE7z22mtuTRZCCMyePRvR0dHQarXo06dPqS82s9mMKVOmIDw8HHq9HiNGjMD58+fd6mRnZyM5ORkGgwEGgwHJycmlvnDPnTuH4cOHQ6/XIzw8HFOnToXFYqniWyANmUyGYK0KCZFBiDIEQC6TocBiw4msfKRfK4DVXv3Zfl9++WU899xz+Mc//oFWrVrhoYceQlZWFnQ6HX7++Wdcu3YNXbp0wQMPPIB+/frhww8/dL12woQJGDt2LB577DH07t0b8fHx6Nu3b5WOr1Qq8e9//xuffPIJoqOjcc899wBwdk6+77778NVXX91yH+PHj0eDBg3QsmVLPPXUUwgMDERKSgpGjx7tVm/58uUYM2YMV5knIqKyiSp44403RFhYmFi9erU4ffq0+Pbbb0VgYKB4//33XXXeeustERQUJFauXCkOHTokHnroIdGgQQORm5vrqvPkk0+Khg0bio0bN4q9e/eKvn37ivbt2wubzeaqM3jwYJGYmCi2bdsmtm3bJhITE8WwYcNcz9tsNpGYmCj69u0r9u7dKzZu3Ciio6PF008/XenzMRqNAoAwGo2lnissLBRpaWmisLCwKm9RtVlsdnHuqkkcSM8WB9KzRer5HJGVWyTsDketHL+2HDx4UERERLhdD9WVlZUlQkNDxalTpzwQGZHvsNltYteFXWLXhV3CZrfd+gVUodr+vK8z8vOFAJwlP9+ju67o+/tmVUp0hg4dKiZMmOC27b777hOPPvqoEEIIh8MhoqKixFtvveV6vqioSBgMBvHxxx8LIYTIyckRKpVKrFixwlXnwoULQi6Xi/Xr1wshhEhLSxMAxI4dO1x1tm/fLgCIo0ePCiGEWLt2rZDL5eLChQuuOsuXLxcajaZSJy6EdyU6xfKLrOL4pVxXwnM0I1cYCy21GkNNW7x4sTh48OBt72fnzp1u1xFRXcFEx7OY6NQQL0l0qtR01atXL/z66684fvw4AODAgQPYsmULhgwZAgA4ffo0MjMzMXDgQNdrNBoNevfujW3btgEA9uzZA6vV6lYnOjoaiYmJrjrbt2+HwWBAt27dXHW6d+8Og8HgVicxMdFtXpZBgwbBbDaXWhOpmNlsRm5urlvxNnqNEs3qB6JRiA5KuRxmmx1nrphw5ooJZqv91jvwAWPHjkXbtm1vez9du3bFQw895IGIiHyLTCaDQWOAQWPgEhDkvRQKYMgQZ5FwCYgqjZV+/vnnYTQa0bJlSygUCtjtdrz55pt45JFHAACZmZkAUGo+lsjISJw9e9ZVR61WIyQkpFSd4tdnZmYiIiKi1PEjIiLc6tx8nJCQEKjValedm82dOxevvvpqVU5ZEjKZDKF6NQxapWs4em6RFXlmm8eHoxOR75HL5EgIS5A6DKKKBQQAa9ZIHUXVOiN//fXX+PLLL7Fs2TLs3bsXS5Yswdtvv40lS5a41bv5fxiigvlbyqtTVv3q1CnpxRdfhNFodJX09PQKY5JaecPRj3twODoREZE/q9IdnZkzZ+KFF17Aww8/DABo27Ytzp49i7lz52Ls2LGu6f4zMzPRoEED1+uysrJcd1+ioqJgsViQnZ3tdlcnKysLPXr0cNW5dOlSqeNfvnzZbT87d+50ez47OxtWq7XcGX41Gg00Gk1VTtkrFA9Hzyuy4aKxEBabczj6VZMS0fUCqj2JIRERkb+r0h2dgoICyOXuL1EoFK7h5fHx8YiKisLGjRtdz1ssFmzevNmVxHTq1AkqlcqtTkZGBlJTU111kpKSYDQakZKS4qqzc+dOGI1Gtzqpqaluk9tt2LABGo0GnTp1qspp+YTi4ejNyxiOfv42h6MTkW+xO+zYm7EXezP2wu7wj7575IdMJueyD3q987FEqnQrYPjw4XjzzTfRuHFjtGnTBvv27cO7776LCRMmAHB+GU+fPh1z5sxBQkICEhISMGfOHOh0Otf8JwaDARMnTsRzzz2HsLAwhIaGYsaMGWjbtq1rxttWrVph8ODBeOKJJ/DJJ58AAP76179i2LBhaNGiBQBg4MCBaN26NZKTkzF//nxcu3YNM2bMwBNPPFHt1bF9gVwmQ0RQAEJ0amQai5BdYMG1AguMhVZEBAcgLFANOTsnEvk9h+B/bsgHeME6hFVKdD744AO8/PLLmDRpErKyshAdHY3/+7//wz/+8Q9XnVmzZqGwsBCTJk1CdnY2unXrhg0bNiAoKMhV57333oNSqcSoUaNQWFiIfv36YfHixVCU6JX91VdfYerUqa7RWSNGjHCb2E6hUGDNmjWYNGkSevbsCa1Wi9GjR+Ptt9+u9pvhS1QKOWJCdQjVq3ExpxCFVjsyjIW4ZrIgul4AggJUt94JERGRn5OJOtyjNTc3FwaDAUajsdRdoKKiIpw+fRrx8fG3teJ2bRBCILvAikzjjdXRgwNUaGAIqNTq6HXNuHHjkJOTg++//17qUPzSuHHjsHjxYqnDuG2//fYb+vbti+zsbLdlR2qKTCbDqlWrMHLkyDKfP3PmDOLj47Fv3z60bdeWq5eX41bvY1l86fPep9Tg6uUVfX/fjGtd+YHi4egtogLxxqwpaB8Tgvj6gQjUBSA2Lh7PPvec20Ke/kwIgYULF6Jbt24IDAxEvXr10LlzZ7z//vso8IJbqDVt3LhxVfqAr02///47hg8fjujoaMhksjITTVGJJWS8xZkzZyCTycos3377bZX3l5GRgbvvvrsGIvVPs2fPRocOHaQOg3wAEx0/opDLoVMrMHDQIOxMPYk1W/fhqef+hgUfLcCU6c+UORzdarXWWDxSrDuWnJyM6dOn45577sGmTZuwf/9+vPzyy/jhhx+wYcOGWo/Hn5WcnqGwsBBTp05FkyZNsGzZMsTFxWHEiBFuc1qZTCa0b9/erQn6ZvPmzcO7776LDz/8ELt27UJUVBQGDBiAvLy8Gj2X6oiJiUFGRoZbefXVV6HX66uUsBT/nURFRfnkqFAir+fROZl9jDcuAXG7xo4dK+655x7hcDiEscAijmQYxX2PPCbCIyLFn5fyxN/+/rJo3769+Oyzz0R8fLyQyWTC4XCIs2fPihEjRgi9Xi+CgoLEgw8+KDIzM932/frrr4v69euLwMBAMXHiRPH888+L9u3blzr2nDlzRIMGDURsbKwQQogvvvhCdOrUSQQGBorIyEjxyCOPiEuXLrlet2nTJgFArF+/XnTo0EEEBASIvn37ikuXLom1a9eKli1biqCgIPHwww8Lk8lU7rl//fXXAoD4/vvvSz3ncDhETk6OW5zz588XUVFRIjQ0VEyaNElYLDeW2qhszL/88ovo1KmT0Gq1IikpybVESWXfMyGE+Pzzz0XLli2FRqMRLVq0EP/5z39cz5nNZjF58mQRFRUlNBqNiI2NFXPmzCnz/F955RUBwK1s2rRJCOFcY6xv374iICBAhIaGiieeeELk5eWV+16W59y5c+KNN94QCQkJYuTIka7tf//730VkZKRYvXq1uPfee8Uff/whXnvtNXH27Nky9wNArFq1ym1bZZaQKUtKSoro37+/CAsLE8HBweKuu+4Se/bsKXW8Tz/9VIwcOVJotVrRrFkz8cMPP7jVWbNmjUhISBABAQGiT58+YtGiRQKAyM7OruS7I0SHDh1KLZNzs969e4vJkyeLZ555RoSFhYm77rrLFWPJ92Tnzp2iQ4cOQqPRiE6dOon//ve/AoDYt2+fawmIrzd9LQYPHiz0er2IiIgQjz76qLh8+bJrH99++61ITEx0/d779esn8suZit9ms4kJEyaIuLg4ERAQIJo3b+62jmFZqvu3W1RUJKZMmSLq168vNBqN6Nmzp0hJSSm13/L+vop/NyXLokWLXO/jrX7XN/PVz3uv5yVLQDDRqUaik2/OL7cUWgsrXbfAUnDLulVV/CVezO5wiIn/95SoFxIqDqRniyefeV7o9HoxcOBAsXfvXnHgwAHhcDhEx44dRa9evcTu3bvFjh07xB133CF69+7t2s+XX34pAgICxOeffy6OHTsmXn31VREcHFwq0QkMDBTJyckiNTVVHDp0SAghxGeffSbWrl0rTp48KbZv3y66d+8u7r77btfrij/UunfvLrZs2SL27t0rmjVrJnr37u2K8/fffxdhYWFuX4I3GzFihGjRokWl3qPg4GDx5JNPiiNHjoiffvpJ6HQ6sXDhQledysbcrVs38dtvv4nDhw+LO++8U/To0aNK79nChQtFgwYNxMqVK8WpU6fEypUrRWhoqFi8eLEQQoj58+eLmJgY8fvvv4szZ86IP/74QyxbtqzM88rLyxOjRo0SgwcPFhkZGSIjI0OYzWZhMplEdHS0uO+++8ShQ4fEr7/+KuLj48XYsWNv+V4JIYTJZBJLly4V/fr1E3K5XPTo0UMsWLBAXLt2zVVn6NCh4vHHH3e9v7dSVqJz8uRJAUDs3bvXbfuIESPEY489Vu6+fv31V/HFF1+ItLQ0kZaWJiZOnCgiIyPdFo4FIBo1aiSWLVsm/vzzTzF16lQRGBgorl69KoRwJnAajUZMmzZNHD16VHz55ZciMjKySonO7t27BQCxdevWCuv17t1bBAYGipkzZ4qjR4+KI0eOlHpP8vPzRf369cVDDz0kUlNTxU8//SSaNGniSnTsdrv4/dDvIiQsRLzwwgviyJEjYu/evWLAgAGib9++QgghLl68KJRKpXj33XfF6dOnxcGDB8V//vOfchNci8Ui/vGPf4iUlBRx6tQp8eWXXwqdTie+/vrrcs+lun+7U6dOFdHR0WLt2rXi8OHDYuzYsSIkJMT1+7jV31dBQYF47rnnRJs2bVzXekFBget9rOh3XRYmOjWkoECI3r2dpaDgVrWrhIlOJVU30cFslFuGfDXEra7uTV25dXsv6u1WN3xeeKk6VXVzorNz504RFhYmHnjwQXHuqkk8+czzQqlSid8PnHCtjr5hwwahUCjEuXPnXK87fPiwAOD6X1a3bt3E5MmT3Y7Vs2fPUolOZGSkMJvNFcaYkpIiALg+cEv+763Y3LlzBQBx8uRJ17b/+7//E4MGDSp3v61atRIjRoyo8NjFccbGxgqb7cZiiA8++KB46KGHbivmNWvWCACua6Yy71lMTEypxOX1118XSUlJQgghpkyZIv7yl78IRyVXsb/59y+EM5kKCQlx+5/8mjVrhFwuL3XXrqTffvtNjB8/XgQGBoomTZqIf/zjH+LEiRNl1p0zZ44IDw8Xy5cvF4888sgt4ywr0dm6dasA4LZQrxBCPPHEE2LgwIG33Gcxm80mgoKCxE8//eR2vL///e+un/Pz84VMJhPr1q0TQgjx4osvilatWrm9z88//3yVEp2nnnpKtGrV6pb1evfuLTp06FBqe8n35JNPPhGhoaFud0EWLFjgSnSEEOLll18u9b6kp6cLAOLYsWNiz549AoA4c+ZMpeIvy6RJk8T9999f7vPV+dvNz88XKpVKfPXVV67nLRaLiI6OFvPmzSt3vzf/fb3yyiul7o4KcevfdVmY6PieGlvUk3zD6tWrERgYiICAACQlJeGuu+7Cfz78EDGhOoTo1GjYKAaG0DBkGAvx56V87DuYipiYGMTExLj20bp1a9SrVw9HjhwBABw7dgxdu3Z1O87NPwPO2bLVarXbtn379uGee+5BbGwsgoKC0KdPHwDAuXPn3Oq1a9fO9TgyMhI6nQ5NmjRx25aVlVXueYtKLDVSrE2bNm7TGTRo0MBt39WJuXg28OL93Oo9u3z5MtLT0zFx4kQEBga6yhtvvIGTJ08CcHYu3r9/P1q0aIGpU6dWq5/RkSNH0L59e+hLjHjo2bMnHA4Hjh07Vu7r+vTpgxUrVmD+/Pk4efIkXn31VTRt2rTMujNnzsSsWbPw5ptvYsWKFWjZsiXmzJlTrT5gVV1CJisrC08++SSaN28Og8EAg8GA/Pz8Cn9Xer0eQUFBrt/VkSNH0L17d7fjJCUlVTrmwsJCLFu2DBMnTqxU/c6dO1f4fPHvTKfTlRvPnj17sGnTJrdrp2XLlgCAkydPon379ujXrx/atm2LBx98EJ9++imys7MrPO7HH3+Mzp07o379+ggMDMSnn35a6n0sS1X+dk+ePAmr1YqePXu6nlepVOjatavr86as/d7891XZeG7+XVPdw7UDqiH/xfxyn7t5mGfWjPL/uOQy9zzzzLQztxVXsb59+2LBggVQqVSIjo6GSnVjTh21Uo56wUFoFKJFptEMs82Oq/lm2AVgttrdhqPf/AVT1hfQzfQ3DR80mUwYOHAgBg4ciC+//BL169fHuXPnMGjQoFKdlUvGKZPJ3H4u3lY8C3dZmjdvXuqDsjwV7ft2YgbgFmNF71lxvU8//RTdunVzq1echN1xxx04ffo01q1bh19++QWjRo1C//798d1331XqPIuPWV6iUFEC8dNPP2HJkiWYPn06Fi5ciOTkZDzyyCOupV5KUiqVmDlzJmbOnIlRo0bh3nvvxbRp05Cfn485c+ZUKs7KLCFTlnHjxuHy5ct4//33ERsbC41Gg6SkpAp/V8XnXvw7KOtarorvvvsOBQUFeOyxxypV/+a/k5tVJh6Hw4Hhw4fjn//8Z6nnGjRoAIVCgY0bN2Lbtm3YsGEDPvjgA7z00kvYuXMn4uPjS73mm2++wTPPPIN33nkHSUlJCAoKwvz580sttVOWqvztFp9bZRLaW/19VSaem49PdQ/v6FSDXq0vtwQoAypdV6vS3rJuteLT69GsWTPExsaW+oMvFqrXoHlUIMIDNWia0BIXz6fj9/1HkWEshN0hkJaWBqPRiFatWgEAWrRo4bYkBwDs3r37lrEcPXoUV65cwVtvvYU777wTLVu2rLH/WY0ePRrHjx/HDz/8UOo5IQSMRmOl9uOpmG/1nkVGRqJhw4Y4deoUmjVr5lZKfhEFBwfjoYcewqeffoqvv/4aK1euxLVr18o8plqtht3uviRA69atsX//frcpBrZu3Qq5XI7mzZuXG/+wYcPw7bffIiMjA48//jhWrFiBRo0a4e6778ayZcvKHa6v0+nwyCOPIDk5GX/88Uf5b9BNKrOETFn++OMPTJ06FUOGDEGbNm2g0Whw5cqVSh8XcL5HO3bscNt2888V+eyzzzBixAjUr1+/SsetKJ4DBw6gsLCwzHjsDjsaNm+IvQf2IqZxTKnrpziRkslk6NmzJ1599VXs27cParUaq1atKvOYf/zxB3r06IFJkyahY8eOaNasmevOoic1a9YMarUaW7ZscW2zWq3YvXu36/OmMsq61snLmExA/frOIuEUJ0x06jClXI7oelokPzAMLVsn4oWnn8Dv21Lw3frfMObRZPTu3dt1i33KlCn47LPPsGTJEvz555944403cPDgwVs2FTVu3BhqtRoffPABTp06hR9//BGvv/56jZzPqFGj8NBDD+GRRx7B3LlzsXv3bpw9exarV69G//79sWnTpkrtx1MxV+Y9mz17NubOnYt//etfOH78OA4dOoRFixbh3XffBeCcRXzFihU4evQojh8/jm+//RZRUVHlTmAXFxeHgwcP4tixY7hy5QqsVivGjBmDgIAAjB07Fqmpqdi0aROmTJmCMY8+irDw+re8exASEoJJkyZh586dSE1NRfv27TFr1iwkJye76rzyyitYu3Ytrl69CiEEdu/ejR9++MFt3bn8/Hzs378f+/fvBwCcPn0a+/fvdzWNlFxCZtWqVUhNTcW4cePclpApS7NmzfDFF1/gyJEj2LlzJ8aMGQOtVltu/bI8+eSTOHnyJJ599lkcO3YMy5Ytq/SkhydOnMDvv/+Oxx9/vErHrMjo0aMhl8sxceJEpKWlYe3ataVmfb9/7P0w5hgxZvQYpKSk4NSpU9iwYQMmTJgAu92OnTt3Ys6cOdi9ezfOnTuH//73v7h8+XK5yUSzZs2we/du/Pzzzzh+/Dhefvll7Nq1y2PnVEyv1+Opp57CzJkzsX79eqSlpeGJJ55AQUFBpZv+AOe1XnwNXblyBWaz2eOxkgdcueIsUqqZbkK+wZ+Hl5envA58Z86cEUOGDhM6nV7oA4PEwGEjxfZDJ4XJbHXVee2110R4eLgIDAwUEyZMEFOnThXdu3e/5bGXLVsm4uLihEajEUlJSeLHH39061RZ3PGwZKfPRYsWCYPBUKnYS7Lb7WLBggWiS5cuQqfTieDgYNGpUyfxr3/9yzUqo6w4p02b5jbKrDox79u3TwAQp0+frvR7JoQQX331lejQoYNQq9UiJCRE3HXXXeK///2vEMLZkbhDhw5Cr9eL4OBg0a9fv1KjkkrKysoSAwYMEIGBgeUOLw8JDRUPJY8T24+miwPp2eLg+Rxx5KJR/HkpT5y5ki8uZBeIS7mF4lq+WeQVWkShxSZsdrtbR1273S6OHTvm+nnp0qWiR48eol69ekImk4nIyEgxceJEtxE+xe/ZzaXkKC2HwyFeeeUV13D6u+66yzV6rzx79+4VnTt3FhqNRiQkJIhvv/1WxMbGivfee89VB2V0fjYYDK4hyUII8dNPP4lmzZoJjUYj7rzzTvH5559XqjPyiy++KBo1aiTsdnuF9Yr17t1bTJs2rdT2m2Pcvn27aN++vVCr1aJDhw5i5cqVpYaXr/xjpRg5cqSoV6+e0Gq1omXLlmL69OnC4XCItLQ0MWjQINcQ7ubNm4sPPvig3LiKiorEuHHjhMFgEPXq1RNPPfWUeOGFFyr8m6vu325hYaGYMmWKCA8Pr3B4eUV/X0VFReL+++8X9erVKzW8/Fa/65v56ue91/OS4eVcAsIPloDwJIdD4Eq+GVl5ZjiuXxqhOjUiDQFQKdxvAA4YMABRUVH44osvpAjVJ0n1ntnsDmQXWHDVZIHFVr2+CnKZDCqFHEqF81+VQgal3PlvyZ8nTBjvF0tAeDO7w84lIDyorn7e1zgvWQKCnZHJjVwuQ0Tw9dXRc2+sjp6ZbcTab77AvcOHQKVUYvny5fjll1/c+lOQu4KCAnz88ccYNGgQFAqFJO9ZocWOqyYzcgqsrsRVIXcuGRKmV0OpkMNmF7DaHbDZHbA6ih87/7XaBWwOB+wOAYcQMNvsMNsqPmZOgQXHL+U5kyJ5iSRIcSMpUspllR4hR0R0O5joUJlUSvfV0YsKgbVr1+LdeXNhtVjQokULrFy5Ev3795c6VK8lk8mwdu1avPHGGzCbzbX2njmEQG6hFVfzLTBZbmQlASoFwgPVqKdVQy6/kWSolTKolRV317M7hCsRstkdriTIlRQ5nD8LIfDaux+hyGpHkbX8jqIyAMriu0PykolQicdyGRRMiIjoNjHRoQrpNUo0iwhEdqAan3/9Y6nV0al8Wq0Wv/zyS60dz2p34JrJgmsmC6x25+9JBhmCtUqEB2qgUyuqnTQo5DIo5ApUtBKTEMKZEDlK3A0qmRA5ircJCBTXAQpRQUIkkznvAslvajK7ngg5m9LkUMiZDBFR2Zjo0C05V0fXIFirQlauGVfzLcgtsiK3yAqdWgmDVgWDVnXLuwJUMwosNlzNtyCn0OoaQaWUy13NU6pa+r3IZDIoFTIoFc67R+UR4kYy5NZEdlPTmc3hgBACFpuABRX3K1LIbmoau/6vTqWATuN/H3MyyKBT6VyPibySXA4UT44pl+77wf8+AajGFA9HD9WrkWksQl6RFQUWGwosNmQYC5n01CKHEDAWWHHVZEaB5cYdEZ1aibBANQxaFeRe2uTjukujqPgacYgbd4Rcd4YcpZMjuxDOUkb/IRlkaBEVCLXSvzrryuVytK7fWuowiCqm1QI1MEVBVTHRoSoLUCkQF66H1e5AbqEVOYVWmMw2t6RHr1bCoHMmPbf6QqPKs9huNE8VNyPKZDLU06oQFqiGTu0/f9JymQxqpQK3OiW7o+zO1LlFVlhsDuQUWhER5F+JDhFVnv98KlKtUynkCAvUICxQA6vdAWOhFcYCK0wWm6tczGHSc7uEEDBZnEt15BbaIOBsnlIp5AjTqxF6ffRUXVXcfwg3NZdp8uW4kFOI3EIrIoLYn4yormKiQx6hUsgRHqhBeKAGVpsz6ckpdDZtuSU9GiXqaVUIZtJzS3aHQM71uW9KjmDSa5QI16sRrFVxRFIFgrUqXMwpRIHFDovN7lfNV3aHHYcvHwYAtKnfhvPokHcqKABaX29iTUsDSixSW5uY6JDHqZRyhAdpEB6kgeV60mMsTnrMzlKc9BT36anLdyRu5lxo1YLsAgvsDufdG7lMhno6FcICNdBW0NGXblAp5NBplDCZbTAW2lDfz5qvLHbLrSsRSUkI4OzZG48lwm8Xclm8eLHbGkqzZ89Ghw4dbmufaqUc9YM0aBYRiJZRQWhgCIBOrYAAkG+24UJOIY5k5OHU5XxcM5lhs9fNFYaFEMgrsmLL3jQEqJTYsnM37A4BtVKOBgYtWkYFoVGIjklOFdXTOhe1NRZaJY6EiKTCRMfPjBs3DjKZrFQ5ceJEjR1zyZIl6Nq1K/R6PYKCgnDXXXdh9erVpeqplQrUDwpAs4ggtIwKQpQhAFqVAgIC+WYbzmc7k57TV0zOzraVTHp+++03yGQy5OTkePjMbij5XiqVSjRu3BjPPvvsbS8kaHc4cCXfjOOX8nH6ign6sEj8uucoOrZvh7gwPVpEBqF+kIZ3vKop+HqiU2CxVXvpCyLybWy68kODBw/GokWL3LbVr1+/Ro41Y8YMfPjhh3jjjTcwcuRIWK1WfPnll7jnnnvwr3/9C08//XSZr1MrFYgIUiAiKABmm93VkbnQakdekRV5RVbIZDIEXm/eCtYqoSxjHgar1XP/UxdCwG63Q6ks+89i0aJFGDx4MKxWKw4cOIDx48dDr9dXa2XzIuuN5inX0gwyGcINOrSObgYN79x4hEohh16thMliQ26hFeFBFU15SET+iP9N9EMajQZRUVFuRaFQ4N1330Xbtm2h1+sRExODSZMmIT8/v9rH2bFjB9555x3Mnz8fM2bMQLNmzdCqVSu8+eabmD59Op599lmkp6cDKLsZ7P3330dcXBw0SmfCk3PuKJ4Z9wD6tm+Gnq1jMf7+IUjZtRvnswtwJCMPZ66YIJPJ8NFHH+Gee+6BXq/H448/jr59+wIAQkJCIJPJMG7cOADOxGXevHlo0qQJtFot2rdvj++++851/OI7QT///DM6d+4MjUaDP/74o9zzrVevHqKiohATE4Nhw4ZhxIgR2Lt3r1udn376CZ06dUJAQACaNGmCV199FTabzRXPrv2H0LlbEgxBetzVrSO2/b4J7WNCcOCPjWjZIBiWnEsIUCuxf/9+txh//fVXdO7cGTqdDj169MCxY8dcxzxw4AD69u2LoKAgBAcHo1OnTti9e3e1fqf+yKBj8xVRXcZEpzpMpvJLUVHl6xYW3rquB8nlcvz73/9GamoqlixZgv/973+YNWtWtfe3fPlyBAYG4v/+7/9KPffcc8/BarVi5cqVld5fXl4exo8bhy1b/kDKzh1o27olpox7CDZzAYRwzosCAC+/Mhs9/zIYW1P24JXZr7qOcezYMWRkZOBf//oXAODvf/87Fi1ahAULFuDw4cN45pln8Oijj2Lz5s1ux501axbmzp2LI0eOoF27dpWK9fjx49i0aRO6devm2vbzzz/j0UcfxdSpU5GWloZPPvkEixcvxuuvv4GsvCIcuWjEqAfuh0qjxVc/bsQ/3/sAn747BwAQpFVVuIzBSy+9hHfeeQe7d++GUqnEhAkTXM+NGTMGjRo1wq5du7Bnzx688MILUKlUlTqPuiA4wPlemCw219IYRFSHiDrMaDQKAMJoNJZ6rrCwUKSlpYnCwsLSL3T2Hy+7DBniXlenK79u797udcPDS9eporFjxwqFQiH0er2rPPDAA2XW/eabb0RYWJjr50WLFgmDweD6+ZVXXhHt27cv91iDBw+u8HmDwSCeeuqpcvf13nvvidjY2HJfb7PZRFBQkPjpp59EocUmMo2FAoB4dOJT4kB6tjiQni0Ons8Ry79fKwCIK1evuV6bn58vAgICxLZt29z2OXHiRPHII48IIYTYtGmTACC+//77cmMoBkAEBAQIvV4vNBqNACCGDRsmLBaLq86dd94p5syZ4/q5wGwV7y/4f6J+ZJQ4kJ4tPlr6rVAqlWL/sVPCbLUJIYTYuHGjACBWrVolhBDi9OnTAoDYt2+fW4y//PKLa79r1qwRAFzXZlBQkFi8ePEtz6Eu+/NSnjiQni0u5xVJHYpH2Ow2cejSIXHo0iFhs9ukDsfnVfh5T9VnMgnRurWzmEwe3XVF3983Yx8dP9S3b18sWLDA9bNerwcAbNq0CXPmzEFaWhpyc3Nhs9lQVFQEk8nkquNJQgio1epK18/KysI//vEP/O9//8OlS5dgt9tRUFCAc+fOIUClcK2f9Jc7kxARFABjoRVmmx2m60sgHMvMRUPhXP7gaOphFBUVYcCAAW7HsFgs6Nixo9u2zsVrsdzCe++9h/79+8Nut+PEiRN49tlnkZycjBUrVgAA9uzZg127duHNN990ZqkAHHY7zOYiwGpGTsZZxMTEoH3zeNc+u3btWqljl7zT1KBBA9f7Vdwp+vHHH8cXX3yB/v3748EHH0TTpk0rtd+6wqBVocBig7HQivBA3++no5ArkBiRKHUYRBXT6YDDh6WOgp2Rq6Wifi2KmzqRZmWVX/fmzrVnzlQ7pJL0ej2aNWvmtu3s2bMYMmQInnzySbz++usIDQ3Fli1bMHHixGp36E1ISMCWLVtgsVhKJTQXL15Ebm4umjdvDsDZbCZumkfh5uOOGzcOly9fxvvvv4/Y2FhoNBokJSXBYnGfLyTE4ByxFRmsQZHVgRNa57EdAq45e05l5QEAvl75PRLiYyEv0Syk0bh/0VU2yYuKinK9ry1atEBeXh4eeeQRvPHGG4iNbwKHw4HJz72IPoOGAXCusxQUoEQ9vQptGofjf7exenjJpqjifTiuLwExe/ZsjB49GmvWrMG6devwyiuvYMWKFbj33nurdSx/ZNCqkGEshMnsbL7iZJVEdQcTneqoyt2PmqpbRbt374bNZsM777wD+fUE65tvvrmtfT7yyCP44IMP8Mknn2DKlCluz7399tsICAjAQw89BMA56iszMxNCCNcXdXGH22J//PEHPvroIwwZMgQAkJ6ejitXrpR7fJlMBq1agajQQABAXGgAFDoNjIVWxCc0h1qjwf6jJxCb2AXBASoYdCoEaZRuSc/tKH4fT2VcQ6G2PlomtsPJE39iwuRmrqUZSn6htmzZEufOncOlS5cQGRkJANjloQXvmjdvjubNm+OZZ57BI488gkWLFjHRKUGtlEOnVqLg+uirMD+4q0NElcNEp45o2rQpbDYbPvjgAwwfPhxbt27Fxx9/fFv7TEpKwrRp0zBz5kxYLBa34eX//ve/sXjxYoSFhQEA+vTpg8uXL2PevHl44IEHsH79eqxbtw7BwcGu/TVr1gxffPEFOnfujNzcXMycORNarfaWccTGxjpHJm1YjyFDhqChPgCNQxvgqSnT8ParL0E4BDp26Y78/Dwc2pOC0HrBeHzCeNew7srKyclBZmYmbDY79qUewcuvvIrYJs0QHtMEQghMnfEi/vrog2jXoglGjRqFa3I5Dh48iEOHDuGNN97AgAED0LRpU4wdOxbz5s1DXl4eXnrpJQCo9p2ewsJCzJw5Ew888ADi4+Nx/vx57Nq1C/fff3+19ufPDFqlq/nK1xMdu8OOI1eOAABahbfiEhDknQoKgC5dnI937ZJsCQh2Rq5OZ2QvNnbsWHHPPfeU+dy7774rGjRoILRarRg0aJBYunSpACCys7OFEFXvjFzss88+E506dRIBAQECgFCr1WLz5s2l6i1YsEDExMQIvV4vHnvsMfHmm2+6dUbeu3ev6Ny5s9BoNCIhIUF8++23IjY2Vrz33nuuOijRcbek1157TURFRQmZTCbGjh0rhBDC4XCI999/XzRv3kKoVCoRGhYuevTuJz7/drU4kJ4tPv/mJwFAnL2YJewOR4XnCGeXGwFAyGQyUT8iSgwafq9Yu3W/SL9qEgVmqxBCiPXr14sePXoIrVYrgoODRdeuXcXChQtd+zly5Ijo2bOnUKvVomXLluKnn5wxrF+/XghRfmfk4t+REELs27dPABCnT58WZrNZPPzwwyImJkao1WoRHR0tnn76aZ+7bmtDkdXm7MCeniOsNrvU4dwWm90mdl3YJXZd2MXOyB7gq5/3Xi8//8bAmvx8j+66Kp2RZUJIuACFxHJzc2EwGGA0Gt3uLABAUVERTp8+jfj4eAQEcOXjyjpz5gx69+6NpKQkfPXVV1Dc3GdJQkIIFFjsrn48JYcaK+QyV/NWoEYJ+fU7LEIImMw2XDVZkFtoRfEfi1ohR2igGqG621s5fOvWrejVqxdOnDjBDsS14M9LeSi02tEoRItQve/e1bE77NiXuQ8A0DGqI+/o3CZ+3tcQkwkIdHYtQH6+R7tnVPT9fTM2XZFHxcXF4bfffsOSJUuwf/9+dOrUSeqQXGQyGfQaJfQaJRoYAkolPdkFzpmKFXIZDAEqaFQKZBe4rxweqFEiLFCD4ABltZqbVq1ahcDAQCQkJODEiROYNm0aevbsySSnlhh0KhQa7cgpsPp0okNElcdEhzwuPj4es2fPljqMCpWV9ORcT3psdgeuFdwY6SWXyRCiUyMsUO0a4l5deXl5mDVrFtLT0xEeHo7+/fvjnXfeud3ToUoyBKiQaSyCyWyHze7gGmJEdQATHarzSiY90YYAmCx2GAucc/QEa1UI0amgKGOdrep47LHH8Nhjj3lkX1R1muvzMRVZ7cgtsiFUX/l5nojINzHRISqheCHRQA3/NPyVQatCkdXZbMlEh8j/8dP8FupwX20iv2TQqnAptwj5ZhtsDgeUHrpbV9vUCiZpnsLP+RoikwGxsTceS4SJTjmKZ6ItKCio1FwuROQbAko0X+UV2hDig3d1FHIF2kVWbgFaurWCggIA4GK4nqbTeWzG/9vBRKccCoUC9erVQ9b1JRx0Ol21J3UjIu+iUzhQWGjBtVwHtAqJJjEjyQkhUFBQgKysLNSrV8+rpsMgz2GiU4GoqCgAcCU7ROQfrHYHsnLNuCwDirIDXPMmUd1Ur1491+c9+R8mOhWQyWRo0KABIiIiqr3wJRF5HyEE5izehfRrBfjbkFbo1ypS6pCqpMhahEdXPQoA+PLeLxGg4iR31aVSqXgnp6YUFgJ33eV8/PvvgETdQJjoVIJCoeAfApGf6dI0EjvOnsCPqZcxtGOs1OFUiV1ux5rTawAAKo0KAWomOuSFHA5g9+4bjyXim8MNiIhu092JDQAAvx27DJPZJnE0RFRTmOgQUZ3UqkEQ4sP1MNsc+N9R9sMj8ldMdIioTpLJZLg70dkBdV1qhsTREFFNYaJDRHXWkLbO5qtNRy+jwMLmKyJ/xESHiOqsNtHBiAnVotBqx+Zjl6UOh4hqABMdIqqzZDIZhlzvlLw2NVPiaKomXBeOcF241GEQVSw83FkkxOHlRFSn3d22AT75/RT+d+QSiqx2BKi8fyoJvVqPyzN5B4q8nF4PXJb+OuUdHSKq09o3MqBhPS1MFjs2H5f+Q5mIPIuJDhHVaW6jrw5x9BWRv2GiQ0R13t3XR1/9ciQLZptd4mhurdBaiD6L+6DP4j4otBZKHQ5R2QoLgT59nKVQuuuUfXSIqM7rGFMPUcEByMwtwpY/r3j92lcO4cDms5tdj4m8ksMBbN5847FEeEeHiOo8uVyGwdebr9Ye8q3RV0RUMSY6RES4MXngxrRMWGy8S0LkL5joEBEB6BwbgoggDXKLbNh68orU4RCRhzDRISKCe/MVR18R+Q8mOkRE1919fZbkDWmXYLWz+YrIHzDRISK6rmt8KML0auQUWLHj1FWpw6mQTqWDTqWTOgyiiul0ziIhJjpERNcp5DIM8oHRV3q1Hqa/mWD6mwl6tV7qcIjKptcDJpOz6KW7TpnoEBGVULzI54bDmbCx+YrI5zHRISIqoXuTUIToVLhqsiDl9DWpwyGi28REh4ioBKVCjkFtrjdfpXrn6KsiWxGGLhuKocuGoshWJHU4RGUrKgKGDnWWIumuUyY6REQ3KV77an3qJdgdQuJoSrM77Fj751qs/XMt7A7vX5uL6ii7HVi71lns0l2nTHSIiG7So2kYDFoVruSbsfsMm6+IfBkTHSKim6gUcgxo7VzYc12q946+IqJbY6JDRFSGodebr9alZsDhhc1XRFQ5THSIiMrQo1kYggKUuJRrxt5z2VKHQ0TVxESHiKgMGqUCA1o5m6+8efJAIqoYEx0ionLczeYrIp+nlDoAIiJvdWdCOPRqBTKMRThwPgcdG4dIHRIA5xIQ4hUmXuTl9HpASH+dVvmOzoULF/Doo48iLCwMOp0OHTp0wJ49e1zPCyEwe/ZsREdHQ6vVok+fPjh8+LDbPsxmM6ZMmYLw8HDo9XqMGDEC58+fd6uTnZ2N5ORkGAwGGAwGJCcnIycnx63OuXPnMHz4cOj1eoSHh2Pq1KmwWCxVPSUiojIFqBTo14qjr4h8WZUSnezsbPTs2RMqlQrr1q1DWloa3nnnHdSrV89VZ968eXj33Xfx4YcfYteuXYiKisKAAQOQl5fnqjN9+nSsWrUKK1aswJYtW5Cfn49hw4bBXmJCodGjR2P//v1Yv3491q9fj/379yM5Odn1vN1ux9ChQ2EymbBlyxasWLECK1euxHPPPXcbbwcRkbsh15uv1h7KgPCC/50SURWJKnj++edFr169yn3e4XCIqKgo8dZbb7m2FRUVCYPBID7++GMhhBA5OTlCpVKJFStWuOpcuHBByOVysX79eiGEEGlpaQKA2LFjh6vO9u3bBQBx9OhRIYQQa9euFXK5XFy4cMFVZ/ny5UKj0Qij0VhmfEVFRcJoNLpKenq6AFBufSKiQotNtHp5nYh9frU4kJ4tdThCCCEKrYXigW8eEA9884AotBZKHQ5R2QoLhXjgAWcp9Ox1ajQaK/39XaU7Oj/++CM6d+6MBx98EBEREejYsSM+/fRT1/OnT59GZmYmBg4c6Nqm0WjQu3dvbNu2DQCwZ88eWK1WtzrR0dFITEx01dm+fTsMBgO6devmqtO9e3cYDAa3OomJiYiOjnbVGTRoEMxms1tTWklz5851NYUZDAbExMRU5fSJqA4KUCnQt2UEAO8ZfWV32PFd2nf4Lu07LgFB3stuB777zll8ZQmIU6dOYcGCBUhISMDPP/+MJ598ElOnTsXSpUsBAJmZzg+ByMhIt9dFRka6nsvMzIRarUZISEiFdSIiIkodPyIiwq3OzccJCQmBWq121bnZiy++CKPR6Crp6elVOX0iqqOGJN4YfSXYfEXkU6o06srhcKBz586YM2cOAKBjx444fPgwFixYgMcee8xVTyaTub1OCFFq281urlNW/erUKUmj0UCj0VQYBxHRzfq0qI8AlRxnrxYgLSMXbaINUodERJVUpTs6DRo0QOvWrd22tWrVCufOnQMAREVFAUCpOypZWVmuuy9RUVGwWCzIzs6usM6lS5dKHf/y5ctudW4+TnZ2NqxWa6k7PUREt0OvUaJPc+dd5nVe0nxFRJVTpUSnZ8+eOHbsmNu248ePIzY2FgAQHx+PqKgobNy40fW8xWLB5s2b0aNHDwBAp06doFKp3OpkZGQgNTXVVScpKQlGoxEpKSmuOjt37oTRaHSrk5qaioyMDFedDRs2QKPRoFOnTlU5LSKiWxrSjqOviHxRlZqunnnmGfTo0QNz5szBqFGjkJKSgoULF2LhwoUAnE1J06dPx5w5c5CQkICEhATMmTMHOp0Oo0ePBgAYDAZMnDgRzz33HMLCwhAaGooZM2agbdu26N+/PwDnXaLBgwfjiSeewCeffAIA+Otf/4phw4ahRYsWAICBAweidevWSE5Oxvz583Ht2jXMmDEDTzzxBIKDgz32BhERAcBfWkZArZTj1BUTjl3KQ8sofs4Q+YSqDun66aefRGJiotBoNKJly5Zi4cKFbs87HA7xyiuviKioKKHRaMRdd90lDh065FansLBQPP300yI0NFRotVoxbNgwce7cObc6V69eFWPGjBFBQUEiKChIjBkzRmRnZ7vVOXv2rBg6dKjQarUiNDRUPP3006KoqKjS51KV4WlERI8v2SVin18t3tlwTNI48s35ArMhMBsi35wvaSxE5crPF8I5N7LzsQdV5ftbJkTdvQebm5sLg8EAo9HIu0BEdEur9p3HM18fQEJEIDY+21uyOIQQKLAWAAB0Kt0tB3sQSUIIoMB5nUKnAzx4nVbl+5uLehIRVVK/VpFQKWT4Mysff17Ku/ULaohMJoNerYderWeSQ95LJnOud6XXezTJqSomOkRElRQcoMKdCfUBcO0rIl/BRIeIqApKrn0lFbPNjHHfj8O478fBbDNLFgdRhcxmYNw4ZzFLd50y0SEiqoIBrSKhlMtwNDMPpy7nSxKDzWHDkgNLsOTAEtgcNkliILolmw1YssRZbNJdp0x0iIiqwKBToWezcABsviLyBUx0iIiqaEhb5yzwUjZfEVHlMNEhIqqiAa2joJDLcPhiLs5eNUkdDhFVgIkOEVEVherVSGoSBoDNV0TejokOEVE1eMPoKyK6NSY6RETVMLBNJOQy4OB5I9KvFUgdDhGVg4kOEVE1hAdq0C3e2Xy1vpabr3QqHbJmZCFrRhZ0Kl2tHpuo0nQ6ICvLWXTSXadMdIiIqsk1+iq1dpuvZDIZ6uvro76+PpeAIO8lkwH16zsLl4AgIvI9gxKjIJMB+87l4GJOodThEFEZmOgQEVVTRFAAusSFAqjd5iuzzYzJayZj8prJXAKCvJfZDEye7CxcAoKIyDcNSaz9yQNtDhs+2v0RPtr9EZeAIO9lswEffeQsXAKCiMg3DU50DjPffTYbmcYiiaMhopsx0SEiug1RhgB0ig0BAPx8mJMHEnkbJjpERLfpbgmar4iocpjoEBHdpruvz5KccuYaLuexczCRN2GiQ0R0mxrW06JDTD0IweYrIm/DRIeIyANckwey+YrIqzDRISLygLuvj77aceoqrubXbPOVVqXF6WmncXraaWhV2ho9FlG1abXA6dPOopXuOmWiQ0TkATGhOrRtaIBDABvSLtXoseQyOeLqxSGuXhzkMn6Mk5eSy4G4OGeRS3ed8i+EiMhD7mbzFZHXYaJDROQhQ643X207eRXZJkuNHcdit2DmhpmYuWEmLPaaOw7RbbFYgJkzncUi3XXKRIeIyEPiwvVo3SAYdofAxiM113xltVvx9va38fb2t2G1W2vsOES3xWoF3n7bWazSXadMdIiIPIijr4i8CxMdIiIPKp48cOuJKzAW8G4LkdSY6BAReVDT+oFoERkEq13glxpsviKiymGiQ0TkYcWjr9alsvmKSGpMdIiIPGzI9ear349fQV4Rm6+IpMREh4jIw5pHBqFZRCAsdgf+dzRL6nCI6jQmOkRENWBIorP5as1BzzdfaVVapD6VitSnUrkEBHkvrRZITXUWLgFBRORfikdf/Xb8MvLNNo/uWy6To01EG7SJaMMlIMh7yeVAmzbOwiUgiIj8S8uoIMSH62GxObCJzVdEkmGiQ0RUA2QyGe5OrJnRVxa7BbN/m43Zv83mEhDkvSwWYPZsZ5FwCQiZEEJIdnSJ5ebmwmAwwGg0Ijg4WOpwiMjPpF4wYtgHW6BVKbDn5f7QqZUe2a/JYkLg3EAAQP6L+dCr9R7ZL5FHmUxAoPM6RX4+oPfcdVqV72/e0SEiqiFtooPROFSHQqsdm49dljocojqJiQ4RUQ2RyWSuyQPXcO0rIkkw0SEiqkFDEp2jr/53NAtFVrvE0RDVPUx0iIhqULtGBjSsp0WBxY7Nx9l8RVTbmOgQEdUgt9FXbL4iqnVMdIiIaljx5IG/HMmC2cbmK6La5JmxjkREVK6OMfXQwBCADGMRtvx5Bf1aRd7W/gKUAUh5PMX1mMgrBQQAKSk3HkuEd3SIiGqYXC7D4ETPjb5SyBXo0rALujTsAoVccdv7I6oRCgXQpYuzKKS7TpnoEBHVgiHXm682pl2CxeaQOBqiuoOJDhFRLejUOAQRQRrkFdmw9eSV29qXxW7B/K3zMX/rfC4BQd7LYgHmz3cWCZeAYKJDRFQLSjZf3e7oK6vdilm/zMKsX2bBard6Ijwiz7NagVmznMUq3XXKRIeIqJYUN19tSLsEq53NV0S1gYkOEVEt6RIXivBANXIKrNhx6qrU4RDVCUx0iIhqiUIuw6A2zuartZw8kKhWMNEhIqpFxc1XPx++BBubr4hqHBMdIqJa1C0+FCE6Fa6ZLEg5fU3qcIj8HhMdIqJapFTIbzRfpbL5iqimMdEhIqplxc1X61Mvwe4QVX59gDIAm8Zuwqaxm7gEBHmvgABg0yZnkXAJCK51RURUy5KahsGgVeFKvhm7zlxD9yZhVXq9Qq5An7g+NRMckacoFECfPlJHwTs6RES1TaWQY2Br58Ketzt5IBFVjIkOEZEEipuv1qVmwlHF5iur3Yr/pPwH/0n5D2dGJu9ltQL/+Y+zcGZkIqK6pUezMAQFKJGVZ8bec9lVeq3FbsHT657G0+ue5lpX5L0sFuDpp52Fa10REdUtGqUCA1o5m6/WHsqUOBoi/8VEh4hIIjearzKq3HxFRJXDRIeISCK9EsIRqFEiw1iE/edzpA6HyC8x0SEikkiASoF+rSIAcPQVUU1hokNEJKG7E53NV2sPZUIINl8ReRoTHSIiCfVpUR86tQIXcgpx6IJR6nCI/A5nRiYiklCASoG+LSOw5mAG1h7KRLtG9W75Go1Sg9WPrHY9JvJKGg2wevWNxxLhHR0iIokNLTH6qjLNV0q5EkObD8XQ5kOhlPP/q+SllEpg6FBnUUp3nTLRISKSWJ8W9RGgkuPs1QIcvpgrdThEfoWJDhGRxHRqJfq2uD76KvXWo6+sdisW71+MxfsXcwkI8l5WK7B4sbNwCQgiorrt7raVH31lsVsw/ofxGP/DeC4BQd7LYgHGj3cWLgFBRFS3/aVlBNRKOU5fMeHYpTypwyHyG7eV6MydOxcymQzTp093bRNCYPbs2YiOjoZWq0WfPn1w+PBht9eZzWZMmTIF4eHh0Ov1GDFiBM6fP+9WJzs7G8nJyTAYDDAYDEhOTkZOTo5bnXPnzmH48OHQ6/UIDw/H1KlTYZEwayQiqq5AjRK9m9cHwLWviDyp2onOrl27sHDhQrRr185t+7x58/Duu+/iww8/xK5duxAVFYUBAwYgL+/G/1CmT5+OVatWYcWKFdiyZQvy8/MxbNgw2O12V53Ro0dj//79WL9+PdavX4/9+/cjOTnZ9bzdbsfQoUNhMpmwZcsWrFixAitXrsRzzz1X3VMiIpKUa/QVZ0km8hxRDXl5eSIhIUFs3LhR9O7dW0ybNk0IIYTD4RBRUVHirbfectUtKioSBoNBfPzxx0IIIXJycoRKpRIrVqxw1blw4YKQy+Vi/fr1Qggh0tLSBACxY8cOV53t27cLAOLo0aNCCCHWrl0r5HK5uHDhgqvO8uXLhUajEUajscy4i4qKhNFodJX09HQBoNz6RES1yVhoEQl/Wytin18tjmfmllsv35wvMBsCsyHyzfm1GCFRFeTnCwE4S75nr1Oj0Vjp7+9q3dGZPHkyhg4div79+7ttP336NDIzMzFw4EDXNo1Gg969e2Pbtm0AgD179sBqtbrViY6ORmJioqvO9u3bYTAY0K1bN1ed7t27w2AwuNVJTExEdHS0q86gQYNgNpuxZ8+eMuOeO3euqynMYDAgJiamOqdPRFQjggNUuDMhHACbr4g8pcqJzooVK7B3717MnTu31HOZmc4/zMjISLftkZGRrucyMzOhVqsREhJSYZ2IiIhS+4+IiHCrc/NxQkJCoFarXXVu9uKLL8JoNLpKenp6ZU6ZiKjW3F1i8kAiun1VmqowPT0d06ZNw4YNGxAQEFBuPZlM5vazEKLUtpvdXKes+tWpU5JGo4FGwmmoiYhuZUCrSKgUMhzNzMPJy/loWj+wVB2NUoNvHvjG9ZjIK2k0wDff3HgskSrd0dmzZw+ysrLQqVMnKJVKKJVKbN68Gf/+97+hVCpdd1huvqOSlZXlei4qKgoWiwXZ2dkV1rl06VKp41++fNmtzs3Hyc7OhtVqLXWnh4jIVxh0KvRs5my+Wp9a9t1ppVyJB9s8iAfbPMglIMh7KZXAgw86i68sAdGvXz8cOnQI+/fvd5XOnTtjzJgx2L9/P5o0aYKoqChs3LjR9RqLxYLNmzejR48eAIBOnTpBpVK51cnIyEBqaqqrTlJSEoxGI1JSUlx1du7cCaPR6FYnNTUVGRk3bu9u2LABGo0GnTp1qsZbQUTkHYYkFk8eyOYrottVpRQrKCgIiYmJbtv0ej3CwsJc26dPn445c+YgISEBCQkJmDNnDnQ6HUaPHg0AMBgMmDhxIp577jmEhYUhNDQUM2bMQNu2bV2dm1u1aoXBgwfjiSeewCeffAIA+Otf/4phw4ahRYsWAICBAweidevWSE5Oxvz583Ht2jXMmDEDTzzxBIKDg2/vXSEiktCA1pFQrJLh8MVcnL1qQmyY3u15m8OGVUdWAQDubXUv7+qQd7LZgFXO6xT33ivZXR2PH3XWrFkoLCzEpEmTkJ2djW7dumHDhg0ICgpy1XnvvfegVCoxatQoFBYWol+/fli8eDEUCoWrzldffYWpU6e6RmeNGDECH374oet5hUKBNWvWYNKkSejZsye0Wi1Gjx6Nt99+29OnRERUq0L0avRoGoY//ryCtYcy8VSfpm7Pm21mjPpuFAAg/8V8KNVMdMgLmc3AKOd1ivx8yRIdmRC3WFTFj+Xm5sJgMMBoNPIuEBF5lWU7z+Fvqw6hXSMDfny6l9tzJosJgXOdnZTzX8yHXq0vaxdE0jKZgMDrnenz8wG9567Tqnx/c60rIiIvNLBNJOQy4OB5I9KvFUgdDpHPYqJDROSFwgM16N4kDED5o6+I6NaY6BAReaniyQPXcvJAompjokNE5KUGtYmETAbsO5eDizmFUodD5JOY6BAReamIoAB0iQsFAKxj8xVRtXBMIhGRFxuSGIWU09ew7lAGJvaKBwCoFWosumeR6zGRV1KrgUWLbjyWCIeXc3g5EXmxTGMRus/9FQCw48V+iDKUv84gUV3B4eVERH4iyhCAzrEhAICfD7P5iqiqmOgQEXk51+ir62tf2Rw2rDm+BmuOr4HNYZMyNKLy2WzAmjXOYpPuOmWiQ0Tk5QYnRgEAUs5cQ1ZeEcw2M4YtH4Zhy4fBbDNLHB1ROcxmYNgwZzFLd50y0SEi8nIN62nRIaYehAB+PnxJ6nCIfAoTHSIiHzCkrfOuzrpDnDyQqCqY6BAR+YC7E539dHacuoqrJjZXEVUWEx0iIh8QE6pDu0YGOATw65EsqcMh8hlMdIiIfETxXZ0NHGZOVGlMdIiIfMTd10df7Th9TeJIiHwHl4AgIvIRceF6tG4QjMMZ1zCh9eu4IzaES0CQ91KrgQ8/vPFYIkx0iIh8yJC2UUjLyIU9fyAmd+0qdThE5VOpgMmTpY6CTVdERL6keJbkrSeuwFhglTgaIu/HRIeIyIc0rR+IFpE65IkDeP+P72F32KUOiahsdjvw22/OYpfuOmWiQ0TkY/q1DsUlzd8we8coFNmKpA6HqGxFRUDfvs5SJN11ykSHiMjHDGoT6XqcW8TmK6KKMNEhIvIxzSKCXI83HeXkgUQVYaJDROTDvtmdLnUIRF6NiQ4RkQ/bey4HB8/nSB0GkddiokNE5OMWbT0jdQhEXouJDhGRj1t98CKycjn6iqgsnBmZiMjHqBQqzOs/DwCw/UA49p7Lx5c7zuLZgS0kjoyoBJUKmDfvxmOJyIQQQrKjSyw3NxcGgwFGoxHBwcFSh0NEVGVrD2Vg0ld7EaZXY+sLf0GASiF1SEQ1rirf32y6IiLyYQNbR6JhPS2umiz48cBFqcMh8jpMdIiIfIzdYceuC7uw68IuyGQCjyXFAgA+33IadfgmPXkbux3YtctZuAQEERFVVpGtCF3/X1d0/X9dUWQrwsNdGkOrUuBoZh52nLomdXhETkVFQNeuzsIlIIiIqLoMOhXu79QQAPD51tMSR0PkXZjoEBH5gXE94gEAvxy5hHNXCySOhsh7MNEhIvIDzSIC0bt5fQgBLN52RupwiLwGEx0iIj8xvmccAOf6V3lc1ZwIABMdIiK/cVdCfTStr0e+2Ybv9pyXOhwir8BEh4jIT8jlMozr6eyrs3jbGTgcHGpOxCUgiIh8jEqhwiu9X3E9Lun+Oxpi/vqjOHu1AP87moX+rSOlCJHIuezDK6/ceCwRLgHBJSCIyM/MXXsEn/x+Cj2bheGrx7tLHQ6Rx3EJCCKiOuyxHnFQyGXYeuIqjmbmSh0OkaSY6BAR+RiHcOBw1mEczjoMh3CUer5hPS0GtXE2WS3eeqaWoyO6zuEADh92Fkfp67S2MNEhIvIxhdZCJC5IROKCRBRaC8usM+F6p+RV+y7gmslSm+ERORUWAomJzlJY9nVaG5joEBH5oU6xIWjb0ACzzYHlKeekDodIMkx0iIj8kEwmw4RecQCApdvPwGqXrumASEpMdIiI/NTQttGoH6TBpVwz1h7KkDocIkkw0SEi8lNqpRzJ3WMBAJ+zUzLVUUx0iIj82OhujaFWyHEgPQd7z2VLHQ5RrWOiQ0Tkx8IDNbinQzQA4PMtpyWOhqj2cQkIIiIfo1KoMCNphuvxrYzvGY9v95zHutRMZBgL0cCgrekQiZzLPsyYceOxRLgEBJeAIKI64OGF27Hj1DU81acpnh/cUupwiG4Ll4AgIiI3469PILg85RwKLXaJoyGqPUx0iIh8jEM4cCbnDM7knClzCYiy9G8ViZhQLXIKrFi170INR0gE57IPZ844C5eAICKiyiq0FiL+X/GI/1d8uUtA3Ewhl2FsUhwAYNHW06jDvRaothQWAvHxzsIlIIiIqKaN6hIDvVqBP7PyseXEFanDIaoVTHSIiOqI4AAVHuwcAwBYxAkEqY5gokNEVIeM7REHmQz439EsnLqcL3U4RDWOiQ4RUR0SH67HX1pEAACWbDsjbTBEtYCJDhFRHTOhl3Oo+bd7zsNYaJU4GvJXVrt0I61KYqJDRFTH9GgahhaRQSiw2PHt7nSpwyE/9dWOs1KHAICJDhGRz1HKlZjUeRImdZ4EpbzqK/nIZDKM7xkHAFi87QzsDg41J8/Kyi3CvzafxtKOQ/Hn/cmAUroVp7gEBJeAIKI6qMhqR9LcX5FdYMXHj3bC4MQoqUMiP/LM1/uxat8FtI+ph1VP9YBcLvPo/rkEBBERVShApcDobo0BAJ9v5arm5Dk7T13Fqn0XIJMBr9/TxuNJTlUx0SEi8jFCCFw2XcZl0+XbmuE4uXsclHIZUk5fQ+oFowcjpLrKanfgHz8cBgA80iUG7TRW4PJlQMLGIyY6REQ+psBagIi3IxDxdgQKrAXV3k+UIQBD2jYAwAkEyTOWbj+LY5fyEKJTYWavGCAiwlkKqn+d3i4mOkREdVhxp+SfDlzE5TyztMGQT8vKLcL7G48DAGYNbokQvVriiJyY6BAR1WEdG4egY+N6sNgd+GqndwwHJt80d91R5JltaB9TDw9dX2rEGzDRISKq48b3dE4g+OWOczDb7BJHQ74o5fQ1r+qAXBITHSKiOu7uxChEBQfgSr4Zqw9kSB0O+Rib3YF//JAKAHika2O0a1RP2oBuwkSHiKiOUynkSE6KBeAcal6Hp1ejali6/SyOZuahnk6FmQNbSB1OKUx0iIgIo7s2hkYpx+GLudh1JlvqcMhHZOUV4b3iDsiDvKcDcklVSnTmzp2LLl26ICgoCBERERg5ciSOHTvmVkcIgdmzZyM6OhparRZ9+vTB4cOH3eqYzWZMmTIF4eHh0Ov1GDFiBM6fP+9WJzs7G8nJyTAYDDAYDEhOTkZOTo5bnXPnzmH48OHQ6/UIDw/H1KlTYbFYqnJKREQ+RylXYmz7sRjbfmy1loAoS4hejfvuaAgAWMQJBKmS3lp7vQNyIwMe6nJTB2SlEhg71lkkXAKiSonO5s2bMXnyZOzYsQMbN26EzWbDwIEDYTKZXHXmzZuHd999Fx9++CF27dqFqKgoDBgwAHl5ea4606dPx6pVq7BixQps2bIF+fn5GDZsGOz2G53gRo8ejf3792P9+vVYv3499u/fj+TkZNfzdrsdQ4cOhclkwpYtW7BixQqsXLkSzz333O28H0REXk+j1GDxyMVYPHIxNEqNx/Zb3Cn558OZSL8m3bwn5BtSTl/Df693QH7tnkQobu6ArNEAixc7i8Zz12mViduQlZUlAIjNmzcLIYRwOBwiKipKvPXWW646RUVFwmAwiI8//lgIIUROTo5QqVRixYoVrjoXLlwQcrlcrF+/XgghRFpamgAgduzY4aqzfft2AUAcPXpUCCHE2rVrhVwuFxcuXHDVWb58udBoNMJoNJYZb1FRkTAaja6Snp4uAJRbn4iorhnz6Q4R+/xq8eaaNKlDIS9mtdnFoPc2i9jnV4sXVh6s9eMbjcZKf3/fVh8do9E5ZXhoaCgA4PTp08jMzMTAgQNddTQaDXr37o1t27YBAPbs2QOr1epWJzo6GomJia4627dvh8FgQLdu3Vx1unfvDoPB4FYnMTER0dHRrjqDBg2C2WzGnj17yox37ty5rqYwg8GAmBjvGedPRFRZQgiYLCaYLCaPdxye0CsOALA85RxMZptH903+44sdNzogzxpUTgdkIQCTyVl8cQkIIQSeffZZ9OrVC4mJiQCAzMxMAEBkZKRb3cjISNdzmZmZUKvVCAkJqbBOREREqWNGRES41bn5OCEhIVCr1a46N3vxxRdhNBpdJT09vaqnTUQkuQJrAQLnBiJwbuBtLQFRlj7NIxAfrkdekQ3/3Xv+1i+gOudynhnvbqhEB+SCAiAw0Fl8cQmIp59+GgcPHsTy5ctLPSeTubfTCSFKbbvZzXXKql+dOiVpNBoEBwe7FSIiukEul2FcjzgAzvWvHA4ONSd3c9cdQZ7ZhnZldUD2QtVKdKZMmYIff/wRmzZtQqNGjVzbo6KiAKDUHZWsrCzX3ZeoqChYLBZkZ2dXWOfSpUuljnv58mW3OjcfJzs7G1artdSdHiIiqrz7OzVCkEaJU1dM2PznZanDIS+y68w1/HdvBR2QvVCVEh0hBJ5++mn897//xf/+9z/Ex8e7PR8fH4+oqChs3LjRtc1isWDz5s3o0aMHAKBTp05QqVRudTIyMpCamuqqk5SUBKPRiJSUFFednTt3wmg0utVJTU1FRsaNWTw3bNgAjUaDTp06VeW0iIiohECN0vU/9c+3cKg5OdnsDrz8vXMG5Ie7xKBDTD1pA6qkKg1snzx5MpYtW4YffvgBQUFBrjsqBoMBWq0WMpkM06dPx5w5c5CQkICEhATMmTMHOp0Oo0ePdtWdOHEinnvuOYSFhSE0NBQzZsxA27Zt0b9/fwBAq1atMHjwYDzxxBP45JNPAAB//etfMWzYMLRo4ez0NHDgQLRu3RrJycmYP38+rl27hhkzZuCJJ55gkxQR0W0a2yMOn289jT/+vII/L+UhITJI6pBIYl+W6IA8c1BLqcOptCrd0VmwYAGMRiP69OmDBg0auMrXX3/tqjNr1ixMnz4dkyZNQufOnXHhwgVs2LABQUE3/kjee+89jBw5EqNGjULPnj2h0+nw008/QaFQuOp89dVXaNu2LQYOHIiBAweiXbt2+OKLL1zPKxQKrFmzBgEBAejZsydGjRqFkSNH4u23376d94OIiADEhOowoLWzG8CibWekDYYkdznPjHeud0CeOagFQr1wBuTyyISnxyb6kNzcXBgMBhiNRt4FIiKfYbKYEDg3EACQ/2I+9Gp9jRxnx6mreHjhDgSo5NjxYj/U0/nOlxt51nPfHMDKvefRtqEB30/uWbm+OSaTc8QVAOTnA3rPXadV+f6Wbk5mIiKqFoVcgQdaP+B6XFO6xYeidYNgpGXkYnlKOp7q07TGjkXea/eZa1h5faqB1+5pU/kOyAoF8MADNx5LhIkOEZGPCVAG4NsHv63x48hkMozvGYeZ3x3E0u1n8Pid8VApuBZ0XWKzO/DyD871Kh/uEoOOjUNu8YoSAgKAb2v+Or0VXrFERFSu4e2jER6oRoaxCD8fLnsyVvJfX+08hyMZuTBoVZg12Hc6IJfERIeIiMoVoFJgdLdYAM4JBKnuuJxnxtsbjgHwvQ7IJTHRISLyMSaLCbJXZZC9KoPJYqrx4z3avTFUChn2nM3GgfScGj8eeYd/rj+KvCIbEhsG45Gujau+A5MJkMmcxVTz12l5mOgQEVGFIoICMLydcwHlRVs5gWBdsOfsNXy3x9kB+XUfmQG5PEx0iIjolsb3dM6Ev/pgBi7lFkkcDdUku0Pg5e+dHZAf6lzFDsheiIkOERHdUttGBnSJC4HNIfDljrNSh0M16KudZ5GWkYvgACVmDW4hdTi3jYkOERFVyoTrd3W+2nkORVa7xNFQTbiSb8b8n693QB7cEmGBGokjun1MdIiIqFIGtI5Ew3paXDNZ8OP+i1KHQzXgn+tudEAeXZ0OyF6IiQ4REVWKUiHH2B7Ooeafbz2NOryCkF/aczYb3+4pngHZtzsgl8SZkYmIfIxCrsCQhCGux7Xpoc6N8d7GP3E0Mw/bT11Fj6bhtXp8qhnODsipAIBRnRvhDk90QFYogCFDbjyWCBMdIiIfE6AMwJrRayQ5tkGnwgOdGuGLHWfx+ZYzTHT8RMkOyM97agbkgABgjTTXaUlsuiIioioZ1zMOAPDr0Us4e1W6ieDIM67mm/H2zzdmQPaHDsglMdEhIqIqaVo/EH1a1IcQwOJtZ6QOh27TP9cfRW6RDW2ig13LffgTJjpERD7GZDFBP0cP/Rx9rSwBUZbiCQS/3X0eeUVWSWKg27fnbDa+2V1DHZBNJkCvdxYuAUFERFVRYC1AgbVAsuPflRCOZhGByDfb8O31L0ryLXaHwD9+cHZAfrBTI3SKrYEZkAsKnEVCTHSIiKjKZDIZxvWIAwAs2X4GdgeHmvuaZTvP4vDF6x2Q7/ZQB2QvxESHiIiq5b47GsKgVeHs1QL872iW1OFQFVwtMQPyjEEtEO5nHZBLYqJDRETVolMr8XDXGABc1dzXFHdAbt0gGGP8sANySUx0iIio2h5LioNCLsO2k1dxJCNX6nCoEvaeu9EB+fWRbfxmBuTyMNEhIqJqa1hPi8FtogAAi7eekTYYuqWSHZAf6NQInWJDJY6o5jHRISLyMXKZHL1je6N3bG/IZdJ/jE/oFQcAWLX/Aq7mm6UNhiq0LOUcUi/kIihAiRdqugOyXA707u0scumuUy4BQUTkY7QqLX4b95vUYbjc0TgE7RoZcPC8EctTzuHpvyRIHRKVoeQMyDMG1kIHZK0W+O23mj1GJUj/XwEiIvJpMpkME65PILh0+1lYbA6JI6KyzFt/DMZC6/UOyI2lDqfWMNEhIqLbNqRtA0QEaZCVZ8a61Aypw6Gb7D2Xja93pwNwdkBWKurO13/dOVMiIj9hsphQf3591J9fX7IlIG6mVsqR3N05TPnzLachBCcQ9BYlOyDff0ctdkA2mYD69Z2FS0AQEVFVXCm4gisFV6QOw83obo2hVspx4LwRe8/lSB0OXbe8Njsg3+zKFWeREBMdIiLyiLBADUZ2iAYAfM4JBL3CNZPFNQPycwOao36Q/86AXB4mOkRE5DHFq5qvT83ExZxCiaOheeuPwlhoRasGwXi0u3/PgFweJjpEROQxrRoEI6lJGOwOgaXbz0odTp22r2QH5HvqVgfkkurmWRMRUY0Z3zMOgLNvSKHFLm0wdZSzA/JhCOHsgNw5zv9nQC4PEx0iIvKofq0i0ThUB2OhFf/dd17qcOqkFbvO4dAFozQdkL0MEx0iIh8jl8nRObozOkd39oolIG6mkMswtkccAGDR1jMcal7LrpksmLfe2QH5WSk7IMvlQOfOzsIlIIiIqLK0Ki12PbFL6jAqNKpzI7y38ThOZOXjjz+v4K7m9aUOqc6Y/7OzA3LLqCDX3EaS0GqBXdJfp973XwEiIvJ5QQEqPNCpEQBgEYea15r96TlYsat4BuTEOtsBuSS+A0REVCPG9YiDTAZsOnYZJy/nSx2O3yueAVkI4L47GqJLHe6AXBITHSIiH1NgLUDc+3GIez8OBdYCqcMpV1y4Hv1aRgAAlmw7I20wdcDXu9Jx8LwRQRolXry7ldThAAUFQFycsxRId50y0SEi8jFCCJw1nsVZ41mv7+hbvKr5t7vPw1hglTga/5VtsmDez0cBAM94ywzIQgBnzzqLhNcpEx0iIqoxSU3D0CIyCIVWO77efU7qcPzWvJ+PIafA2QH5saS6OQNyeZjoEBFRjZHJZJjQKw4AsGTbWdjsDmkD8kMH0nOwYpcziXztHnZAvhnfDSIiqlH3dGiIEJ0KF3IKsTHtktTh+BVHyQ7IHRuiazw7IN+MiQ4REdWoAJUCY7o5m1MWbT0jbTB+5uvd6ThwvQPyC0Pq9gzI5WGiQ0RENS45KRZKuQwpZ64h9YJR6nD8QrbJgn+uv9EBOSIoQOKIvBMTHSIiHyOTydC6fmu0rt8aMplM6nAqJTI4AEPbNQAAfM4JBD1i/gYv74AskwGtWzuLhNcpEx0iIh+jU+lweNJhHJ50GDqVTupwKm389aHmPx24iKy8Iomj8W0Hz+dgeYqzA/KrI9p4ZwdknQ44fNhZdNJdp174zhARkT/qEFMPdzSuB6td4KsdHGpeXQ6HwMvfOzsg39uxIbo1CZM6JK/GRIeIiGpN8V2dr3aehdlmlzga31TcATlQo8SLd7MD8q0w0SEi8jEF1gK0+agN2nzUxquXgCjL4MQoNDAE4Eq+BT8dyJA6HJ+TU2DBvJIdkIO9uANyQQHQpo2zcAkIIiKqLCEE0i6nIe1ymtcvAXEzlUKO5OsdZz/fctrn4pfa/J+PIbvAihaRQRjrjR2QSxICSEtzFi4BQUREdcUjXRojQCVHWkYuUk5fkzocn3HwfA6WpRTPgOylHZC9EN8lIiKqVSF6Ne7t2AgAh5pXlsMh8PIPhyEEMLJDNDsgVwETHSIiqnUTesYBADamXUL6Nd/qZySFb3an40B6DgI1SvxtSCupw/EpTHSIiKjWJUQG4c6EcDgEsGTbGanD8Wo5BTdmQJ7eP8G7OyB7ISY6REQkiQnXh5p/vTsd+WabxNF4r+IOyM0jAzG2R5zU4fgcJjpERD5GJpMh1hCLWEOszywBUZbezeujSbgeeUU2rNxzXupwvNKh88YSHZATofKlDsgyGRAb6yxcAoKIiCpLp9LhzPQzODP9jE8tAXEzuVyGcdf76izedgYOB4eal+TsgOycAfmeDtHo7msdkHU64MwZZ+ESEEREVBfdf0cjBAUocfqKCb8dz5I6HK/y7Z507E/PgV6tYAfk28BEh4iIJKPXKPFwlxgAwKKtZ6QNxos4OyAfA+CcATmSHZCrjYkOEZGPKbQWosunXdDl0y4otBZKHc5teywpDnIZ8MefV3D8Up7U4XiFtzccwzWTxbc7IBcWAl26OEuhdNcpEx0iIh/jEA7svrgbuy/uhkM4pA7ntsWE6jCwdRQA3tUBnB2Qv9rp7ID86ggf64BcksMB7N7tLA7prlMfffeIiMifjL/eKfm/e88j22SRNhgJleyAPKJ9NJKa+lgHZC/ERIeIiCTXNT4UbaKDYbY5sHzXOanDkcx3e867OiC/NJQdkD2BiQ4REUlOJpNh/PUJBJduOwur3feb5KrKWGDFW64ZkNkB2VOY6BARkVcY3r4BwgPVyMwtwvrUTKnDqXXFHZATIgJd8wvR7WOiQ0REXkGjVGBMt1gAdW9V89QLRny18ywA4NV72vhuB2QvxHeSiMgHhevCEa4LlzoMjxvTvTHUCjn2ncvBvnPZUodTK4o7IDsEMLx9NHo09aPfa3i4s0iIiQ4RkY/Rq/W4PPMyLs+8DL1aL3U4HhURFIBh7RsAqDtDzb/bex77zl3vgOxPMyDr9cDly86il+46ZaJDRERepXhV87WHMpBpLJI4mpplLLDirXXODsjT+icgysAOyJ6mlDoAIiKikhIbGtA1LhQpZ67hxf8exB2NQ6BSyqFSyKFWyqFWyKC+/vONbTceqxQyaG56XqWQu7Yp5N6z4vs7G290QC4edUae5fOJzkcffYT58+cjIyMDbdq0wfvvv48777xT6rCIiGpMobUQd391NwBg3Zh10Kq0EkfkeRN6xSHlzDVsOnYZm45d9ui+5TKUSn5KJkTFyZTbthJJVOltJevJytgmL5GYyVyJWWZuEb7c4ccdkAsLgbud1ynWrQO00lynPp3ofP3115g+fTo++ugj9OzZE5988gnuvvtupKWloXHjxlKHR0RUIxzCgc1nN7se+6NBbaLwj2GtcfaqCRa7AxabgNXugMXmcP5702Pr9efNbtscsNoFLDfNyeMQQJHVgSKrA96wstawdg38qwNyMYcD2Lz5xmOJyIQQQrKj36Zu3brhjjvuwIIFC1zbWrVqhZEjR2Lu3Lm3fH1ubi4MBgOMRiOCg4NrMlQiIo8xWUwInBsIAMh/Md/vOiR7mhDClfBYrydCxQmR1S5gsbknTsUJ1Y1twm2bW8Jlc8BiF2VsK1lPlJmgWe0CEUEaLHuiu3/2zTGZgEDndYr8fI92SK7K97fP3tGxWCzYs2cPXnjhBbftAwcOxLZt28p8jdlshtlsdv2cm5tbozESEZH0ZDIZ1EpnkxE0UkdDtc1nGwSvXLkCu92OyMhIt+2RkZHIzCx7Rs25c+fCYDC4SkxMTG2ESkRERBLx2USnmEzm3nteCFFqW7EXX3wRRqPRVdLT02sjRCIiIpKIzzZdhYeHQ6FQlLp7k5WVVeouTzGNRgONhvctiYiI6gqfvaOjVqvRqVMnbNy40W37xo0b0aNHD4miIiKqHTqVDjqVTuowiCqm0zmLhHz2jg4APPvss0hOTkbnzp2RlJSEhQsX4ty5c3jyySelDo2IqMbo1XqY/maSOgyiiun1zpFXEvPpROehhx7C1atX8dprryEjIwOJiYlYu3YtYmNjpQ6NiIiIvIBPz6NzuziPDhERke+pyve3z/bRISKqq4psRRi6bCiGLhuKIpt/L3pJPqyoCBg61FmKpLtOfbrpioioLrI77Fj751rXYyKvZLcDa9feeCwR3tEhIiIiv8VEh4iIiPwWEx0iIiLyW0x0iIiIyG8x0SEiIiK/VadHXRVPIZSbmytxJERElWeymIDro3Vzc3NhV3PkFXmhkrMi5+Z6dORV8fd2ZaYCrNMTBp4/fx4xMTFSh0FERETVkJ6ejkaNGlVYp04nOg6HAxcvXkRQUBBkMplH952bm4uYmBikp6f75azLPD/f5+/nyPPzff5+jv5+fkDNnaMQAnl5eYiOjoZcXnEvnDrddCWXy2+ZCd6u4OBgv72AAZ6fP/D3c+T5+T5/P0d/Pz+gZs7RYDBUqh47IxMREZHfYqJDREREfouJTg3RaDR45ZVXoNFopA6lRvD8fJ+/nyPPz/f5+zn6+/kB3nGOdbozMhEREfk33tEhIiIiv8VEh4iIiPwWEx0iIiLyW0x0iIiIyG8x0fGw33//HcOHD0d0dDRkMhm+//57qUPyqLlz56JLly4ICgpCREQERo4ciWPHjkkdlscsWLAA7dq1c01ulZSUhHXr1kkdVo2ZO3cuZDIZpk+fLnUoHjN79mzIZDK3EhUVJXVYHnXhwgU8+uijCAsLg06nQ4cOHbBnzx6pw/KYuLi4Ur9DmUyGyZMnSx2aR9hsNvz9739HfHw8tFotmjRpgtdeew0Oh0Pq0DwmLy8P06dPR2xsLLRaLXr06IFdu3ZJEkudnhm5JphMJrRv3x7jx4/H/fffL3U4Hrd582ZMnjwZXbp0gc1mw0svvYSBAwciLS0Ner1e6vBuW6NGjfDWW2+hWbNmAIAlS5bgnnvuwb59+9CmTRuJo/OsXbt2YeHChWjXrp3UoXhcmzZt8Msvv7h+VigUEkbjWdnZ2ejZsyf69u2LdevWISIiAidPnkS9evWkDs1jdu3aBXuJBSBTU1MxYMAAPPjggxJG5Tn//Oc/8fHHH2PJkiVo06YNdu/ejfHjx8NgMGDatGlSh+cRjz/+OFJTU/HFF18gOjoaX375Jfr374+0tDQ0bNiwdoMRVGMAiFWrVkkdRo3KysoSAMTmzZulDqXGhISEiP/3//6f1GF4VF5enkhISBAbN24UvXv3FtOmTZM6JI955ZVXRPv27aUOo8Y8//zzolevXlKHUaumTZsmmjZtKhwOh9SheMTQoUPFhAkT3Lbdd9994tFHH5UoIs8qKCgQCoVCrF692m17+/btxUsvvVTr8bDpim6L0WgEAISGhkociefZ7XasWLECJpMJSUlJUofjUZMnT8bQoUPRv39/qUOpEX/++Seio6MRHx+Phx9+GKdOnZI6JI/58ccf0blzZzz44IOIiIhAx44d8emnn0odVo2xWCz48ssvMWHCBI8vviyVXr164ddff8Xx48cBAAcOHMCWLVswZMgQiSPzDJvNBrvdjoCAALftWq0WW7ZsqfV42HRF1SaEwLPPPotevXohMTFR6nA85tChQ0hKSkJRURECAwOxatUqtG7dWuqwPGbFihXYu3evZO3lNa1bt25YunQpmjdvjkuXLuGNN95Ajx49cPjwYYSFhUkd3m07deoUFixYgGeffRZ/+9vfkJKSgqlTp0Kj0eCxxx6TOjyP+/7775GTk4Nx48ZJHYrHPP/88zAajWjZsiUUCgXsdjvefPNNPPLII1KH5hFBQUFISkrC66+/jlatWiEyMhLLly/Hzp07kZCQUPsB1fo9pDoEft50NWnSJBEbGyvS09OlDsWjzGaz+PPPP8WuXbvECy+8IMLDw8Xhw4elDssjzp07JyIiIsT+/ftd2/yt6epm+fn5IjIyUrzzzjtSh+IRKpVKJCUluW2bMmWK6N69u0QR1ayBAweKYcOGSR2GRy1fvlw0atRILF++XBw8eFAsXbpUhIaGisWLF0sdmsecOHFC3HXXXQKAUCgUokuXLmLMmDGiVatWtR4LE50a5M+JztNPPy0aNWokTp06JXUoNa5fv37ir3/9q9RheMSqVatcHzzFBYCQyWRCoVAIm80mdYg1on///uLJJ5+UOgyPaNy4sZg4caLbto8++khER0dLFFHNOXPmjJDL5eL777+XOhSPatSokfjwww/dtr3++uuiRYsWEkVUc/Lz88XFixeFEEKMGjVKDBkypNZjYNMVVYkQAlOmTMGqVavw22+/IT4+XuqQapwQAmazWeowPKJfv344dOiQ27bx48ejZcuWeP755/1qdFIxs9mMI0eO4M4775Q6FI/o2bNnqSkdjh8/jtjYWIkiqjmLFi1CREQEhg4dKnUoHlVQUAC53L2LrEKh8Kvh5cX0ej30ej2ys7Px888/Y968ebUeAxMdD8vPz8eJEydcP58+fRr79+9HaGgoGjduLGFknjF58mQsW7YMP/zwA4KCgpCZmQkAMBgM0Gq1Ekd3+/72t7/h7rvvRkxMDPLy8rBixQr89ttvWL9+vdSheURQUFCp/lR6vR5hYWF+089qxowZGD58OBo3boysrCy88cYbyM3NxdixY6UOzSOeeeYZ9OjRA3PmzMGoUaOQkpKChQsXYuHChVKH5lEOhwOLFi3C2LFjoVT611fV8OHD8eabb6Jx48Zo06YN9u3bh3fffRcTJkyQOjSP+fnnnyGEQIsWLXDixAnMnDkTLVq0wPjx42s/mFq/h+TnNm3aJACUKmPHjpU6NI8o69wAiEWLFkkdmkdMmDBBxMbGCrVaLerXry/69esnNmzYIHVYNcrf+ug89NBDokGDBkKlUono6Ghx3333+U0fq2I//fSTSExMFBqNRrRs2VIsXLhQ6pA87ueffxYAxLFjx6QOxeNyc3PFtGnTROPGjUVAQIBo0qSJeOmll4TZbJY6NI/5+uuvRZMmTYRarRZRUVFi8uTJIicnR5JYZEIIUfvpFREREVHN4zw6RERE5LeY6BAREZHfYqJDREREfouJDhEREfktJjpERETkt5joEBERkd9iokNERER+i4kOERER+S0mOkREN5k9ezY6dOggdRhE5AFMdIioTpPJZPj++++lDoOIaggTHSIiIvJbTHSIyCv06dMHU6ZMwfTp0xESEoLIyEgsXLgQJpMJ48ePR1BQEJo2bYp169a5XrN582Z07doVGo0GDRo0wAsvvACbzea2z6lTp2LWrFkIDQ1FVFQUZs+e7Xo+Li4OAHDvvfdCJpO5fi72xRdfIC4uDgaDAQ8//DDy8vJq8i0gohrARIeIvMaSJUsQHh6OlJQUTJkyBU899RQefPBB9OjRA3v37sWgQYOQnJyMgoICXLhwAUOGDEGXLl1w4MABLFiwAJ999hneeOONUvvU6/XYuXMn5s2bh9deew0bN24EAOzatQsAsGjRImRkZLh+BoCTJ0/i+++/x+rVq7F69Wps3rwZb731Vu29GUTkEVy9nIi8Qp8+fWC32/HHH38AAOx2OwwGA+677z4sXboUAJCZmYkGDRpg+/bt+Omnn7By5UocOXIEMpkMAPDRRx/h+eefh9FohFwuL7VPAOjatSv+8pe/uJIWmUyGVatWYeTIka46s2fPxvz585GZmYmgoCAAwKxZs/D7779jx44dtfF2EJGH8I4OEXmNdu3auR4rFAqEhYWhbdu2rm2RkZEAgKysLBw5cgRJSUmuJAcAevbsifz8fJw/f77MfQJAgwYNkJWVdctY4uLiXElOVV5HRN6FiQ4ReQ2VSuX2s0wmc9tWnNQ4HA4IIdySHAAovkFdcntZ+3Q4HNWKpTKvIyLvwkSHiHxS69atsW3bNpRsfd+2bRuCgoLQsGHDSu9HpVLBbrfXRIhE5AWY6BCRT5o0aRLS09MxZcoUHD16FD/88ANeeeUVPPvss5DLK//RFhcXh19//RWZmZnIzs6uwYiJSApMdIjIJzVs2BBr165FSkoK2rdvjyeffBITJ07E3//+9yrt55133sHGjRsRExODjh071lC0RCQVjroiIiIiv8U7OkREROS3mOgQERGR32KiQ0RERH6LiQ4RERH5LSY6RERE5LeY6BAREZHfYqJDREREfouJDhEREfktJjpERETkt5joEBERkd9iokNERER+6/8DVM8C3ysZMh0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_count_plot_program = df_area_program.groupby(\"month\").agg({'ID':'count'}).orderBy(F.col('month').asc()).toPandas() #.plot(x=\"month\",y=\"count(ID)\")\n", + "ax = df_count_plot_program.plot(x=\"month\", y=\"count(ID)\")\n", + "ax.axvline(x=6, color='g', linestyle='--', label='Program Changes to <$10 and 7 rides a month')\n", + "ax.axvline(x=9, color='r', linestyle='--', label='Fall Quarter Begins')\n", + "plt.legend(loc='upper left')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c2a5a9e4-15de-4afe-8294-327b49248d24", + "metadata": {}, + "source": [ + "When rides were 15.0 and 10 rides a month- till end June (pre-program change)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "765fe5c4-f1d3-4a22-b604-2a6e7c26cfd7", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAIhCAYAAAAhCnmjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjHElEQVR4nO3deViU9f7/8dfIDgoKCIiK4o4iVlqIlksuaC6VdbQw0jKXo2monMzsGLZgappHTdvMJTXrVHZKTwS2eDLcsixRMjMLTVERBEUFxPv3R1/m57AJBtwGz8d1zXU59/2e+bzvYeaGl/c9n9tiGIYhAAAAAECVq2V2AwAAAABQUxHIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMhQ46xcuVIWi8V6c3Z2lp+fn3r27KnZs2fr5MmTRR4TExMji8VSrnHOnz+vmJgYffnll+V6XHFjNW3aVAMHDizX81zNunXrtHDhwmLXWSwWxcTEVOh4Fe2zzz5Tp06d5ObmJovFog8//LDYul9//dXm512rVi15eXnpjjvu0LZt26x1Be+LX3/9tVx9jBw5UrVr1/4TW1KxSnuvfPPNN7JYLFq5cmXVNlUB0tPTdd9998nHx0cWi0V33XVXpY7Xo0cPm/fNlbekpKRiP6c9evRQjx49rPevdR9QVcq6Xxs5cqTN9js6Oqp58+aKjo5WVlZWkfqy7j+u9TNXER5++GH169fPer+s+wn89VgsFj366KNmt1Eh8vLy1Lx58xJ/d+Ovy97sBgCzrFixQm3atFFeXp5OnjyprVu3as6cOXrxxRf1zjvvqHfv3tbaRx55xOaXd1mcP39es2bNkiSbP9Ku5lrGuhbr1q1TUlKSoqKiiqzbtm2bGjVqVOk9XCvDMDR06FC1atVKH330kdzc3NS6detSHzNx4kRFREQoPz9f+/bt06xZs9SzZ09t27ZNN954owYMGKBt27apQYMGVbQVKI9nn31WGzZs0JtvvqnmzZvL09Oz0sds1qyZ1q5dW2R58+bNy/Q5vdZ9wPXIxcVFn3/+uSTpzJkzeu+99zR//nz98MMPio+Pt6m93vcf3333nVatWqUdO3YUWXe1/QRgJgcHB82cOVOTJ09WZGSkvLy8zG4JFYRAhhorODhYnTp1st6/5557NHnyZN16660aMmSIDh48KF9fX0lSo0aNKv0PjPPnz8vV1bVKxrqazp07mzr+1Rw7dkzp6em6++671atXrzI9JiAgwLpdXbt2VYsWLdSrVy8tXbpUr7/+uurXr6/69etXZts12oULF+Ti4nLNj09KSlLz5s01fPjwCunHMAxdvHix1J5cXFxK/CyY+TnNy8uTxWKRvX3V/QqvVauWzWvRr18//fLLL0pISNDhw4cVGBhoXXe97z9eeOEF3XLLLTb7/wJX208U58KFC3J2di73WRQV7c9+xsqj4PcVqt7999+vKVOm6NVXX9WTTz5pdjuoIJyyCFwhICBA8+fP19mzZ/Xqq69alxd3as/nn3+uHj16yMvLSy4uLgoICNA999yj8+fP69dff7X+cT9r1izraTAjR460eb5vv/1W9957r+rVq6fmzZuXOFaBDRs2KCQkRM7OzmrWrJkWLVpks76kU4C+/PJLWSwW66lTPXr00KZNm/Tbb7/ZnKZToLhTjpKSknTnnXeqXr16cnZ21g033KBVq1YVO87bb7+tGTNmyN/fX+7u7urdu7cOHDhQ8gt/ha1bt6pXr16qU6eOXF1d1aVLF23atMm6PiYmxvqH8LRp02SxWNS0adMyPfeVCv7o+u233ySV/NrFxcWpV69e8vDwkKurq4KCgjR79uxSn/vrr7+Wt7e3Bg4cqOzs7BJ/psWNWXDK4dV+1hXpaq+5VPL7srRt+OCDD3TjjTfK2dnZeqTo3//+t0JDQ62vZ7NmzfTwww+X2FvBqWSbN29WcnKy9b1a8F5OT0/X+PHj1bBhQzk6OqpZs2aaMWOGcnJybJ6n4LSlV155RUFBQXJyciry/i2Pq53ud7V9gCQdPHhQERER8vHxkZOTk4KCgvTyyy/bPE/BZ+qtt97S1KlT1bBhQzk5Oennn3+WJG3evFm9evWSu7u7XF1d1bVrV3322WdF+tm0aZNuuOEGOTk5KTAwUC+++OI1b3uBgkBz4sQJm+XF7T+2b9+url27ytnZWf7+/po+fbry8vKKfd533nlHYWFhcnNzU+3atRUeHq7vvvvOpuaXX37RfffdJ39/fzk5OcnX11e9evXSnj17Su35xIkT2rBhgyIjI8u0jSXtJ+Lj4/Xwww+rfv36cnV1tb7fytJ7SQreU999952GDBkid3d3eXh46IEHHtCpU6dsakv7jJVlXy1J+/btU9++feXq6qr69etrwoQJ2rRpk83nS/rj90VwcLD+97//qUuXLnJ1dbV+Zt955x317dtXDRo0kIuLi4KCgvTEE08oOzvbZqyCU7t//PFHhYeHy83NTQ0aNNALL7wg6Y/3x6233io3Nze1atWqzJ/NnJwcPfPMMwoKCpKzs7O8vLzUs2dPJSYmFql96623FBQUJFdXV3Xo0EEbN260Wf/zzz/roYceUsuWLeXq6qqGDRtq0KBB2rt3r01deX7PGYah2NhYNWnSRM7OzurUqZMSEhKKnN4sSVlZWYqOjlZgYKAcHR3VsGFDRUVFFXktHR0dNWzYML322msyDKNMrxOufxwhAwq54447ZGdnp//9738l1vz6668aMGCAbrvtNr355puqW7eufv/9d8XFxSk3N1cNGjRQXFyc+vXrp1GjRumRRx6RpCJHYIYMGaL77rtP48aNK7LTLWzPnj2KiopSTEyM/Pz8tHbtWj322GPKzc1VdHR0ubZx6dKlGjNmjA4dOqQNGzZctf7AgQPq0qWLfHx8tGjRInl5eWnNmjUaOXKkTpw4occff9ym/sknn1TXrl31xhtvKCsrS9OmTdOgQYOUnJwsOzu7EsfZsmWL+vTpo5CQEC1fvlxOTk5aunSpBg0apLffflvDhg3TI488og4dOmjIkCHW04ucnJzKtf2SrH/QlnZUbPny5Ro9erS6d++uV155RT4+Pvrpp5+UlJRU4mPeffddPfjgg3r44Ye1ePHiUre3JH/2Z20Yhi5dulRkeX5+fpFlZXnNr8W3336r5ORkPfXUUwoMDJSbm5u2bdumYcOGadiwYYqJiZGzs7N+++0366lwxWnQoIG2bdum8ePHKzMz03oKYdu2bXXx4kX17NlThw4d0qxZsxQSEqKvvvpKs2fP1p49e4qEyg8//FBfffWVZs6cKT8/P/n4+Fx1Owq/jrVq1VKtWlf/v8yr7QP279+vLl26WP8TyM/PT59++qkmTZqktLQ0Pf300zbPN336dIWFhemVV15RrVq15OPjozVr1ujBBx/UnXfeqVWrVsnBwUGvvvqqwsPD9emnn1qPHn/22We68847FRYWpvXr1ys/P19z584tEqTK6/Dhw7K3t1ezZs1Krdu/f7969eqlpk2bauXKlXJ1ddXSpUu1bt26IrWxsbF66qmn9NBDD+mpp55Sbm6u5s2bp9tuu007d+5U27ZtJf2xny7YjoCAAKWlpSkxMVFnzpwptZf4+Hjl5eWpZ8+eZdrGkvYTDz/8sAYMGKC33npL2dnZcnBwKHPvV3P33Xdr6NChGjdunPbt26d//vOf2r9/v3bs2CEHBwdrXXGfsbLuq48fP67u3bvLzc1Ny5Ytk4+Pj95+++0Sv2t1/PhxPfDAA3r88ccVGxtr/QwcPHhQd9xxh6KiouTm5qYff/xRc+bM0c6dO4t8rvPy8jRkyBCNGzdO//jHP7Ru3TpNnz5dWVlZev/99zVt2jQ1atRIixcv1siRIxUcHKyOHTuW+DpdunRJ/fv311dffaWoqCjdfvvtunTpkrZv366UlBR16dLFWrtp0ybt2rVLzzzzjGrXrq25c+fq7rvv1oEDB6zv32PHjsnLy0svvPCC6tevr/T0dK1atUqhoaH67rvvipwWX5bfczNmzNDs2bM1ZswYDRkyREeOHNEjjzyivLw8tWrVyvpc58+fV/fu3XX06FE9+eSTCgkJ0b59+zRz5kzt3btXmzdvtvkPoB49emjZsmVKSkpS+/btS34z4a/DAGqYFStWGJKMXbt2lVjj6+trBAUFWe8//fTTxpUfl/fee8+QZOzZs6fE5zh16pQhyXj66aeLrCt4vpkzZ5a47kpNmjQxLBZLkfH69OljuLu7G9nZ2TbbdvjwYZu6L774wpBkfPHFF9ZlAwYMMJo0aVJs74X7vu+++wwnJycjJSXFpq5///6Gq6urcebMGZtx7rjjDpu6d99915BkbNu2rdjxCnTu3Nnw8fExzp49a1126dIlIzg42GjUqJFx+fJlwzAM4/Dhw4YkY968eaU+35W1c+bMMfLy8oyLFy8au3fvNm6++WZDkrFp0ybDMIq+dmfPnjXc3d2NW2+91TpucUaMGGG4ubkZhmEYL7zwgmFnZ2fMmTPHpqa4n2lxYxpG2X/WJWnSpIkhqdTbihUrrPVlfc3Luw12dnbGgQMHbGpffPFFQ5L1/VIe3bt3N9q1a2ez7JVXXjEkGe+++67N8jlz5hiSjPj4eOsySYaHh4eRnp5e5vGKe+2GDx9uGEbxr0f37t2N7t27W++Xtg8IDw83GjVqZGRmZtosf/TRRw1nZ2drnwWfqW7dutnUZWdnG56ensagQYNslufn5xsdOnQwbrnlFuuy0NBQw9/f37hw4YJ1WVZWluHp6Vnsz7Swgvd4Xl6ekZeXZ6SlpRnLli0zatWqZTz55JNF6gtv87BhwwwXFxcjNTXVuuzSpUtGmzZtbN47KSkphr29vTFx4kSb5zt79qzh5+dnDB061DAMw0hLSzMkGQsXLrxq74X9/e9/N1xcXIp8psu7n3jwwQdtHl/W3ktT8J6aPHmyzfK1a9cakow1a9ZYl5X0GSvrvvof//iHYbFYjH379tnUhYeHF/ldUfBZ+Oyzz0rt//Lly0ZeXp6xZcsWQ5Lx/fffW9eNGDHCkGS8//771mV5eXlG/fr1DUnGt99+a11++vRpw87OzpgyZUqp461evdqQZLz++uul1kkyfH19jaysLOuy1NRUo1atWsbs2bNLfNylS5eM3Nxco2XLljY/k7L+nktPTzecnJyMYcOG2dRt27bNkGSzr5g9e7ZRq1atIn+XFPyt8d///tdm+cGDBw1JxrJly0rddvx1cMoiUAzjKqcB3HDDDXJ0dNSYMWO0atUq/fLLL9c0zj333FPm2nbt2qlDhw42yyIiIpSVlaVvv/32msYvq88//1y9evVS48aNbZaPHDlS58+fLzIL2eDBg23uh4SESPr/p/0UJzs7Wzt27NC9995rM2uhnZ2dIiMjdfTo0TKf9licadOmycHBQc7OzurYsaNSUlL06quv6o477ii2PjExUVlZWRo/fvxVvxtiGIbGjh2rp59+WuvWrStyxLC8/uzP+tZbb9WuXbuK3FavXm1TV5mveUhIiM3/AEvSzTffLEkaOnSo3n33Xf3+++/X9NwFPv/8c7m5uenee++1WV5wWmDhU/duv/121atXr8zP37x58yKv4bPPPvunepakixcv6rPPPtPdd98tV1dXXbp0yXq74447dPHiRW3fvt3mMYX3FYmJiUpPT9eIESNsHn/58mX169dPu3btUnZ2trKzs7Vr1y4NGTJEzs7O1sfXqVNHgwYNKnPPBUeBHBwc5O3trb///e8aNmyYnn/++as+9osvvlCvXr2s38mV/niPFT76+umnn+rSpUt68MEHbbbJ2dlZ3bt3t55G5+npqebNm2vevHlasGCBvvvuO12+fLlM23Hs2DHVr1+/xM90WfcThX8eZe3d+L+j11feCiv8PcmhQ4fK3t5eX3zxhc3y4j5jZd1Xb9myRcHBwUWO2t1///3Fvi716tXT7bffXmT5L7/8ooiICPn5+cnOzk4ODg7q3r27JCk5Odmm1mKx2LyO9vb2atGihRo0aGAzYYqnp6d8fHxK/X0hSZ988omcnZ1LPeW5QM+ePVWnTh3rfV9f3yJjXLp0SbGxsWrbtq0cHR1lb28vR0dHHTx4sMi2SFf/Pbd9+3bl5ORo6NChNnWdO3cucpr9xo0bFRwcrBtuuMHmvREeHl7kFFJJ1qP7f3YfiusHpywChWRnZ+v06dOlngbQvHlzbd68WXPnztWECROUnZ2tZs2aadKkSXrsscfKPFZ5ZvTz8/Mrcdnp06fL/DzX4vTp08X26u/vX+z4hWd+Kjil8MKFCyWOkZGRIcMwyjVOeTz22GN64IEHVKtWLdWtW1eBgYGlBq2C72yUZeKG3NxcvfPOO2rXrp369+9/zT0W+LM/aw8Pj2InLCisMl/z4p6zW7du+vDDD7Vo0SI9+OCDysnJUbt27TRjxowS/xAszenTp+Xn51fk5+jj4yN7e/sivZd3Bs2C73xUtNOnT+vSpUtavHixFi9eXGxNWlqazf3CvRecblg4jF4pPT1dFotFly9fLvU9VRYuLi7W07hTU1M1f/58vf322woJCdETTzxR6mMLfk5XG79gmwqCe2EFp8lZLBZ99tlneuaZZzR37lxNnTpVnp6eGj58uJ5//nmbP7wLK5iAoyRl3U+U9PO4Wu9btmwpcrrk4cOHbf5AL/y62Nvby8vLq0zv57Luq0+fPm0zEUuBK0Pz1cY6d+6cbrvtNjk7O+u5555Tq1at5OrqqiNHjmjIkCFF9veurq5FXntHR8diZ0x1dHTUxYsXi+2lwKlTp+Tv71+mU4iLm43QycnJpscpU6bo5Zdf1rRp09S9e3fVq1dPtWrV0iOPPFLs766r/Z4reK2Le00LLztx4oR+/vlnm1NSr1R4f1DwOpb2OxV/LQQyoJBNmzYpPz//qtNU33bbbbrtttuUn5+vb775RosXL1ZUVJR8fX113333lWms8szKlZqaWuKygl8MBTvpwhMaFN6Zl5eXl5eOHz9eZPmxY8ckSd7e3n/q+SVZf/lV1jiNGjUq1x/XBd8ZOXr06FVrnZyc9MUXXyg8PFy9e/dWXFyczZGYK38uV37fraSfS1l+1hWhPK95ebehpPf2nXfeqTvvvFM5OTnavn27Zs+erYiICDVt2lRhYWHl6t/Ly0s7duyQYRg24508eVKXLl0q8n4xexa8AvXq1bMehZwwYUKxNYX/WC7ce8G2LV68uMRZDX19fa0zMpb2niqLWrVq2Xx++vTpo44dO2rWrFkaPnx4kSMyV/Ly8irT+AXb9N5776lJkyal9tOkSRMtX75ckvTTTz/p3XffVUxMjHJzc/XKK6+U+Dhvb+9SjzKXdT9R0s/jar137NhRu3btsllWEJYKpKamqmHDhtb7ly5d0unTp4t89ot7P5d1X+3l5VXsdwhLek8UN9bnn3+uY8eO6csvv7QeFZN01e/xVZT69etr69atunz5cplC2dUUfCczNjbWZnlaWprq1q1b7ucr+HmV9DpfGcK9vb3l4uKiN998s9jnKrwvS09PL3Y5/ro4ZRG4QkpKiqKjo+Xh4aGxY8eW6TF2dnYKDQ21zo5W8Mu+LEeFymPfvn36/vvvbZatW7dOderU0U033SRJ1h38Dz/8YFP30UcfFXm+wv87WJpevXpZf/leafXq1XJ1da2Qaa7d3NwUGhqqDz74wKavy5cva82aNWrUqFGR03MqU5cuXeTh4aFXXnmlTDNZ3XjjjdqyZYuOHj2qHj162FxgvKSfy8cff1zsc5XlZ10RyvOal3cbrsbJyUndu3fXnDlzJKnMM9FdqVevXjp37lyRi4IXnJpZ1ksiVJaS9gGurq7q2bOnvvvuO4WEhKhTp05FblcL3l27dlXdunW1f//+Yh/fqVMnOTo6ys3NTbfccos++OADmyMOZ8+eveafXcG2vfzyy7p48aKee+65Umt79uypzz77zOYP0/z8fL3zzjs2deHh4bK3t9ehQ4dK3KbitGrVSk899ZTat29/1VN627Rpo9OnTyszM7OMW1o2Ze29Tp06xf6crlT42nfvvvuuLl26VKZr2ZV1X929e3clJSVp//79NnXr168v8zYXhLTCkypdOUNxZerfv78uXrxYYRe6t1gsRbZl06ZN13xaYGhoqJycnIq8z7dv317kdMyBAwfq0KFD8vLyKva9U/gUx4KvSZR1ohhc/zhChhorKSnJep72yZMn9dVXX2nFihWys7PThg0bSp1975VXXtHnn3+uAQMGKCAgQBcvXrT+z1bBBaXr1KmjJk2a6D//+Y969eolT09PeXt7X9MU7dIf/4s6ePBgxcTEqEGDBlqzZo0SEhI0Z84c6/Vgbr75ZrVu3VrR0dG6dOmS6tWrpw0bNmjr1q1Fnq99+/b64IMPtGzZMnXs2LHI/4Bf6emnn9bGjRvVs2dPzZw5U56enlq7dq02bdqkuXPnysPD45q2qbDZs2erT58+6tmzp6Kjo+Xo6KilS5cqKSlJb7/9dpUe4ahdu7bmz5+vRx55RL1799bo0aPl6+urn3/+Wd9//72WLFlS5DFBQUH66quv1Lt3b3Xr1k2bN29Wo0aNdMcdd8jT01OjRo3SM888I3t7e61cuVJHjhwpduyy/KwrSllf8/JuQ3Fmzpypo0ePqlevXmrUqJHOnDmjf/3rXzbfOymPBx98UC+//LJGjBihX3/9Ve3bt9fWrVsVGxurO+64w+bi7mYobR/wr3/9S7feeqtuu+02/f3vf1fTpk119uxZ/fzzz/r4449LnXlS+uP9uXjxYo0YMULp6em699575ePjo1OnTun777/XqVOntGzZMkl/XFS7X79+6tOnj6ZOnar8/HzNmTNHbm5u1v9pvxbdu3fXHXfcoRUrVuiJJ54o9hQ4SXrqqaf00Ucf6fbbb9fMmTPl6uqql19+ucjMsk2bNtUzzzyjGTNm6JdfflG/fv1Ur149nThxQjt37pSbm5tmzZqlH374QY8++qj+9re/qWXLlnJ0dNTnn3+uH3744aqnT/bo0UOGYWjHjh3q27fvNW97YWXtvSw++OAD2dvbq0+fPtZZFjt06FDku0jFKeu+OioqSm+++ab69++vZ555Rr6+vlq3bp1+/PFHSSrTEacuXbqoXr16GjdunJ5++mk5ODho7dq1Rf4zqbLcf//9WrFihcaNG6cDBw6oZ8+eunz5snbs2KGgoKAyn6lSYODAgVq5cqXatGmjkJAQ7d69W/Pmzbvm6w16enpqypQpmj17turVq6e7775bR48e1axZs9SgQQOb1zgqKkrvv/++unXrpsmTJyskJESXL19WSkqK4uPjNXXqVIWGhlrrt2/fLjs7O3Xr1u2aesN1yLz5RABzFMySVXBzdHQ0fHx8jO7duxuxsbHGyZMnizym8Ixq27ZtM+6++26jSZMmhpOTk+Hl5WV0797d+Oijj2wet3nzZuPGG280nJycDEnGiBEjbJ7v1KlTVx3LMP6YUWvAgAHGe++9Z7Rr185wdHQ0mjZtaixYsKDI43/66Sejb9++hru7u1G/fn1j4sSJxqZNm4rMnJWenm7ce++9Rt26dQ2LxWIzpoqZGW7v3r3GoEGDDA8PD8PR0dHo0KGDzWx9hvH/Z5/697//bbO8YAazwvXF+eqrr4zbb7/dcHNzM1xcXIzOnTsbH3/8cbHPV55ZFq9WW9IMlf/973+N7t27G25uboarq6vRtm1bm1kUr5xlscDRo0eNNm3aGE2bNjUOHTpkGIZh7Ny50+jSpYvh5uZmNGzY0Hj66aeNN954o9gZCsv6sy5OweOLs2vXrmJ/DmV5za9lGwrbuHGj0b9/f6Nhw4bWz90dd9xhfPXVV1fdruJmWTSMP2ZkGzdunNGgQQPD3t7eaNKkiTF9+nTj4sWLNnWSjAkTJlx1nKuNV6AssywaRsn7AMP447358MMPGw0bNjQcHByM+vXrG126dDGee+45a01Jn6kCW7ZsMQYMGGB4enoaDg4ORsOGDY0BAwYUqf/oo4+MkJAQw9HR0QgICDBeeOGFEmfOLKy493iBvXv3GrVq1TIeeugh67Li9h9ff/210blzZ8PJycnw8/Mz/vGPfxivvfZasZ+5Dz/80OjZs6fh7u5uODk5GU2aNDHuvfdeY/PmzYZhGMaJEyeMkSNHGm3atDHc3NyM2rVrGyEhIcZLL71kXLp0qdRtyc/PN5o2bWqMHz/eZnl59xMlzdJ7td5LU/Dz2L17tzFo0CCjdu3aRp06dYz777/fOHHihE1taZ/zsuyrDcMwkpKSjN69exvOzs6Gp6enMWrUKGPVqlVFZkgs7bOQmJhohIWFGa6urkb9+vWNRx55xPj222+L7GdKeg+V9Nylbd+VLly4YMycOdNo2bKl4ejoaHh5eRm33367kZiYaK0p6bPfpEkTm89jRkaGMWrUKMPHx8dwdXU1br31VuOrr74q8rkuz++5y5cvG88995zRqFEjw9HR0QgJCTE2btxodOjQwbj77rttHn/u3DnjqaeeMlq3bm04OjoaHh4eRvv27Y3JkyfbzFBqGIZx2223FZlhFX9tFsPgqnIAcL1o2rSpgoODi1y0FEDFmD9/vp5//nn9/vvvcnFxMbsdq5iYGM2aNUunTp0y7btBY8aM0dtvv63Tp08XOZUSFePw4cNq06aNnn76aT355JPlfvyhQ4fUsmVLffrpp+rTp08ldAgzcMoiAACoMSZMmKAlS5bo5ZdfLtOF1qurZ555Rv7+/mrWrJnOnTunjRs36o033tBTTz1FGKsg33//vd5++2116dJF7u7uOnDggObOnSt3d3eNGjXqmp7zueeeU69evQhj1QyBDAAA1BjOzs566623rmkimerEwcFB8+bN09GjR3Xp0iW1bNlSCxYsKNelW1A6Nzc3ffPNN1q+fLnOnDkjDw8P9ejRQ88//3yJlxgozaVLl9S8eXNNnz69ErqFmThlEQAAAABMwrT3AAAAAGASAhkAAAAAmIRABgAAAAAmMX1Sj99//13Tpk3TJ598ogsXLqhVq1Zavny5OnbsKEkyDEOzZs3Sa6+9poyMDIWGhurll19Wu3btrM+Rk5Oj6Ohovf3227pw4YJ69eqlpUuX2lzMLyMjQ5MmTdJHH30kSRo8eLAWL16sunXrWmtSUlI0YcIEff7553JxcVFERIRefPHFMs82dPnyZR07dkx16tSp0gvYAgAAALi+GIahs2fPyt/fv/QLrpt5EbT09HSjSZMmxsiRI40dO3YYhw8fNjZv3mz8/PPP1poXXnjBqFOnjvH+++8be/fuNYYNG2Y0aNDAyMrKstaMGzfOaNiwoZGQkGB8++23Rs+ePY0OHTrYXCCyX79+RnBwsJGYmGgkJiYawcHBxsCBA63rL126ZAQHBxs9e/Y0vv32WyMhIcHw9/c3Hn300TJvz5EjR2wuOMyNGzdu3Lhx48aNG7eafTty5EipGcLUWRafeOIJff311/rqq6+KXW8Yhvz9/RUVFaVp06ZJ+uNomK+vr+bMmaOxY8cqMzNT9evX11tvvaVhw4ZJko4dO6bGjRvrv//9r8LDw5WcnKy2bdtq+/btCg0NlSRt375dYWFh+vHHH9W6dWt98sknGjhwoI4cOSJ/f39J0vr16zVy5EidPHlS7u7uV92ezMxM1a1bV0eOHClTPQAAAIDqKSsrS40bN7Ze9qAkpp6y+NFHHyk8PFx/+9vftGXLFjVs2FDjx4/X6NGjJf1xNfPU1FT17dvX+hgnJyd1795diYmJGjt2rHbv3q28vDybGn9/fwUHBysxMVHh4eHatm2bPDw8rGFMkjp37iwPDw8lJiaqdevW2rZtm4KDg61hTJLCw8OVk5Oj3bt3q2fPnkX6z8nJUU5OjvX+2bNnJUnu7u4EMgAAAABX/SqTqZN6/PLLL1q2bJlatmypTz/9VOPGjdOkSZO0evVqSVJqaqokFbl4nq+vr3VdamqqHB0dVa9evVJrfHx8iozv4+NjU1N4nHr16snR0dFaU9js2bPl4eFhvTVu3Li8LwEAAACAGszUQHb58mXddNNNio2N1Y033qixY8dq9OjRWrZsmU1d4VRpGMZVk2bhmuLqr6XmStOnT1dmZqb1duTIkVJ7AgAAAIArmRrIGjRooLZt29osCwoKUkpKiiTJz89PkoocoTp58qT1aJafn59yc3OVkZFRas2JEyeKjH/q1CmbmsLjZGRkKC8vr8iRswJOTk7W0xM5TREAAABAeZkayLp27aoDBw7YLPvpp5/UpEkTSVJgYKD8/PyUkJBgXZ+bm6stW7aoS5cukqSOHTvKwcHBpub48eNKSkqy1oSFhSkzM1M7d+601uzYsUOZmZk2NUlJSTp+/Li1Jj4+Xk5OTtYp+AEAAACgIpk6qcfkyZPVpUsXxcbGaujQodq5c6dee+01vfbaa5L+OIUwKipKsbGxatmypVq2bKnY2Fi5uroqIiJCkuTh4aFRo0Zp6tSp8vLykqenp6Kjo9W+fXv17t1b0h9H3fr166fRo0fr1VdflSSNGTNGAwcOVOvWrSVJffv2Vdu2bRUZGal58+YpPT1d0dHRGj16NEe+AAAAAFQKUwPZzTffrA0bNmj69Ol65plnFBgYqIULF2r48OHWmscff1wXLlzQ+PHjrReGjo+PV506daw1L730kuzt7TV06FDrhaFXrlwpOzs7a83atWs1adIk62yMgwcP1pIlS6zr7ezstGnTJo0fP15du3a1uTA0AAAAAFQGU69DVt1kZWXJw8NDmZmZHFUDAAAAarCyZgNTv0MGAAAAADUZgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJPYm90AAAAAkJKSorS0tCod09vbWwEBAVU6JlAYgQwAAACmSklJUZugIF04f75Kx3VxddWPycmEMpiKQAYAAABTpaWl6cL58xr/4mvyb96qSsY8dugnLY0eo7S0NAIZTEUgAwAAwHXBv3krBba7wew2gCrFpB4AAAAAYBICGQAAAACYhEAGAAAAACbhO2QAAACwMmP6+eTk5CodD7ieEMgAAAAgybzp5wvk5uSaMi5gJgIZAAAAJJkz/bwkfb8lQf9e+LwuXbpUZWMC1wsCGQAAAGxU9fTzxw79VGVjAdcbJvUAAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCdchAwAAQI2VnJxcpeN5e3srICCgSsfE9Y1ABgAAgBrnzKkTslgseuCBB6p0XBdXV/2YnEwogxWBDAAAADXO+axMGYahh55dpObBIVUy5rFDP2lp9BilpaURyGBFIAMAAECN1SCwhQLb3WB2G6jBmNQDAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATGJqIIuJiZHFYrG5+fn5WdcbhqGYmBj5+/vLxcVFPXr00L59+2yeIycnRxMnTpS3t7fc3Nw0ePBgHT161KYmIyNDkZGR8vDwkIeHhyIjI3XmzBmbmpSUFA0aNEhubm7y9vbWpEmTlJubW2nbDgAAAACmHyFr166djh8/br3t3bvXum7u3LlasGCBlixZol27dsnPz099+vTR2bNnrTVRUVHasGGD1q9fr61bt+rcuXMaOHCg8vPzrTURERHas2eP4uLiFBcXpz179igyMtK6Pj8/XwMGDFB2dra2bt2q9evX6/3339fUqVOr5kUAAAAAUCPZm96Avb3NUbEChmFo4cKFmjFjhoYMGSJJWrVqlXx9fbVu3TqNHTtWmZmZWr58ud566y317t1bkrRmzRo1btxYmzdvVnh4uJKTkxUXF6ft27crNDRUkvT6668rLCxMBw4cUOvWrRUfH6/9+/fryJEj8vf3lyTNnz9fI0eO1PPPPy93d/cqejUAAAAA1CSmB7KDBw/K399fTk5OCg0NVWxsrJo1a6bDhw8rNTVVffv2tdY6OTmpe/fuSkxM1NixY7V7927l5eXZ1Pj7+ys4OFiJiYkKDw/Xtm3b5OHhYQ1jktS5c2d5eHgoMTFRrVu31rZt2xQcHGwNY5IUHh6unJwc7d69Wz179iy295ycHOXk5FjvZ2VlVeRLAwAAgGooOTm5ysf09vZWQEBAlY+LqzM1kIWGhmr16tVq1aqVTpw4oeeee05dunTRvn37lJqaKkny9fW1eYyvr69+++03SVJqaqocHR1Vr169IjUFj09NTZWPj0+RsX18fGxqCo9Tr149OTo6WmuKM3v2bM2aNaucWw0AAICa6MypE7JYLHrggQeqfGwXV1f9mJxMKLsOmRrI+vfvb/13+/btFRYWpubNm2vVqlXq3LmzJMlisdg8xjCMIssKK1xTXP211BQ2ffp0TZkyxXo/KytLjRs3LrU3AAAA1EznszJlGIYeenaRmgeHVNm4xw79pKXRY5SWlkYguw6Zfsrildzc3NS+fXsdPHhQd911l6Q/jl41aNDAWnPy5Enr0Sw/Pz/l5uYqIyPD5ijZyZMn1aVLF2vNiRMniox16tQpm+fZsWOHzfqMjAzl5eUVOXJ2JScnJzk5OV3bxgIAAKBGahDYQoHtbjC7DVwnTJ9l8Uo5OTlKTk5WgwYNFBgYKD8/PyUkJFjX5+bmasuWLdaw1bFjRzk4ONjUHD9+XElJSdaasLAwZWZmaufOndaaHTt2KDMz06YmKSlJx48ft9bEx8fLyclJHTt2rNRtBgAAAFBzmXqELDo6WoMGDVJAQIBOnjyp5557TllZWRoxYoQsFouioqIUGxurli1bqmXLloqNjZWrq6siIiIkSR4eHho1apSmTp0qLy8veXp6Kjo6Wu3bt7fOuhgUFKR+/fpp9OjRevXVVyVJY8aM0cCBA9W6dWtJUt++fdW2bVtFRkZq3rx5Sk9PV3R0tEaPHs0MiwAAAAAqjamB7OjRo7r//vuVlpam+vXrq3Pnztq+fbuaNGkiSXr88cd14cIFjR8/XhkZGQoNDVV8fLzq1KljfY6XXnpJ9vb2Gjp0qC5cuKBevXpp5cqVsrOzs9asXbtWkyZNss7GOHjwYC1ZssS63s7OTps2bdL48ePVtWtXubi4KCIiQi+++GIVvRIAAAAAaiJTA9n69etLXW+xWBQTE6OYmJgSa5ydnbV48WItXry4xBpPT0+tWbOm1LECAgK0cePGUmsAAAAAoCJdV98hAwAAAICahEAGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAAAAgEkIZAAAAABgEgIZAAAAAJiEQAYAAAAAJiGQAQAAAIBJCGQAAAAAYBICGQAAAACYhEAGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAAAAgEkIZAAAAABgEgIZAAAAAJiEQAYAAAAAJiGQAQAAAIBJ7M1uAAAAAMVLSUlRWlpalY2XnJxcZWMB+AOBDAAA4DqUkpKiNkFBunD+fJWPnZuTW+VjAjUVgQwAAOA6lJaWpgvnz2v8i6/Jv3mrKhnz+y0J+vfC53Xp0qUqGQ8AgQwAAOC65t+8lQLb3VAlYx079FOVjAPg/2NSDwAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADCJvdkNAAAAAKh8ycnJVTqet7e3AgICqnTMvyICGQAAAFCNnTl1QhaLRQ888ECVjuvi6qofk5MJZVdBIAMAAACqsfNZmTIMQw89u0jNg0OqZMxjh37S0ugxSktLI5BdBYEMAAAAqAEaBLZQYLsbzG4DhTCpBwAAAACYhEAGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAAAAgEkIZAAAAABgEgIZAAAAAJiEQAYAAAAAJiGQAQAAAIBJCGQAAAAAYBICGQAAAACYhEAGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAAAAgEkIZAAAAABgEgIZAAAAAJiEQAYAAAAAJiGQAQAAAIBJCGQAAAAAYBICGQAAAACY5LoJZLNnz5bFYlFUVJR1mWEYiomJkb+/v1xcXNSjRw/t27fP5nE5OTmaOHGivL295ebmpsGDB+vo0aM2NRkZGYqMjJSHh4c8PDwUGRmpM2fO2NSkpKRo0KBBcnNzk7e3tyZNmqTc3NzK2lwAAAAAuD4C2a5du/Taa68pJCTEZvncuXO1YMECLVmyRLt27ZKfn5/69Omjs2fPWmuioqK0YcMGrV+/Xlu3btW5c+c0cOBA5efnW2siIiK0Z88excXFKS4uTnv27FFkZKR1fX5+vgYMGKDs7Gxt3bpV69ev1/vvv6+pU6dW/sYDAAAAqLFMD2Tnzp3T8OHD9frrr6tevXrW5YZhaOHChZoxY4aGDBmi4OBgrVq1SufPn9e6deskSZmZmVq+fLnmz5+v3r1768Ybb9SaNWu0d+9ebd68WZKUnJysuLg4vfHGGwoLC1NYWJhef/11bdy4UQcOHJAkxcfHa//+/VqzZo1uvPFG9e7dW/Pnz9frr7+urKysqn9RAAAAANQIpgeyCRMmaMCAAerdu7fN8sOHDys1NVV9+/a1LnNyclL37t2VmJgoSdq9e7fy8vJsavz9/RUcHGyt2bZtmzw8PBQaGmqt6dy5szw8PGxqgoOD5e/vb60JDw9XTk6Odu/eXWLvOTk5ysrKsrkBAAAAQFnZmzn4+vXr9e2332rXrl1F1qWmpkqSfH19bZb7+vrqt99+s9Y4OjraHFkrqCl4fGpqqnx8fIo8v4+Pj01N4XHq1asnR0dHa01xZs+erVmzZl1tMwEAAACgWKYdITty5Igee+wxrVmzRs7OziXWWSwWm/uGYRRZVljhmuLqr6WmsOnTpyszM9N6O3LkSKl9AQAAAMCVTAtku3fv1smTJ9WxY0fZ29vL3t5eW7Zs0aJFi2Rvb289YlX4CNXJkyet6/z8/JSbm6uMjIxSa06cOFFk/FOnTtnUFB4nIyNDeXl5RY6cXcnJyUnu7u42NwAAAAAoK9MCWa9evbR3717t2bPHeuvUqZOGDx+uPXv2qFmzZvLz81NCQoL1Mbm5udqyZYu6dOkiSerYsaMcHBxsao4fP66kpCRrTVhYmDIzM7Vz505rzY4dO5SZmWlTk5SUpOPHj1tr4uPj5eTkpI4dO1bq6wAAAACg5jLtO2R16tRRcHCwzTI3Nzd5eXlZl0dFRSk2NlYtW7ZUy5YtFRsbK1dXV0VEREiSPDw8NGrUKE2dOlVeXl7y9PRUdHS02rdvb50kJCgoSP369dPo0aP16quvSpLGjBmjgQMHqnXr1pKkvn37qm3btoqMjNS8efOUnp6u6OhojR49mqNeAAAAACqNqZN6XM3jjz+uCxcuaPz48crIyFBoaKji4+NVp04da81LL70ke3t7DR06VBcuXFCvXr20cuVK2dnZWWvWrl2rSZMmWWdjHDx4sJYsWWJdb2dnp02bNmn8+PHq2rWrXFxcFBERoRdffLHqNhYAAABAjXNdBbIvv/zS5r7FYlFMTIxiYmJKfIyzs7MWL16sxYsXl1jj6empNWvWlDp2QECANm7cWJ52AQAAAOBPMf06ZAAAAABQUxHIAAAAAMAkBDIAAAAAMMl19R0yAAAAANVHcnJylY7n7e2tgICAKh3zzyKQAQAAAKhQZ06dkMVi0QMPPFCl47q4uurH5OS/VCgjkAEAAACoUOezMmUYhh56dpGaB4dUyZjHDv2kpdFjlJaWRiADAAAAgAaBLRTY7gaz27iuMakHAAAAAJiEQAYAAAAAJiGQAQAAAIBJCGQAAAAAYJJyB7ILFy7o/Pnz1vu//fabFi5cqPj4+AptDAAAAACqu3IHsjvvvFOrV6+WJJ05c0ahoaGaP3++7rzzTi1btqzCGwQAAACA6qrcgezbb7/VbbfdJkl677335Ovrq99++02rV6/WokWLKrxBAAAAAKiuyh3Izp8/rzp16kiS4uPjNWTIENWqVUudO3fWb7/9VuENAgAAAEB1Ve5A1qJFC3344Yc6cuSIPv30U/Xt21eSdPLkSbm7u1d4gwAAAABQXZU7kM2cOVPR0dFq2rSpbrnlFoWFhUn642jZjTfeWOENAgAAAEB1ZV/eB9x777269dZbdfz4cXXo0MG6vFevXrr77rsrtDkAAAAAqM6u6Tpkfn5+qlOnjhISEnThwgVJ0s0336w2bdpUaHMAAAAAUJ2VO5CdPn1avXr1UqtWrXTHHXfo+PHjkqRHHnlEU6dOrfAGAQAAAKC6Kncgmzx5shwcHJSSkiJXV1fr8mHDhikuLq5CmwMAAACA6qzc3yGLj4/Xp59+qkaNGtksb9myJdPeAwAAAEA5lPsIWXZ2ts2RsQJpaWlycnKqkKYAAAAAoCYodyDr1q2bVq9ebb1vsVh0+fJlzZs3Tz179qzQ5gAAAACgOiv3KYvz5s1Tjx499M033yg3N1ePP/649u3bp/T0dH399deV0SMAAAAAVEvlPkLWtm1b/fDDD7rlllvUp08fZWdna8iQIfruu+/UvHnzyugRAAAAAKqlch8hk/64DtmsWbMquhcAAAAAqFHKFMh++OGHMj9hSEjINTcDAAAAADVJmQLZDTfcIIvFIsMwZLFYrMsNw5Akm2X5+fkV3CIAAAAAVE9l+g7Z4cOH9csvv+jw4cN6//33FRgYqKVLl2rPnj3as2ePli5dqubNm+v999+v7H4BAAAAoNoo0xGyJk2aWP/9t7/9TYsWLdIdd9xhXRYSEqLGjRvrn//8p+66664KbxIAAAAAqqNyz7K4d+9eBQYGFlkeGBio/fv3V0hTAAAAAFATlDuQBQUF6bnnntPFixety3JycvTcc88pKCioQpsDAAAAgOqs3NPev/LKKxo0aJAaN26sDh06SJK+//57WSwWbdy4scIbBAAAAIDqqtyB7JZbbtHhw4e1Zs0a/fjjjzIMQ8OGDVNERITc3Nwqo0cAAAAAqJau6cLQrq6uGjNmTEX3AgAAAAA1SpkC2UcffaT+/fvLwcFBH330Uam1gwcPrpDGAAAAAKC6K1Mgu+uuu5SamiofH59Sp7W3WCxcGBoAAAAAyqhMgezy5cvF/hsAAAAAcO3KPe19aX7//feKfDoAAAAAqNYqJJClpqZq4sSJatGiRUU8HQAAAADUCGUOZGfOnNHw4cNVv359+fv7a9GiRbp8+bJmzpypZs2aafv27XrzzTcrs1cAAAAAqFbKPO39k08+qf/9738aMWKE4uLiNHnyZMXFxenixYv65JNP1L1798rsEwAAAACqnTIHsk2bNmnFihXq3bu3xo8frxYtWqhVq1ZauHBhJbYHAAAAANVXmU9ZPHbsmNq2bStJatasmZydnfXII49UWmMAAAAAUN2VOZBdvnxZDg4O1vt2dnZyc3OrlKYAAAAAoCYo8ymLhmFo5MiRcnJykiRdvHhR48aNKxLKPvjgg4rtEAAAAACqqTIHshEjRtjcf+CBByq8GQAAAACoScocyFasWFGZfQAAAABAjVMhF4YGAAAAAJQfgQwAAAAATEIgAwAAAACTEMgAAAAAwCRlCmQ33XSTMjIyJEnPPPOMzp8/X6lNAQAAAEBNUKZAlpycrOzsbEnSrFmzdO7cuUptCgAAAABqgjJNe3/DDTfooYce0q233irDMPTiiy+qdu3axdbOnDmzQhsEAAAAgOqqTIFs5cqVevrpp7Vx40ZZLBZ98sknsrcv+lCLxUIgAwAAAIAyKlMga926tdavXy9JqlWrlj777DP5+PhUamMAAAAAUN2VKZBd6fLly5XRBwAAAADUOOUOZJJ06NAhLVy4UMnJybJYLAoKCtJjjz2m5s2bV3R/AAAAAFBtlfs6ZJ9++qnatm2rnTt3KiQkRMHBwdqxY4fatWunhISEyugRAAAAAKqlch8he+KJJzR58mS98MILRZZPmzZNffr0qbDmAAAAAKA6K/cRsuTkZI0aNarI8ocfflj79++vkKYAAAAAoCYodyCrX7++9uzZU2T5nj17mHkRAAAAAMqh3Kcsjh49WmPGjNEvv/yiLl26yGKxaOvWrZozZ46mTp1aGT0CAAAAQLVU7kD2z3/+U3Xq1NH8+fM1ffp0SZK/v79iYmI0adKkCm8QAAAAAKqrcp+yaLFYNHnyZB09elSZmZnKzMzU0aNH9dhjj8lisZTruZYtW6aQkBC5u7vL3d1dYWFh+uSTT6zrDcNQTEyM/P395eLioh49emjfvn02z5GTk6OJEyfK29tbbm5uGjx4sI4ePWpTk5GRocjISHl4eMjDw0ORkZE6c+aMTU1KSooGDRokNzc3eXt7a9KkScrNzS3fiwMAAAAA5VDuQHalOnXqqE6dOtf8+EaNGumFF17QN998o2+++Ua333677rzzTmvomjt3rhYsWKAlS5Zo165d8vPzU58+fXT27Fnrc0RFRWnDhg1av369tm7dqnPnzmngwIHKz8+31kRERGjPnj2Ki4tTXFyc9uzZo8jISOv6/Px8DRgwQNnZ2dq6davWr1+v999/n1MwAQAAAFSqa7owdEUZNGiQzf3nn39ey5Yt0/bt29W2bVstXLhQM2bM0JAhQyRJq1atkq+vr9atW6exY8cqMzNTy5cv11tvvaXevXtLktasWaPGjRtr8+bNCg8PV3JysuLi4rR9+3aFhoZKkl5//XWFhYXpwIEDat26teLj47V//34dOXJE/v7+kqT58+dr5MiRev755+Xu7l5s/zk5OcrJybHez8rKqvDXCAAAAED19aeOkFWk/Px8rV+/XtnZ2QoLC9Phw4eVmpqqvn37WmucnJzUvXt3JSYmSpJ2796tvLw8mxp/f38FBwdba7Zt2yYPDw9rGJOkzp07y8PDw6YmODjYGsYkKTw8XDk5Odq9e3eJPc+ePdt6GqSHh4caN25cMS8GAAAAgBrB9EC2d+9e1a5dW05OTho3bpw2bNigtm3bKjU1VZLk6+trU+/r62tdl5qaKkdHR9WrV6/UmuKm4/fx8bGpKTxOvXr15OjoaK0pzvTp063fo8vMzNSRI0fKufUAAAAAarJyBbK8vDz17NlTP/30U4U10Lp1a+3Zs0fbt2/X3//+d40YMcLmAtOFJwoxDOOqk4cUrimu/lpqCnNycrJOSFJwAwAAAICyKlcgc3BwUFJSUrlnUyyNo6OjWrRooU6dOmn27Nnq0KGD/vWvf8nPz0+SihyhOnnypPVolp+fn3Jzc5WRkVFqzYkTJ4qMe+rUKZuawuNkZGQoLy+vyJEzAAAAAKgo5T5l8cEHH9Ty5csroxdJfxyVysnJUWBgoPz8/JSQkGBdl5ubqy1btqhLly6SpI4dO8rBwcGm5vjx40pKSrLWhIWFKTMzUzt37rTW7NixQ5mZmTY1SUlJOn78uLUmPj5eTk5O6tixY6VtKwAAAICardyzLObm5uqNN95QQkKCOnXqJDc3N5v1CxYsKPNzPfnkk+rfv78aN26ss2fPav369fryyy8VFxcni8WiqKgoxcbGqmXLlmrZsqViY2Pl6uqqiIgISZKHh4dGjRqlqVOnysvLS56enoqOjlb79u2tsy4GBQWpX79+Gj16tF599VVJ0pgxYzRw4EC1bt1aktS3b1+1bdtWkZGRmjdvntLT0xUdHa3Ro0dzGiIAAACASlPuQJaUlKSbbrpJkop8l6y8pzKeOHFCkZGROn78uDw8PBQSEqK4uDj16dNHkvT444/rwoULGj9+vDIyMhQaGqr4+Hiba5+99NJLsre319ChQ3XhwgX16tVLK1eulJ2dnbVm7dq1mjRpknU2xsGDB2vJkiXW9XZ2dtq0aZPGjx+vrl27ysXFRREREXrxxRfL9+IAAAAAQDmUO5B98cUXFTb41U59tFgsiomJUUxMTIk1zs7OWrx4sRYvXlxijaenp9asWVPqWAEBAdq4cWOpNQAAAABQka75wtA///yzDh06pG7dusnFxaVMsx+iaqWkpCgtLa1Kx/T29lZAQECVjgkAAAD8VZU7kJ0+fVpDhw7VF198IYvFooMHD6pZs2Z65JFHVLduXc2fP78y+kQ5paSkqE1QkC6cP1+l47q4uurH5GRCGQAAAFAG5Q5kkydPloODg1JSUhQUFGRdPmzYME2ePJlAdp1IS0vThfPnNf7F1+TfvFWVjHns0E9aGj1GaWlpBDIAAACgDModyOLj4/Xpp5+qUaNGNstbtmyp3377rcIaQ8Xwb95Kge1uMLsNAAAAAMUo93XIsrOz5erqWmR5WlqanJycKqQpAAAAAKgJyh3IunXrptWrV1vvWywWXb58WfPmzVPPnj0rtDkAAAAAqM7KfcrivHnz1KNHD33zzTfKzc3V448/rn379ik9PV1ff/11ZfQIAAAAANVSuY+QtW3bVj/88INuueUW9enTR9nZ2RoyZIi+++47NW/evDJ6BAAAAIBq6ZquQ+bn56dZs2ZVdC8AAAAAUKNcUyDLyMjQ8uXLlZycLIvFoqCgID300EPy9PSs6P4AAAAAoNoq9ymLW7ZsUWBgoBYtWqSMjAylp6dr0aJFCgwM1JYtWyqjRwAAAAColsp9hGzChAkaOnSoli1bJjs7O0lSfn6+xo8frwkTJigpKanCmwQAAACA6qjcR8gOHTqkqVOnWsOYJNnZ2WnKlCk6dOhQhTYHAAAAANVZuQPZTTfdpOTk5CLLk5OTdcMNN1RETwAAAABQI5TplMUffvjB+u9Jkybpscce088//6zOnTtLkrZv366XX35ZL7zwQuV0CQAAAADVUJkC2Q033CCLxSLDMKzLHn/88SJ1ERERGjZsWMV1BwAAAADVWJkC2eHDhyu7DwAAAACoccoUyJo0aVLZfQAAAABAjXNNF4b+/fff9fXXX+vkyZO6fPmyzbpJkyZVSGMAAAAAUN2VO5CtWLFC48aNk6Ojo7y8vGSxWKzrLBYLgQwAAAAAyqjcgWzmzJmaOXOmpk+frlq1yj1rPgAAAADg/5Q7UZ0/f1733XcfYQwAAAAA/qRyp6pRo0bp3//+d2X0AgAAAAA1SrlPWZw9e7YGDhyouLg4tW/fXg4ODjbrFyxYUGHNAQAAAEB1Vu5AFhsbq08//VStW7eWpCKTegAAAAAAyqbcgWzBggV68803NXLkyEpoBwAAAABqjnJ/h8zJyUldu3atjF4AAAAAoEYpdyB77LHHtHjx4sroBQAAAABqlHKfsrhz5059/vnn2rhxo9q1a1dkUo8PPvigwpoDAAAAgOqs3IGsbt26GjJkSGX0AgAAAAA1SrkD2YoVKyqjDwAAAACoccr9HTIAAAAAQMUo9xGywMDAUq839ssvv/yphgAAAACgpih3IIuKirK5n5eXp++++05xcXH6xz/+UVF9AQAAAEC1V+5A9thjjxW7/OWXX9Y333zzpxsCAAAAgJqiwr5D1r9/f73//vsV9XQAAAAAUO1VWCB777335OnpWVFPBwAAAADVXrlPWbzxxhttJvUwDEOpqak6deqUli5dWqHNAQAAAEB1Vu5Adtddd9ncr1WrlurXr68ePXqoTZs2FdUXAAAAAFR75Q5kTz/9dGX0AQAAAAA1DheGBgAAAACTlPkIWa1atUq9ILQkWSwWXbp06U83BQAAAAA1QZkD2YYNG0pcl5iYqMWLF8swjAppCgAAAABqgjIHsjvvvLPIsh9//FHTp0/Xxx9/rOHDh+vZZ5+t0OYAAAAAoDq7pu+QHTt2TKNHj1ZISIguXbqkPXv2aNWqVQoICKjo/gAAAACg2ipXIMvMzNS0adPUokUL7du3T5999pk+/vhjBQcHV1Z/AAAAAFBtlfmUxblz52rOnDny8/PT22+/XewpjAAAAACAsitzIHviiSfk4uKiFi1aaNWqVVq1alWxdR988EGFNQcAAAAA1VmZA9mDDz541WnvAQAAAABlV+ZAtnLlykpsAwAAAABqnmuaZREAAAAA8OcRyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADCJqYFs9uzZuvnmm1WnTh35+Pjorrvu0oEDB2xqDMNQTEyM/P395eLioh49emjfvn02NTk5OZo4caK8vb3l5uamwYMH6+jRozY1GRkZioyMlIeHhzw8PBQZGakzZ87Y1KSkpGjQoEFyc3OTt7e3Jk2apNzc3ErZdgAAAAAwNZBt2bJFEyZM0Pbt25WQkKBLly6pb9++ys7OttbMnTtXCxYs0JIlS7Rr1y75+fmpT58+Onv2rLUmKipKGzZs0Pr167V161adO3dOAwcOVH5+vrUmIiJCe/bsUVxcnOLi4rRnzx5FRkZa1+fn52vAgAHKzs7W1q1btX79er3//vuaOnVq1bwYAAAAAGocezMHj4uLs7m/YsUK+fj4aPfu3erWrZsMw9DChQs1Y8YMDRkyRJK0atUq+fr6at26dRo7dqwyMzO1fPlyvfXWW+rdu7ckac2aNWrcuLE2b96s8PBwJScnKy4uTtu3b1doaKgk6fXXX1dYWJgOHDig1q1bKz4+Xvv379eRI0fk7+8vSZo/f75Gjhyp559/Xu7u7lX4ygAAAACoCa6r75BlZmZKkjw9PSVJhw8fVmpqqvr27WutcXJyUvfu3ZWYmChJ2r17t/Ly8mxq/P39FRwcbK3Ztm2bPDw8rGFMkjp37iwPDw+bmuDgYGsYk6Tw8HDl5ORo9+7dxfabk5OjrKwsmxsAAAAAlNV1E8gMw9CUKVN06623Kjg4WJKUmpoqSfL19bWp9fX1ta5LTU2Vo6Oj6tWrV2qNj49PkTF9fHxsagqPU69ePTk6OlprCps9e7b1O2keHh5q3LhxeTcbAAAAQA123QSyRx99VD/88IPefvvtIussFovNfcMwiiwrrHBNcfXXUnOl6dOnKzMz03o7cuRIqT0BAAAAwJWui0A2ceJEffTRR/riiy/UqFEj63I/Pz9JKnKE6uTJk9ajWX5+fsrNzVVGRkapNSdOnCgy7qlTp2xqCo+TkZGhvLy8IkfOCjg5Ocnd3d3mBgAAAABlZWogMwxDjz76qD744AN9/vnnCgwMtFkfGBgoPz8/JSQkWJfl5uZqy5Yt6tKliySpY8eOcnBwsKk5fvy4kpKSrDVhYWHKzMzUzp07rTU7duxQZmamTU1SUpKOHz9urYmPj5eTk5M6duxY8RsPAAAAoMYzdZbFCRMmaN26dfrPf/6jOnXqWI9QeXh4yMXFRRaLRVFRUYqNjVXLli3VsmVLxcbGytXVVREREdbaUaNGaerUqfLy8pKnp6eio6PVvn1766yLQUFB6tevn0aPHq1XX31VkjRmzBgNHDhQrVu3liT17dtXbdu2VWRkpObNm6f09HRFR0dr9OjRHPkCAAAAUClMDWTLli2TJPXo0cNm+YoVKzRy5EhJ0uOPP64LFy5o/PjxysjIUGhoqOLj41WnTh1r/UsvvSR7e3sNHTpUFy5cUK9evbRy5UrZ2dlZa9auXatJkyZZZ2McPHiwlixZYl1vZ2enTZs2afz48eratatcXFwUERGhF198sZK2HgAAAEBNZ2ogMwzjqjUWi0UxMTGKiYkpscbZ2VmLFy/W4sWLS6zx9PTUmjVrSh0rICBAGzduvGpPAAAAAFARrotJPQAAAACgJiKQAQAAAIBJCGQAAAAAYBICGQAAAACYhEAGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmMTUC0OjekpOTq7yMb29vRUQEFDl4wIAAAB/BoEMFebMqROyWCx64IEHqnxsF1dX/ZicTCgDAADAXwqBDBXmfFamDMPQQ88uUvPgkCob99ihn7Q0eozS0tIIZAAAAPhLIZChwjUIbKHAdjeY3QYAAABw3WNSDwAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMImpgex///ufBg0aJH9/f1ksFn344Yc26w3DUExMjPz9/eXi4qIePXpo3759NjU5OTmaOHGivL295ebmpsGDB+vo0aM2NRkZGYqMjJSHh4c8PDwUGRmpM2fO2NSkpKRo0KBBcnNzk7e3tyZNmqTc3NzK2GwAAAAAkCTZmzl4dna2OnTooIceekj33HNPkfVz587VggULtHLlSrVq1UrPPfec+vTpowMHDqhOnTqSpKioKH388cdav369vLy8NHXqVA0cOFC7d++WnZ2dJCkiIkJHjx5VXFycJGnMmDGKjIzUxx9/LEnKz8/XgAEDVL9+fW3dulWnT5/WiBEjZBiGFi9eXEWvBv6s5OTkKh3P29tbAQEBVTomAAAAqhdTA1n//v3Vv3//YtcZhqGFCxdqxowZGjJkiCRp1apV8vX11bp16zR27FhlZmZq+fLleuutt9S7d29J0po1a9S4cWNt3rxZ4eHhSk5OVlxcnLZv367Q0FBJ0uuvv66wsDAdOHBArVu3Vnx8vPbv368jR47I399fkjR//nyNHDlSzz//vNzd3avg1cC1OnPqhCwWix544IEqHdfF1VU/JicTygAAAHDNTA1kpTl8+LBSU1PVt29f6zInJyd1795diYmJGjt2rHbv3q28vDybGn9/fwUHBysxMVHh4eHatm2bPDw8rGFMkjp37iwPDw8lJiaqdevW2rZtm4KDg61hTJLCw8OVk5Oj3bt3q2fPnsX2mJOTo5ycHOv9rKysinwJUEbnszJlGIYeenaRmgeHVMmYxw79pKXRY5SWlkYgAwAAwDW7bgNZamqqJMnX19dmua+vr3777TdrjaOjo+rVq1ekpuDxqamp8vHxKfL8Pj4+NjWFx6lXr54cHR2tNcWZPXu2Zs2aVc4tQ2VpENhCge1uMLsNAAAAoMyu+1kWLRaLzX3DMIosK6xwTXH111JT2PTp05WZmWm9HTlypNS+AAAAAOBK120g8/Pzk6QiR6hOnjxpPZrl5+en3NxcZWRklFpz4sSJIs9/6tQpm5rC42RkZCgvL6/IkbMrOTk5yd3d3eYGAAAAAGV13QaywMBA+fn5KSEhwbosNzdXW7ZsUZcuXSRJHTt2lIODg03N8ePHlZSUZK0JCwtTZmamdu7caa3ZsWOHMjMzbWqSkpJ0/Phxa018fLycnJzUsWPHSt1OAAAAADWXqd8hO3funH7++Wfr/cOHD2vPnj3y9PRUQECAoqKiFBsbq5YtW6ply5aKjY2Vq6urIiIiJEkeHh4aNWqUpk6dKi8vL3l6eio6Olrt27e3zroYFBSkfv36afTo0Xr11Vcl/THt/cCBA9W6dWtJUt++fdW2bVtFRkZq3rx5Sk9PV3R0tEaPHs1RLwAAAACVxtRA9s0339jMYDhlyhRJ0ogRI7Ry5Uo9/vjjunDhgsaPH6+MjAyFhoYqPj7eeg0ySXrppZdkb2+voUOH6sKFC+rVq5dWrlxpvQaZJK1du1aTJk2yzsY4ePBgLVmyxLrezs5OmzZt0vjx49W1a1e5uLgoIiJCL774YmW/BAAAAABqMFMDWY8ePWQYRonrLRaLYmJiFBMTU2KNs7OzFi9eXOoFnD09PbVmzZpSewkICNDGjRuv2jMAAAAAVJTr9jtkAAAAAFDdEcgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJMQyAAAAADAJAQyAAAAADAJgQwAAAAATEIgAwAAAACTEMgAAAAAwCQEMgAAAAAwCYEMAAAAAExCIAMAAAAAkxDIAAAAAMAkBDIAAAAAMAmBDAAAAABMQiADAAAAAJPYm90A8FeWnJxcpeN5e3srICCgSscEAABA5SGQAdfgzKkTslgseuCBB6p0XBdXV/2YnEwoAwAAqCYIZMA1OJ+VKcMw9NCzi9Q8OKRKxjx26CctjR6jtLQ0AhkAAEA1QSAD/oQGgS0U2O4Gs9sAAADAXxSTegAAAACASQhkAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAAAAgEkIZAAAAABgEgIZAAAAAJiEQAYAAAAAJiGQAQAAAIBJCGQAAAAAYBICGQAAAACYhEAGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAAAAgEkIZAAAAABgEgIZAAAAAJiEQAYAAAAAJiGQAQAAAIBJCGQAAAAAYBICGQAAAACYhEAGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAAAAgEkIZIUsXbpUgYGBcnZ2VseOHfXVV1+Z3RIAAACAaopAdoV33nlHUVFRmjFjhr777jvddttt6t+/v1JSUsxuDQAAAEA1RCC7woIFCzRq1Cg98sgjCgoK0sKFC9W4cWMtW7bM7NYAAAAAVEP2ZjdwvcjNzdXu3bv1xBNP2Czv27evEhMTi31MTk6OcnJyrPczMzMlSVlZWZXXaBmdO3dOkvTrvu918Xx2lYx57NBPkqTfkveqlsWokjHNGteMMVMP/yxJ2r17t/XnW1Vq1aqly5cvM2Y1GremjGnWuGxr9RvTjHEPHDggid/ljPnXHNfMv5XOnTt3Xfw9XtCDYZS+/RbjahU1xLFjx9SwYUN9/fXX6tKli3V5bGysVq1aZd0pXikmJkazZs2qyjYBAAAA/IUcOXJEjRo1KnE9R8gKsVgsNvcNwyiyrMD06dM1ZcoU6/3Lly8rPT1dXl5eJT6mqmRlZalx48Y6cuSI3N3dTe0F1RPvMVQ23mOobLzHUBV4n9VchmHo7Nmz8vf3L7WOQPZ/vL29ZWdnp9TUVJvlJ0+elK+vb7GPcXJykpOTk82yunXrVlaL18Td3Z0PPyoV7zFUNt5jqGy8x1AVeJ/VTB4eHletYVKP/+Po6KiOHTsqISHBZnlCQoLNKYwAAAAAUFE4QnaFKVOmKDIyUp06dVJYWJhee+01paSkaNy4cWa3BgAAAKAaIpBdYdiwYTp9+rSeeeYZHT9+XMHBwfrvf/+rJk2amN1auTk5Oenpp58uckolUFF4j6Gy8R5DZeM9hqrA+wxXwyyLAAAAAGASvkMGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmIRAVg0tXbpUgYGBcnZ2VseOHfXVV1+Z3RKqkZiYGFksFpubn5+f2W3hL+x///ufBg0aJH9/f1ksFn344Yc26w3DUExMjPz9/eXi4qIePXpo37595jSLv6SrvcdGjhxZZL/WuXNnc5rFX9Ls2bN18803q06dOvLx8dFdd92lAwcO2NSwL0NJCGTVzDvvvKOoqCjNmDFD3333nW677Tb1799fKSkpZreGaqRdu3Y6fvy49bZ3716zW8JfWHZ2tjp06KAlS5YUu37u3LlasGCBlixZol27dsnPz099+vTR2bNnq7hT/FVd7T0mSf369bPZr/33v/+twg7xV7dlyxZNmDBB27dvV0JCgi5duqS+ffsqOzvbWsO+DCVh2vtqJjQ0VDfddJOWLVtmXRYUFKS77rpLs2fPNrEzVBcxMTH68MMPtWfPHrNbQTVksVi0YcMG3XXXXZL++B9lf39/RUVFadq0aZKknJwc+fr6as6cORo7dqyJ3eKvqPB7TPrjCNmZM2eKHDkDrtWpU6fk4+OjLVu2qFu3buzLUCqOkFUjubm52r17t/r27WuzvG/fvkpMTDSpK1RHBw8elL+/vwIDA3Xffffpl19+MbslVFOHDx9WamqqzX7NyclJ3bt3Z7+GCvXll1/Kx8dHrVq10ujRo3Xy5EmzW8JfWGZmpiTJ09NTEvsylI5AVo2kpaUpPz9fvr6+Nst9fX2VmppqUleobkJDQ7V69Wp9+umnev3115WamqouXbro9OnTZreGaqhg38V+DZWpf//+Wrt2rT7//HPNnz9fu3bt0u23366cnByzW8NfkGEYmjJlim699VYFBwdLYl+G0tmb3QAqnsVisblvGEaRZcC16t+/v/Xf7du3V1hYmJo3b65Vq1ZpypQpJnaG6oz9GirTsGHDrP8ODg5Wp06d1KRJE23atElDhgwxsTP8FT366KP64YcftHXr1iLr2JehOBwhq0a8vb1lZ2dX5H9aTp48WeR/ZICK4ubmpvbt2+vgwYNmt4JqqGAGT/ZrqEoNGjRQkyZN2K+h3CZOnKiPPvpIX3zxhRo1amRdzr4MpSGQVSOOjo7q2LGjEhISbJYnJCSoS5cuJnWF6i4nJ0fJyclq0KCB2a2gGgoMDJSfn5/Nfi03N1dbtmxhv4ZKc/r0aR05coT9GsrMMAw9+uij+uCDD/T5558rMDDQZj37MpSGUxarmSlTpigyMlKdOnVSWFiYXnvtNaWkpGjcuHFmt4ZqIjo6WoMGDVJAQIBOnjyp5557TllZWRoxYoTZreEv6ty5c/r555+t9w8fPqw9e/bI09NTAQEBioqKUmxsrFq2bKmWLVsqNjZWrq6uioiIMLFr/JWU9h7z9PRUTEyM7rnnHjVo0EC//vqrnnzySXl7e+vuu+82sWv8lUyYMEHr1q3Tf/7zH9WpU8d6JMzDw0MuLi6yWCzsy1AyA9XOyy+/bDRp0sRwdHQ0brrpJmPLli1mt4RqZNiwYUaDBg0MBwcHw9/f3xgyZIixb98+s9vCX9gXX3xhSCpyGzFihGEYhnH58mXj6aefNvz8/AwnJyejW7duxt69e81tGn8ppb3Hzp8/b/Tt29eoX7++4eDgYAQEBBgjRowwUlJSzG4bfyHFvb8kGStWrLDWsC9DSbgOGQAAAACYhO+QAQAAAIBJCGQAAAAAYBICGQAAAACYhEAGAAAAACYhkAEAAACASQhkAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAFCFXnvtNTVu3Fi1atXSwoULzW4HAGAyAhkA4C9n5MiRuuuuu4os//LLL2WxWHTmzJkq76kssrKy9Oijj2ratGn6/fffNWbMmGLrLBaL9ebm5qaWLVtq5MiR2r17dxV3DACobAQyAADKKS8v75oel5KSory8PA0YMEANGjSQq6tribUrVqzQ8ePHtW/fPr388ss6d+6cQkNDtXr16mttGwBwHSKQAQCqtffff1/t2rWTk5OTmjZtqvnz59ust1gs+vDDD22W1a1bVytXrpQk/frrr7JYLHr33XfVo0cPOTs7a82aNcWOlZKSojvvvFO1a9eWu7u7hg4dqhMnTkiSVq5cqfbt20uSmjVrJovFol9//bXEvuvWrSs/Pz81bdpUffv21Xvvvafhw4fr0UcfVUZGhiTp9OnTuv/++9WoUSO5urqqffv2evvtt63PsXr1anl5eSknJ8fmue+55x49+OCDV33tAACVj0AGAKi2du/eraFDh+q+++7T3r17FRMTo3/+85/WsFUe06ZN06RJk5ScnKzw8PAi6w3D0F133aX09HRt2bJFCQkJOnTokIYNGyZJGjZsmDZv3ixJ2rlzp44fP67GjRuXq4fJkyfr7NmzSkhIkCRdvHhRHTt21MaNG5WUlKQxY8YoMjJSO3bskCT97W9/U35+vj766CPrc6SlpWnjxo166KGHyv0aAAAqnr3ZDQAAcC02btyo2rVr2yzLz8+3ub9gwQL16tVL//znPyVJrVq10v79+zVv3jyNHDmyXONFRUVpyJAhJa7fvHmzfvjhBx0+fNgatN566y21a9dOu3bt0s033ywvLy9JUv369eXn51eu8SWpTZs2kmQ9stawYUNFR0db10+cOFFxcXH697//rdDQULm4uCgiIkIrVqzQ3/72N0nS2rVr1ahRI/Xo0aPc4wMAKh5HyAAAf0k9e/bUnj17bG5vvPGGTU1ycrK6du1qs6xr1646ePBgkfB2NZ06dSp1fXJysho3bmxz1Ktt27aqW7eukpOTyzVWSQzDkPTHaZbSHwH0+eefV0hIiLy8vFS7dm3Fx8crJSXF+pjRo0crPj5ev//+u6Q/vps2cuRI63MAAMzFETIAwF+Sm5ubWrRoYbPs6NGjNvcNwygSPApCTQGLxVJkWXGTdri5uZXaT3Fjlbb8WhQEu8DAQEnS/Pnz9dJLL2nhwoVq37693NzcFBUVpdzcXOtjbrzxRnXo0EGrV69WeHi49u7dq48//rhC+gEA/HkEMgBAtdW2bVtt3brVZlliYqJatWolOzs7SX+cPnj8+HHr+oMHD+r8+fPXNFZKSoqOHDliPUq2f/9+ZWZmKigo6E9sxf+3cOFCubu7q3fv3pKkr776SnfeeaceeOABSdLly5d18ODBIuM98sgjeumll/T777+rd+/e5f7uGgCg8nDKIgCg2po6dao+++wzPfvss/rpp5+0atUqLVmyxOZ7V7fffruWLFmib7/9Vt98843GjRsnBweHco/Vu3dvhYSEaPjw4fr222+1c+dOPfjgg+revftVT3cszpkzZ5SamqrffvtNCQkJuvfee7Vu3TotW7ZMdevWlSS1aNFCCQkJSkxMVHJyssaOHavU1NQizzV8+HD9/vvvev311/Xwww+XuxcAQOUhkAEAqq2bbrpJ7777rtavX6/g4GDNnDlTzzzzjM2EHvPnz1fjxo3VrVs3RUREKDo6utTrg5WkYPr8evXqqVu3burdu7eaNWumd95555p6f+ihh9SgQQO1adNGf//731W7dm3t3LlTERER1pp//vOfuummmxQeHq4ePXrIz8+v2Atmu7u765577lHt2rWLXQ8AMI/FKHziPAAAqHb69OmjoKAgLVq0yOxWAABXIJABAFCNpaenKz4+XsOHD9f+/fvVunVrs1sCAFyBST0AAKjGbrrpJmVkZGjOnDmEMQC4DnGEDAAAAABMwqQeAAAAAGASAhkAAAAAmIRABgAAAAAmIZABAAAAgEkIZAAAAABgEgIZAAAAAJiEQAYAAAAAJiGQAQAAAIBJ/h/qhWu9xns85gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "df_area_program_pd = df_area_program_till_end_June.toPandas()\n", + "\n", + "plt.figure(figsize=(10, 6))\n", + "sns.histplot(df_area_program_pd['hour'], bins=24, kde=False, color='skyblue')\n", + "plt.title('Distribution of Pickup Hours for Filtered Rides (Pre-program change)')\n", + "plt.xlabel('Hour of Day')\n", + "plt.ylabel('Number of Rides')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d266e90c-ae57-41cb-99a5-3185b61e60ed", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIhCAYAAAC48qAWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg/klEQVR4nO3deVxUdf///+eIMCziKCCbIpK7opZaiJUb7rllpWWRmmmL6WXKJ1OvDFs0Lc0rTdvM3bSrK7ssu1DMsszdIpfIzDQ0RQURXBBczu+PfpyvI4tgHBB93G+3uem8z3vO+3Vmzhx4cs68x2YYhiEAAAAAQLEqV9oFAAAAAMCNiLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsIUybd68ebLZbObN3d1dgYGBatu2rSZNmqRjx47lekxsbKxsNluRxjl79qxiY2P1zTffFOlxeY1Vo0YNdevWrUjruZolS5Zo+vTpeS6z2WyKjY0t1vGK21dffaXmzZvLy8tLNptNn332WZ79Dhw44PR6lytXTr6+vuratas2btxo9svZLw4cOFCkOgYMGKAKFSr8jS0pXgXtK9u2bZPNZtO8efNKtqhicOLECT344IPy9/eXzWZTr169LB2vTZs2TvvN5bddu3bl+T5t06aN2rRpY96/1mNASSnscW3AgAFO2+/m5qaaNWsqJiZGGRkZufoX9vhxre+54vDYY4+pc+fO5v3CHieK06xZs8rke/FGc70dw/+uF154QU2bNtWlS5dKuxT8DeVLuwCgOMydO1f16tXT+fPndezYMa1fv16TJ0/WG2+8oWXLlql9+/Zm38cff9zpB3NhnD17VhMmTJAkp1/AruZaxroWS5Ys0a5duzRixIhcyzZu3Khq1apZXsO1MgxDffr0UZ06dbRixQp5eXmpbt26BT5m2LBh6tevny5evKjdu3drwoQJatu2rTZu3KjbbrtN99xzjzZu3KigoKAS2goUxcsvv6zly5frww8/VM2aNeXj42P5mLfccosWL16cq71mzZqFep9e6zHgeuTh4aG1a9dKkk6ePKlPPvlEU6dO1Y4dO7R69Wqnvtf78ePHH3/U/PnztXnz5lzLrnacKE6zZs2Sn5+fBgwYUKzrxc0tJiZGM2fO1Pz58zVw4MDSLgfXiLCFG0J4eLiaN29u3r/vvvv07LPP6q677lLv3r21d+9eBQQESJKqVatm+S8PZ8+elaenZ4mMdTUtWrQo1fGv5vDhwzpx4oTuvfdeRUVFFeox1atXN7frzjvvVK1atRQVFaVZs2bp/fffV5UqVVSlShUry76pZWZmysPD45ofv2vXLtWsWVMPP/xwsdRjGIbOnTtXYE0eHh75vhdK8316/vx52Ww2lS9fcj+Oy5Ur5/RcdO7cWb///rvi4+O1f/9+hYWFmcuu9+PHa6+9pjvuuMPp+J/jaseJsiznZ0xJyMzMlLu7e5GvCMHf53A49Mgjj+i1114zz0qj7OEyQtywqlevrqlTp+rUqVN69913zfa8LrdZu3at2rRpI19fX3l4eKh69eq67777dPbsWR04cMD8xX3ChAnmpSk5f8HMWd8PP/yg+++/X5UrV1bNmjXzHSvH8uXL1bhxY7m7u+uWW27RW2+95bQ8v8tyvvnmG9lsNvNypjZt2mjlypX6448/nC6dyZHXZUC7du1Sz549VblyZbm7u+vWW2/V/Pnz8xzno48+0rhx4xQcHKyKFSuqffv22rNnT/5P/GXWr1+vqKgoeXt7y9PTUy1bttTKlSvN5bGxseYvuaNHj5bNZlONGjUKte7L5fxC9ccff0jK/7mLi4tTVFSUHA6HPD09Vb9+fU2aNKnAdX///ffy8/NTt27ddObMmXxf07zGzLkM8GqvdXG62nMu5b9fFrQNn376qW677Ta5u7ubZ3j+/e9/KyIiwnw+b7nlFj322GP51pZzedeaNWuUmJho7qs5+/KJEyf09NNPq2rVqnJzc9Mtt9yicePGKSsry2k9NptNzzzzjN555x3Vr19fdrs91/5bFFe7BO9qxwBJ2rt3r/r16yd/f3/Z7XbVr19fb7/9ttN6ct5TCxcu1KhRo1S1alXZ7Xb99ttvkqQ1a9YoKipKFStWlKenp+6880599dVXuepZuXKlbr31VtntdoWFhemNN9645m3PkRNWjh496tSe1/Fj06ZNuvPOO+Xu7q7g4GCNGTNG58+fz3O9y5YtU2RkpLy8vFShQgV16tRJP/74o1Of33//XQ8++KCCg4Nlt9sVEBCgqKgoJSQkFFjz0aNHtXz5ckVHRxdqG688TkjShx9+qCZNmsjd3V0+Pj669957lZiYWKT6atSood27d2vdunXmvnG141jOe2HKlCl69dVXVb16dbm7u6t58+a5XvOCfsacO3dOY8aMUVhYmNzc3FS1alUNHTpUJ0+edFpHVlaWRo0apcDAQHl6eqpVq1bavn27atSo4bQf5xwDVq9erccee0xVqlSRp6ensrKy9Ntvv2ngwIGqXbu2PD09VbVqVXXv3l07d+50GitnP1+yZIlGjx6toKAgVahQQd27d9fRo0d16tQpDRkyRH5+fvLz89PAgQN1+vTpq718kgp/DP/tt9/UtWtXVahQQSEhIRo1alSu48iECRMUEREhHx8fVaxYUU2bNtWcOXNkGIZTv5xjYFxcnJo2bSoPDw/Vq1dPH374Ya5x169fr8jISLm7u6tq1ap64YUX9MEHH+T586gw7w1Jio6O1q+//qqvv/66UM8Rrj+c2cINrWvXrnJxcdG3336bb58DBw7onnvu0d13360PP/xQlSpV0p9//qm4uDhlZ2crKChIcXFx6ty5swYNGqTHH39cknKdOendu7cefPBBPfnkkzpz5kyBdSUkJGjEiBGKjY1VYGCgFi9erH/84x/Kzs5WTExMkbZx1qxZGjJkiPbt26fly5dftf+ePXvUsmVL+fv766233pKvr68WLVqkAQMG6OjRo3ruueec+o8dO1Z33nmnPvjgA2VkZGj06NHq3r27EhMT5eLiku8469atU4cOHdS4cWPNmTNHdrtds2bNUvfu3fXRRx+pb9++evzxx9WkSRP17t3bvOTHbrcXafslmb+sFnQ2a86cORo8eLBat26td955R/7+/vr111+1a9eufB/z8ccf69FHH9Vjjz2mGTNmFLi9+fm7r7VhGLpw4UKu9osXL+ZqK8xzfi1++OEHJSYm6p///KfCwsLk5eWljRs3qm/fvurbt69iY2Pl7u6uP/74w7w8LS9BQUHauHGjnn76aaWnp5uX9TVo0EDnzp1T27ZttW/fPk2YMEGNGzfWd999p0mTJikhISFXYPzss8/03Xffafz48QoMDJS/v/9Vt+PK57FcuXIqV+7qf3O82jHg559/VsuWLc0/8AQGBmrVqlUaPny4UlJS9OKLLzqtb8yYMYqMjNQ777yjcuXKyd/fX4sWLdKjjz6qnj17av78+XJ1ddW7776rTp06adWqVeZZ36+++ko9e/ZUZGSkli5dqosXL2rKlCm5QlJR7d+/X+XLl9ctt9xSYL+ff/5ZUVFRqlGjhubNmydPT0/NmjVLS5YsydV34sSJ+uc//6mBAwfqn//8p7Kzs/X666/r7rvv1pYtW9SgQQNJfx2nc7ajevXqSklJ0YYNG3IFhiutXr1a58+fV9u2bQu1jVceJyZNmqSxY8fqoYce0qRJk5SamqrY2FhFRkZq69atql27dqHqW758ue6//345HA7NmjVLkgp9HJs5c6ZCQ0M1ffp0Xbp0SVOmTFGXLl20bt06RUZGOvW98meMYRjq1auXvvrqK40ZM0Z33323duzYoRdffFEbN27Uxo0bzToGDhyoZcuW6bnnnlO7du30888/6957783zc3rSX5+Du+eee7Rw4UKdOXNGrq6uOnz4sHx9ffXaa6+pSpUqOnHihObPn6+IiAj9+OOPuS7/Hjt2rNq2bat58+bpwIEDiomJ0UMPPaTy5curSZMm+uijj/Tjjz9q7Nix8vb2vuofoQp7DD9//rx69OihQYMGadSoUfr222/18ssvy+FwaPz48Wa/AwcO6IknnlD16tUl/fVHhGHDhunPP/906idJP/30k0aNGqXnn39eAQEB+uCDDzRo0CDVqlVLrVq1kiTt2LFDHTp0UJ06dTR//nx5enrqnXfe0aJFi3JtS2HfG5LUrFkzVahQQStXrlS7du0KfI5wnTKAMmzu3LmGJGPr1q359gkICDDq169v3n/xxReNy3f9Tz75xJBkJCQk5LuO48ePG5KMF198MdeynPWNHz8+32WXCw0NNWw2W67xOnToYFSsWNE4c+aM07bt37/fqd/XX39tSDK+/vprs+2ee+4xQkND86z9yroffPBBw263G0lJSU79unTpYnh6ehonT550Gqdr165O/T7++GNDkrFx48Y8x8vRokULw9/f3zh16pTZduHCBSM8PNyoVq2acenSJcMwDGP//v2GJOP1118vcH2X9508ebJx/vx549y5c8b27duN22+/3ZBkrFy50jCM3M/dqVOnjIoVKxp33XWXOW5e+vfvb3h5eRmGYRivvfaa4eLiYkyePNmpT16vaV5jGkbhX+v8hIaGGpIKvM2dO9fsX9jnvKjb4OLiYuzZs8ep7xtvvGFIMveXomjdurXRsGFDp7Z33nnHkGR8/PHHTu2TJ082JBmrV6822yQZDofDOHHiRKHHy+u5e/jhhw3DyPv5aN26tdG6dWvzfkHHgE6dOhnVqlUz0tPTndqfeeYZw93d3awz5z3VqlUrp35nzpwxfHx8jO7duzu1X7x40WjSpIlxxx13mG0RERFGcHCwkZmZabZlZGQYPj4+eb6mV8rZx8+fP2+cP3/eSElJMWbPnm2UK1fOGDt2bK7+V25z3759DQ8PDyM5Odlsu3DhglGvXj2nfScpKckoX768MWzYMKf1nTp1yggMDDT69OljGIZhpKSkGJKM6dOnX7X2Kz311FOGh4dHrvd0YY4TaWlphoeHR67jW1JSkmG3241+/foVqb6GDRs67S9Xk1Njfq9l+/btzbb8fsbExcUZkowpU6Y4tS9btsyQZLz33nuGYRjG7t27DUnG6NGjnfp99NFHhiSjf//+ZlvOMeDRRx+96jZcuHDByM7ONmrXrm08++yzZnvOfn7l/jxixAhDkjF8+HCn9l69ehk+Pj4FjlWUY3hex5GuXbsadevWzfdxFy9eNM6fP2+89NJLhq+vr9MYoaGhhru7u/HHH3+YbZmZmYaPj4/xxBNPmG0PPPCA4eXlZRw/ftxpvQ0aNLim98bl7rzzTiMiIiLf+nF94zJC3PCMKy4JuNKtt94qNzc3DRkyRPPnz9fvv/9+TePcd999he7bsGFDNWnSxKmtX79+ysjI0A8//HBN4xfW2rVrFRUVpZCQEKf2AQMG6OzZs7lm6+rRo4fT/caNG0tyvhTnSmfOnNHmzZt1//33O80M5eLioujoaB06dKjQlyLmZfTo0XJ1dZW7u7uaNWumpKQkvfvuu+ratWue/Tds2KCMjAw9/fTTV73m3TAMPfHEE3rxxRe1ZMmSXGf6iurvvtZ33XWXtm7dmuu2YMECp35WPueNGzdWnTp1nNpuv/12SVKfPn308ccf688//7ymdedYu3atvLy8dP/99zu151zidOWlVe3atVPlypULvf6aNWvmeg5ffvnlv1Wz9NdlXF999ZXuvfdeeXp66sKFC+ata9euOnfunDZt2uT0mCuPFRs2bNCJEyfUv39/p8dfunRJnTt31tatW3XmzBmdOXNGW7duVe/eveXu7m4+3tvbW927dy90zTlnKlxdXeXn56ennnpKffv21auvvnrVx3799deKiooyPwMr/bWPXXnWdNWqVbpw4YIeffRRp21yd3dX69atzUtHfXx8VLNmTb3++uuaNm2afvzxx0LPvHb48GFVqVIl3/d0QceJjRs3KjMzM9eEFiEhIWrXrp25v/2d+qS/zkBf+ZpeLr/X8ttvv8119vrK/SbnLPKV2/DAAw/Iy8vL3IZ169ZJ+uu9ern7778/388K5vXz7MKFC5o4caIaNGggNzc3lS9fXm5ubtq7d2+uSy8l5ZpJtX79+pKke+65J1f7iRMnCryUsCjHcJvNluv90Lhx41w/s9auXav27dvL4XDIxcVFrq6uGj9+vFJTU3PNZHzrrbeaZ8Akyd3dXXXq1HFa57p169SuXTv5+fmZbeXKlcv1vBf2vXE5f3//v32MRekhbOGGdubMGaWmpio4ODjfPjVr1tSaNWvk7++voUOHqmbNmqpZs6b+9a9/FWmsosx8FxgYmG9bampqkcYtqtTU1DxrzXmOrhzf19fX6X7OZSmZmZn5jpGWlibDMIo0TlH84x//0NatW7V9+3bt27dPR44c0ZAhQ/Ltf/z4cUkq1CQI2dnZWrZsmRo2bKguXbpcc405/u5r7XA41Lx581y3nF9cclj5nOe1zlatWumzzz4zf2moVq2awsPD9dFHH13TGKmpqQoMDMz1i5S/v7/Kly+fq/aizjSZ83mYy2+XTwRxrVJTU3XhwgXNmDHDDDA5t5zwn5KSUmDtOZcA3n///bnWMXnyZBmGoRMnTigtLU2XLl0qcJ8qDA8PDzNwfv7552rTpo0++ugjvfbaa4Xa3sKMn7NNt99+e65tWrZsmfmc2Gw2ffXVV+rUqZOmTJmipk2bqkqVKho+fLhOnTpVYC05Ezfkp6DjRM7+lN/7JWf536lP+uvny+Xb/tJLLzktz++5zM7OzhU+rqw1NTVV5cuXz3X5tM1mU2BgoLkNOf9eHpAlqXz58rmO7/mNJUkjR47UCy+8oF69eunzzz/X5s2btXXrVjVp0iTPnwdXzjLq5uZWYPu5c+fyrEUq2jHc09Mz135ht9ud1r9lyxZ17NhRkvT+++/r+++/19atWzVu3DhJuX++5fU82e12p36pqam5nmMp9/Ne2PfG5dzd3Qv8mYvrG5/Zwg1t5cqVunjx4lWnar777rt199136+LFi9q2bZtmzJihESNGKCAgQA8++GChxirKLEHJycn5tuUc1HN+WFz5od68DsRF4evrqyNHjuRqP3z4sCQ5/VXuWlWuXFnlypWzbJxq1arlOftYfnJ+GTl06NBV+9rtdn399dfq1KmT2rdvr7i4OKczKJe/Lpd/LiO/16Uwr3VxKMpzXtRtyG/f7tmzp3r27KmsrCxt2rRJkyZNUr9+/VSjRo1cnze5Gl9fX23evFmGYTiNd+zYMV24cCHX/nK9zMpVuXJl8+zh0KFD8+xzZai7svacbZsxY0a+s/8FBASYMxcWtE8VRrly5ZzePx06dFCzZs00YcIEPfzww7nOel/O19e3UOPnbNMnn3yi0NDQAusJDQ3VnDlzJEm//vqrPv74Y8XGxio7O1vvvPNOvo/z8/Mr8OxwQceJnPdefu+Xy/e3a61Pkj7//HOnY/iVf/jL77l0c3PL9X1RV+43vr6+unDhgo4fP+4UuAzDUHJysnn2OWdbjx49qqpVq5r9Lly4kO8fYPJ6f+V8rnDixIlO7SkpKapUqVKe6ykuRTmGF8bSpUvl6uqqL774wimY5fcdj4Xh6+ub52cn/857I8eJEyeK5WczSgdntnDDSkpKUkxMjBwOh5544olCPcbFxUURERHmLGI5P8gLczanKHbv3q2ffvrJqW3JkiXy9vZW06ZNJcmczWrHjh1O/VasWJFrfVf+ha0gUVFRWrt2rfkLeI4FCxbI09OzWKZ69vLyUkREhD799FOnui5duqRFixapWrVquS5Ls1LLli3lcDj0zjvvXPWyUkm67bbbtG7dOh06dEht2rRxuqQkv9fl888/z3NdhXmti0NRnvOibsPV2O12tW7dWpMnT5akPGfUupqoqCidPn061y87OZdLFvZrAayS3zHA09NTbdu21Y8//qjGjRvneRbyaqH6zjvvVKVKlfTzzz/n+fjmzZvLzc1NXl5euuOOO/Tpp586/ZX+1KlT1/za5Wzb22+/rXPnzumVV14psG/btm311VdfOf1SefHiRS1btsypX6dOnVS+fHnt27cv323KS506dfTPf/5TjRo1uupltvXq1VNqaqrS09MLuaX/T2RkpDw8PHJNXnDo0CHzUuui1JffMbhRo0ZO23xl2Mrvtbz77ruvOiFPTo1XbsN//vMfnTlzxlyeM4HDla/RJ598kufkO/mx2Wy5Jv5YuXJliVzeVtRj+NXkfN3C5c9xZmamFi5ceM3rbN26tdauXev0R6tLly7p3//+t1O/a3lv/P77706TZqBs4cwWbgi7du0yr3s+duyYvvvuO82dO1cuLi5avnx5gbPUvfPOO1q7dq3uueceVa9eXefOnTOndM35MmRvb2+Fhobqv//9r6KiouTj4yM/P79rmqZc+uuvmz169FBsbKyCgoK0aNEixcfHa/LkyeZ3p9x+++2qW7euYmJidOHCBVWuXFnLly/X+vXrc62vUaNG+vTTTzV79mw1a9Ys11+uL/fiiy/qiy++UNu2bTV+/Hj5+Pho8eLFWrlypaZMmSKHw3FN23SlSZMmqUOHDmrbtq1iYmLk5uamWbNmadeuXfroo49K9MxEhQoVNHXqVD3++ONq3769Bg8erICAAP3222/66aefNHPmzFyPqV+/vr777ju1b99erVq10po1a1StWjV17dpVPj4+GjRokF566SWVL19e8+bN08GDB/McuzCvdXEp7HNe1G3Iy/jx43Xo0CFFRUWpWrVqOnnypP71r3/J1dVVrVu3LnLtjz76qN5++231799fBw4cUKNGjbR+/XpNnDhRXbt2dfpi8tJQ0DHgX//6l+666y7dfffdeuqpp1SjRg2dOnVKv/32mz7//PMCZ2iU/to/Z8yYof79++vEiRO6//775e/vr+PHj+unn37S8ePHNXv2bEl/fSF0586d1aFDB40aNUoXL17U5MmT5eXlpRMnTlzz9rVu3Vpdu3bV3Llz9fzzz+d7ieU///lPrVixQu3atdP48ePl6empt99+O9cMrDVq1NBLL72kcePG6ffff1fnzp1VuXJlHT16VFu2bJGXl5cmTJigHTt26JlnntEDDzyg2rVry83NTWvXrtWOHTv0/PPPF1hzmzZtZBiGNm/ebF4SVliVKlXSCy+8oLFjx+rRRx/VQw89pNTUVE2YMEHu7u7mDJKFra9Ro0ZaunSpli1bpltuuUXu7u5q1KjRVetwcXFRhw4dNHLkSF26dEmTJ09WRkaG+fUKBenQoYM6deqk0aNHKyMjQ3feeac5G+Ftt91mTonfsGFDPfTQQ5o6dapcXFzUrl077d69W1OnTpXD4SjUjJzSX5/BmjdvnurVq6fGjRtr+/btev3110vkO+qu5RhekHvuuUfTpk1Tv379NGTIEKWmpuqNN964ptlwc4wbN06ff/65oqKiNG7cOHl4eOidd94x3xs5z3Nh3xs5UlNTtXfvXg0bNuyaa0MpK62ZOYDikDNzUs7Nzc3N8Pf3N1q3bm1MnDjROHbsWK7HXDnz2MaNG417773XCA0NNex2u+Hr62u0bt3aWLFihdPj1qxZY9x2222G3W53msEpZ32Xz0CU31iG8dfMRvfcc4/xySefGA0bNjTc3NyMGjVqGNOmTcv1+F9//dXo2LGjUbFiRaNKlSrGsGHDjJUrV+aajfDEiRPG/fffb1SqVMmw2WxOYyqPGdR27txpdO/e3XA4HIabm5vRpEkTp1ntDOP/zSj173//26k9ZxatK/vn5bvvvjPatWtneHl5GR4eHkaLFi2Mzz//PM/1FWU2wqv1zW8mxy+//NJo3bq14eXlZXh6ehoNGjRwmm3w8tkIcxw6dMioV6+eUaNGDWPfvn2GYRjGli1bjJYtWxpeXl5G1apVjRdffNH44IMP8pzJr7CvdV5yHp+XrVu35vk6FOY5v5ZtuNIXX3xhdOnSxahatar5vuvatavx3XffXXW78pqN0DAMIzU11XjyySeNoKAgo3z58kZoaKgxZswY49y5c079JBlDhw696jhXGy9HYWYjNIz8jwGG8de++dhjjxlVq1Y1XF1djSpVqhgtW7Y0XnnlFbNPfu+pHOvWrTPuuecew8fHx3B1dTWqVq1q3HPPPbn6r1ixwmjcuLHh5uZmVK9e3XjttdfynWHySnnt4zl27txplCtXzhg4cKDZltfx4/vvvzdatGhh2O12IzAw0Pi///s/47333svzPffZZ58Zbdu2NSpWrGjY7XYjNDTUuP/++401a9YYhmEYR48eNQYMGGDUq1fP8PLyMipUqGA0btzYePPNN40LFy4UuC0XL140atSoYTz99NNO7UU5pnzwwQfmc+lwOIyePXsau3fvNpcXtr4DBw4YHTt2NLy9vQ1J+c4Oe2WNkydPNiZMmGBUq1bNcHNzM2677TZj1apVTn0L+hmTmZlpjB492ggNDTVcXV2NoKAg46mnnjLS0tKc+p07d84YOXKk4e/vb7i7uxstWrQwNm7caDgcDqeZBAua4TctLc0YNGiQ4e/vb3h6ehp33XWX8d133+V6r+S3n+e37oK270rXcgy/fIzLffjhh0bdunUNu91u3HLLLcakSZOMOXPmFPoYmNcx4rvvvjMiIiKc3hs5M6peOXPr1d4bOebMmWO4uro6zQCKssVmGMVwPhYAkEuNGjUUHh6uL774orRLAW5IU6dO1auvvqo///xTHh4epV1OoR04cEBhYWF6/fXXi/zdisVlw4YNuvPOO7V48WL169evVGq4GXTs2FEHDhzQr7/+ek2Pv/vuu1W9enXzewlR9nAZIQAAKJOGDh2qmTNn6u233y610FIWxMfHa+PGjWrWrJk8PDz0008/6bXXXlPt2rXVu3fv0i7vhjFy5EjddtttCgkJ0YkTJ7R48WLFx8ebE6wU1bfffqutW7dq/vz5xVwpShJhCwAAlEnu7u5auHDhNU3KcjOpWLGiVq9erenTp+vUqVPy8/NTly5dNGnSpAKnz0fRXLx4UePHj1dycrJsNpsaNGighQsX6pFHHrmm9aWmpmrBggW65ZZbirlSlCQuIwQAAAAACzD1OwAAAABYgLAFAAAAABYgbAEAAACABZggo5AuXbqkw4cPy9vbu0S/jBUAAADA9cUwDJ06dUrBwcEFfjk4YauQDh8+rJCQkNIuAwAAAMB14uDBg6pWrVq+ywlbheTt7S3prye0YsWKpVwNAAAAgNKSkZGhkJAQMyPkh7BVSDmXDlasWJGwBQAAAOCqHy9iggwAAAAAsABhCwAAAAAsQNgCAAAAAAsQtgAAAADAAoQtAAAAALBAqYat2bNnq3HjxuYMf5GRkfrf//5nLh8wYIBsNpvTrUWLFk7ryMrK0rBhw+Tn5ycvLy/16NFDhw4dcuqTlpam6OhoORwOORwORUdH6+TJkyWxiQAAAABuUqUatqpVq6bXXntN27Zt07Zt29SuXTv17NlTu3fvNvt07txZR44cMW9ffvml0zpGjBih5cuXa+nSpVq/fr1Onz6tbt266eLFi2affv36KSEhQXFxcYqLi1NCQoKio6NLbDsBAAAA3HxshmEYpV3E5Xx8fPT6669r0KBBGjBggE6ePKnPPvssz77p6emqUqWKFi5cqL59+0qSDh8+rJCQEH355Zfq1KmTEhMT1aBBA23atEkRERGSpE2bNikyMlK//PKL6tatW6i6MjIy5HA4lJ6ezvdsAQAAADexwmaD6+YzWxcvXtTSpUt15swZRUZGmu3ffPON/P39VadOHQ0ePFjHjh0zl23fvl3nz59Xx44dzbbg4GCFh4drw4YNkqSNGzfK4XCYQUuSWrRoIYfDYfbJS1ZWljIyMpxuAAAAAFBYpR62du7cqQoVKshut+vJJ5/U8uXL1aBBA0lSly5dtHjxYq1du1ZTp07V1q1b1a5dO2VlZUmSkpOT5ebmpsqVKzutMyAgQMnJyWYff3//XOP6+/ubffIyadIk8zNeDodDISEhxbXJAAAAAG4C5Uu7gLp16yohIUEnT57Uf/7zH/Xv31/r1q1TgwYNzEsDJSk8PFzNmzdXaGioVq5cqd69e+e7TsMwZLPZzPuX/z+/PlcaM2aMRo4cad7PyMggcAEAAAAotFIPW25ubqpVq5YkqXnz5tq6dav+9a9/6d13383VNygoSKGhodq7d68kKTAwUNnZ2UpLS3M6u3Xs2DG1bNnS7HP06NFc6zp+/LgCAgLyrctut8tut/+tbQMAAABw8yr1ywivZBiGeZnglVJTU3Xw4EEFBQVJkpo1ayZXV1fFx8ebfY4cOaJdu3aZYSsyMlLp6enasmWL2Wfz5s1KT083+wAAAABAcSvVM1tjx45Vly5dFBISolOnTmnp0qX65ptvFBcXp9OnTys2Nlb33XefgoKCdODAAY0dO1Z+fn669957JUkOh0ODBg3SqFGj5OvrKx8fH8XExKhRo0Zq3769JKl+/frq3LmzBg8ebJ4tGzJkiLp161bomQgBAAAAoKhKNWwdPXpU0dHROnLkiBwOhxo3bqy4uDh16NBBmZmZ2rlzpxYsWKCTJ08qKChIbdu21bJly+Tt7W2u480331T58uXVp08fZWZmKioqSvPmzZOLi4vZZ/HixRo+fLg5a2GPHj00c+bMEt9eAAAAADeP6+57tq5XfM8WAAAAAKkMfs8WAAAAANxICFsAAAAAYIFSn/odAAAAN7akpCSlpKSU6Jh+fn6qXr16iY4JXImwBQAAAMskJSWpXv36yjx7tkTH9fD01C+JiQQulCrCFgAAACyTkpKizLNn9fQb7ym4Zp0SGfPwvl81K2aIUlJSCFsoVYQtAAAAWC64Zh2FNby1tMsAShQTZAAAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAaZ+BwAAwA0pMTGxRMfz8/Pje73ghLAFAACAG8rJ40dls9n0yCOPlOi4Hp6e+iUxkcAFE2ELAAAAN5SzGekyDEMDX35LNcMbl8iYh/f9qlkxQ5SSkkLYgomwBQAAgBtSUFgthTW8tbTLwE2MCTIAAAAAwAKELQAAAACwAGELAAAAACxA2AIAAAAACxC2AAAAAMAChC0AAAAAsABhCwAAAAAswPdsAQAA3CSSkpKUkpJSomMmJiaW6HjA9YSwBQAAcBNISkpSvfr1lXn2bKmMn52VXSrjAqWJsAUAAHATSElJUebZs3r6jfcUXLNOiY3707p4/Xv6q7pw4UKJjQlcLwhbAAAAN5HgmnUU1vDWEhvv8L5fS2ws4HrDBBkAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFihf2gUAAAAAN4rExMQSH9PPz0/Vq1cv8XFxdYQtAAAA4G86efyobDabHnnkkRIf28PTU78kJhK4rkOELQAAAOBvOpuRLsMwNPDlt1QzvHGJjXt436+aFTNEKSkphK3rUKmGrdmzZ2v27Nk6cOCAJKlhw4YaP368unTpIkkyDEMTJkzQe++9p7S0NEVEROjtt99Ww4YNzXVkZWUpJiZGH330kTIzMxUVFaVZs2apWrVqZp+0tDQNHz5cK1askCT16NFDM2bMUKVKlUpsWwEAAHDjCwqrpbCGt5Z2GbhOlOoEGdWqVdNrr72mbdu2adu2bWrXrp169uyp3bt3S5KmTJmiadOmaebMmdq6dasCAwPVoUMHnTp1ylzHiBEjtHz5ci1dulTr16/X6dOn1a1bN128eNHs069fPyUkJCguLk5xcXFKSEhQdHR0iW8vAAAAgJtHqZ7Z6t69u9P9V199VbNnz9amTZvUoEEDTZ8+XePGjVPv3r0lSfPnz1dAQICWLFmiJ554Qunp6ZozZ44WLlyo9u3bS5IWLVqkkJAQrVmzRp06dVJiYqLi4uK0adMmRURESJLef/99RUZGas+ePapbt27JbjQAAACAm8J1M/X7xYsXtXTpUp05c0aRkZHav3+/kpOT1bFjR7OP3W5X69attWHDBknS9u3bdf78eac+wcHBCg8PN/ts3LhRDofDDFqS1KJFCzkcDrNPXrKyspSRkeF0AwAAAIDCKvWwtXPnTlWoUEF2u11PPvmkli9frgYNGig5OVmSFBAQ4NQ/ICDAXJacnCw3NzdVrly5wD7+/v65xvX39zf75GXSpElyOBzmLSQk5G9tJwAAAICbS6mHrbp16yohIUGbNm3SU089pf79++vnn382l9tsNqf+hmHkarvSlX3y6n+19YwZM0bp6enm7eDBg4XdJAAAAAAo/bDl5uamWrVqqXnz5po0aZKaNGmif/3rXwoMDJSkXGefjh07Zp7tCgwMVHZ2ttLS0grsc/To0VzjHj9+PNdZs8vZ7XZVrFjR6QYAAAAAhVXqYetKhmEoKytLYWFhCgwMVHx8vLksOztb69atU8uWLSVJzZo1k6urq1OfI0eOaNeuXWafyMhIpaena8uWLWafzZs3Kz093ewDAAAAAMWtVGcjHDt2rLp06aKQkBCdOnVKS5cu1TfffKO4uDjZbDaNGDFCEydOVO3atVW7dm1NnDhRnp6e6tevnyTJ4XBo0KBBGjVqlHx9feXj46OYmBg1atTInJ2wfv366ty5swYPHqx3331XkjRkyBB169aNmQgBAAAAWKZUw9bRo0cVHR2tI0eOyOFwqHHjxoqLi1OHDh0kSc8995wyMzP19NNPm19qvHr1anl7e5vrePPNN1W+fHn16dPH/FLjefPmycXFxeyzePFiDR8+3Jy1sEePHpo5c2bJbiwAAACAm0qphq05c+YUuNxmsyk2NlaxsbH59nF3d9eMGTM0Y8aMfPv4+Pho0aJF11omAAAAABTZdfeZLQAAAAC4ERC2AAAAAMAChC0AAAAAsABhCwAAAAAsQNgCAAAAAAsQtgAAAADAAoQtAAAAALAAYQsAAAAALEDYAgAAAAALELYAAAAAwAKELQAAAACwAGELAAAAACxA2AIAAAAACxC2AAAAAMAChC0AAAAAsABhCwAAAAAsQNgCAAAAAAsQtgAAAADAAoQtAAAAALAAYQsAAAAALEDYAgAAAAALlC/tAgAAAG5GSUlJSklJKbHxEhMTS2wsAH8hbAEAAJSwpKQk1atfX5lnz5b42NlZ2SU+JnCzImwBAACUsJSUFGWePaun33hPwTXrlMiYP62L17+nv6oLFy6UyHgACFsAAAClJrhmHYU1vLVExjq879cSGQfA/8MEGQAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFSjVsTZo0Sbfffru8vb3l7++vXr16ac+ePU59BgwYIJvN5nRr0aKFU5+srCwNGzZMfn5+8vLyUo8ePXTo0CGnPmlpaYqOjpbD4ZDD4VB0dLROnjxp9SYCAAAAuEmVathat26dhg4dqk2bNik+Pl4XLlxQx44ddebMGad+nTt31pEjR8zbl19+6bR8xIgRWr58uZYuXar169fr9OnT6tatmy5evGj26devnxISEhQXF6e4uDglJCQoOjq6RLYTAAAAwM2nfGkOHhcX53R/7ty58vf31/bt29WqVSuz3W63KzAwMM91pKena86cOVq4cKHat28vSVq0aJFCQkK0Zs0aderUSYmJiYqLi9OmTZsUEREhSXr//fcVGRmpPXv2qG7duhZtIQAAAICb1XX1ma309HRJko+Pj1P7N998I39/f9WpU0eDBw/WsWPHzGXbt2/X+fPn1bFjR7MtODhY4eHh2rBhgyRp48aNcjgcZtCSpBYtWsjhcJh9rpSVlaWMjAynGwAAAAAUVqme2bqcYRgaOXKk7rrrLoWHh5vtXbp00QMPPKDQ0FDt379fL7zwgtq1a6ft27fLbrcrOTlZbm5uqly5stP6AgIClJycLElKTk6Wv79/rjH9/f3NPleaNGmSJkyYUIxbCAAAAFgjMTGxRMfz8/NT9erVS3TMsui6CVvPPPOMduzYofXr1zu19+3b1/x/eHi4mjdvrtDQUK1cuVK9e/fOd32GYchms5n3L/9/fn0uN2bMGI0cOdK8n5GRoZCQkEJvDwAAAGC1k8ePymaz6ZFHHinRcT08PfVLYiKB6yqui7A1bNgwrVixQt9++62qVatWYN+goCCFhoZq7969kqTAwEBlZ2crLS3N6ezWsWPH1LJlS7PP0aNHc63r+PHjCggIyHMcu90uu91+rZsEAAAAWO5sRroMw9DAl99SzfDGJTLm4X2/albMEKWkpBC2rqJUw5ZhGBo2bJiWL1+ub775RmFhYVd9TGpqqg4ePKigoCBJUrNmzeTq6qr4+Hj16dNHknTkyBHt2rVLU6ZMkSRFRkYqPT1dW7Zs0R133CFJ2rx5s9LT081ABgAAAJRVQWG1FNbw1tIuA1co1bA1dOhQLVmyRP/973/l7e1tfn7K4XDIw8NDp0+fVmxsrO677z4FBQXpwIEDGjt2rPz8/HTvvfeafQcNGqRRo0bJ19dXPj4+iomJUaNGjczZCevXr6/OnTtr8ODBevfddyVJQ4YMUbdu3ZiJEAAAAIAlSjVszZ49W5LUpk0bp/a5c+dqwIABcnFx0c6dO7VgwQKdPHlSQUFBatu2rZYtWyZvb2+z/5tvvqny5curT58+yszMVFRUlObNmycXFxezz+LFizV8+HBz1sIePXpo5syZ1m8kAAAAgJtSqV9GWBAPDw+tWrXqqutxd3fXjBkzNGPGjHz7+Pj4aNGiRUWuEQAAAACuxXX1PVsAAAAAcKMgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGCBIoetzMxMnT171rz/xx9/aPr06Vq9enWxFgYAAAAAZVmRw1bPnj21YMECSdLJkycVERGhqVOnqmfPnpo9e3axFwgAAAAAZVGRw9YPP/ygu+++W5L0ySefKCAgQH/88YcWLFigt956q9gLBAAAAICyqMhh6+zZs/L29pYkrV69Wr1791a5cuXUokUL/fHHH8VeIAAAAACURUUOW7Vq1dJnn32mgwcPatWqVerYsaMk6dixY6pYsWKxFwgAAAAAZVGRw9b48eMVExOjGjVq6I477lBkZKSkv85y3XbbbcVeIAAAAACUReWL+oD7779fd911l44cOaImTZqY7VFRUbr33nuLtTgAAAAAKKuu6Xu2AgMD5e3trfj4eGVmZkqSbr/9dtWrV69YiwMAAACAsqrIYSs1NVVRUVGqU6eOunbtqiNHjkiSHn/8cY0aNarYCwQAAACAsqjIYevZZ5+Vq6urkpKS5Onpabb37dtXcXFxxVocAAAAAJRVRf7M1urVq7Vq1SpVq1bNqb127dpM/Q4AAAAA/78in9k6c+aM0xmtHCkpKbLb7cVSFAAAAACUdUUOW61atdKCBQvM+zabTZcuXdLrr7+utm3bFmtxAAAAAFBWFfkywtdff11t2rTRtm3blJ2dreeee067d+/WiRMn9P3331tRIwAAAACUOUU+s9WgQQPt2LFDd9xxhzp06KAzZ86od+/e+vHHH1WzZk0ragQAAACAMqfIZ7akv75na8KECcVdCwAAAADcMAoVtnbs2FHoFTZu3PiaiwEAAACAG0Whwtatt94qm80mwzBks9nMdsMwJMmp7eLFi8VcIgAAAACUPYX6zNb+/fv1+++/a//+/frPf/6jsLAwzZo1SwkJCUpISNCsWbNUs2ZN/ec//7G6XgAAAAAoEwp1Zis0NNT8/wMPPKC33npLXbt2NdsaN26skJAQvfDCC+rVq1exFwkAAAAAZU2RZyPcuXOnwsLCcrWHhYXp559/LpaiAAAAAKCsK3LYql+/vl555RWdO3fObMvKytIrr7yi+vXrF2txAAAAAFBWFXnq93feeUfdu3dXSEiImjRpIkn66aefZLPZ9MUXXxR7gQAAAABQFhU5bN1xxx3av3+/Fi1apF9++UWGYahv377q16+fvLy8rKgRAAAAAMqca/pSY09PTw0ZMqS4awEAAACAG0ahwtaKFSvUpUsXubq6asWKFQX27dGjR7EUBgAAAABlWaHCVq9evZScnCx/f/8Cp3a32Wx8qTEAAAAAqJCzEV66dEn+/v7m//O7FTVoTZo0Sbfffru8vb3NILdnzx6nPoZhKDY2VsHBwfLw8FCbNm20e/dupz5ZWVkaNmyY/Pz85OXlpR49eujQoUNOfdLS0hQdHS2HwyGHw6Ho6GidPHmySPUCAAAAQGEVeer3gvz5559F6r9u3ToNHTpUmzZtUnx8vC5cuKCOHTvqzJkzZp8pU6Zo2rRpmjlzprZu3arAwEB16NBBp06dMvuMGDFCy5cv19KlS7V+/XqdPn1a3bp1cwp//fr1U0JCguLi4hQXF6eEhARFR0f//Y0GAAAAgDxc0wQZV0pOTtarr76qDz74QJmZmYV+XFxcnNP9uXPnyt/fX9u3b1erVq1kGIamT5+ucePGqXfv3pKk+fPnKyAgQEuWLNETTzyh9PR0zZkzRwsXLlT79u0lSYsWLVJISIjWrFmjTp06KTExUXFxcdq0aZMiIiIkSe+//74iIyO1Z88e1a1btzieBgAAAAAwFTpsnTx5UkOHDtXq1avl6uqq559/Xs8884xiY2P1xhtvqGHDhvrwww//VjHp6emSJB8fH0nS/v37lZycrI4dO5p97Ha7WrdurQ0bNuiJJ57Q9u3bdf78eac+wcHBCg8P14YNG9SpUydt3LhRDofDDFqS1KJFCzkcDm3YsCHPsJWVlaWsrCzzfkZGxt/aNgAAAOBGkpiYWOJj+vn5qXr16iU+7rUqdNgaO3asvv32W/Xv319xcXF69tlnFRcXp3Pnzul///ufWrdu/bcKMQxDI0eO1F133aXw8HBJf50xk6SAgACnvgEBAfrjjz/MPm5ubqpcuXKuPjmPz5nc40r+/v5mnytNmjRJEyZM+FvbBAAAANxoTh4/KpvNpkceeaTEx/bw9NQviYllJnAVOmytXLlSc+fOVfv27fX000+rVq1aqlOnjqZPn14shTzzzDPasWOH1q9fn2uZzWZzum8YRq62K13ZJ6/+Ba1nzJgxGjlypHk/IyNDISEhBY4JAAAA3OjOZqTLMAwNfPkt1QxvXGLjHt73q2bFDFFKSsqNF7YOHz6sBg0aSJJuueUWubu76/HHHy+WIoYNG6YVK1bo22+/VbVq1cz2wMBASX+dmQoKCjLbjx07Zp7tCgwMVHZ2ttLS0pzObh07dkwtW7Y0+xw9ejTXuMePH8911iyH3W6X3W7/+xsHAAAA3ICCwmoprOGtpV3Gda3QsxFeunRJrq6u5n0XFxd5eXn9rcENw9AzzzyjTz/9VGvXrlVYWJjT8rCwMAUGBio+Pt5sy87O1rp168wg1axZM7m6ujr1OXLkiHbt2mX2iYyMVHp6urZs2WL22bx5s9LT080+AAAAAFCcCn1myzAMDRgwwDzbc+7cOT355JO5Atenn35a6MGHDh2qJUuW6L///a+8vb3Nz085HA55eHjIZrNpxIgRmjhxomrXrq3atWtr4sSJ8vT0VL9+/cy+gwYN0qhRo+Tr6ysfHx/FxMSoUaNG5uyE9evXV+fOnTV48GC9++67kqQhQ4aoW7duzEQIAAAAwBKFDlv9+/d3ul8cH4ibPXu2JKlNmzZO7XPnztWAAQMkSc8995wyMzP19NNPKy0tTREREVq9erW8vb3N/m+++abKly+vPn36KDMzU1FRUZo3b55cXFzMPosXL9bw4cPNWQt79OihmTNn/u1tAAAAAIC8FDpszZ07t9gHNwzjqn1sNptiY2MVGxubbx93d3fNmDFDM2bMyLePj4+PFi1adC1lAgAAAECRFfozWwAAAACAwiNsAQAAAIAFCFsAAAAAYAHCFgAAAABYoFBhq2nTpkpLS5MkvfTSSzp79qylRQEAAABAWVeosJWYmKgzZ85IkiZMmKDTp09bWhQAAAAAlHWFmvr91ltv1cCBA3XXXXfJMAy98cYbqlChQp59x48fX6wFAgAAAEBZVKiwNW/ePL344ov64osvZLPZ9L///U/ly+d+qM1mI2wBAAAAgAoZturWraulS5dKksqVK6evvvpK/v7+lhYGAAAAAGVZocLW5S5dumRFHQAAAABwQyly2JKkffv2afr06UpMTJTNZlP9+vX1j3/8QzVr1izu+gAAAACgTCry92ytWrVKDRo00JYtW9S4cWOFh4dr8+bNatiwoeLj462oEQAAAADKnCKf2Xr++ef17LPP6rXXXsvVPnr0aHXo0KHYigMAAACAsqrIZ7YSExM1aNCgXO2PPfaYfv7552IpCgAAAADKuiKHrSpVqighISFXe0JCAjMUAgAAAMD/r8iXEQ4ePFhDhgzR77//rpYtW8pms2n9+vWaPHmyRo0aZUWNAAAAAFDmFDlsvfDCC/L29tbUqVM1ZswYSVJwcLBiY2M1fPjwYi8QAAAAAMqiIoctm82mZ599Vs8++6xOnTolSfL29i72wgAAAACgLLum79nKQcgCAAAAgLwVeYIMAAAAAMDVEbYAAAAAwAKELQAAAACwQJHC1vnz59W2bVv9+uuvVtUDAAAAADeEIoUtV1dX7dq1Szabzap6AAAAAOCGUOTLCB999FHNmTPHiloAAAAA4IZR5Knfs7Oz9cEHHyg+Pl7NmzeXl5eX0/Jp06YVW3EAAAAAUFYVOWzt2rVLTZs2laRcn93i8kIAAAAA+EuRw9bXX39tRR0AAAAAcEO55qnff/vtN61atUqZmZmSJMMwiq0oAAAAACjrihy2UlNTFRUVpTp16qhr1646cuSIJOnxxx/XqFGjir1AAAAAACiLihy2nn32Wbm6uiopKUmenp5me9++fRUXF1esxQEAAABAWVXkz2ytXr1aq1atUrVq1Zzaa9eurT/++KPYCgMAAACAsqzIZ7bOnDnjdEYrR0pKiux2e7EUBQAAAABlXZHDVqtWrbRgwQLzvs1m06VLl/T666+rbdu2xVocAAAAAJRVRb6M8PXXX1ebNm20bds2ZWdn67nnntPu3bt14sQJff/991bUCAAAAABlTpHPbDVo0EA7duzQHXfcoQ4dOujMmTPq3bu3fvzxR9WsWdOKGgEAAACgzCnymS1JCgwM1IQJE4q7FgAAAAC4YVxT2EpLS9OcOXOUmJgom82m+vXra+DAgfLx8Snu+gAAAACgTCryZYTr1q1TWFiY3nrrLaWlpenEiRN66623FBYWpnXr1llRIwAAAACUOUU+szV06FD16dNHs2fPlouLiyTp4sWLevrppzV06FDt2rWr2IsEAAAAgLKmyGe29u3bp1GjRplBS5JcXFw0cuRI7du3r1iLAwAAAICyqshhq2nTpkpMTMzVnpiYqFtvvbU4agIAAACAMq9QlxHu2LHD/P/w4cP1j3/8Q7/99ptatGghSdq0aZPefvttvfbaa9ZUCQAAAABlTKHC1q233iqbzSbDMMy25557Lle/fv36qW/fvsVXHQAAAACUUYUKW/v377e6DgAAAAC4oRQqbIWGhlpdBwAAAADcUK7pS43//PNPff/99zp27JguXbrktGz48OHFUhgAAAAAlGVFDltz587Vk08+KTc3N/n6+spms5nLbDYbYQsAAAAAdA1ha/z48Ro/frzGjBmjcuWKPHM8AAAAANwUipyWzp49qwcffJCgBQAAAAAFKHJiGjRokP79739bUQsAAAAA3DCKfBnhpEmT1K1bN8XFxalRo0ZydXV1Wj5t2rRiKw4AAAAAyqoih62JEydq1apVqlu3riTlmiADAAAAAHANlxFOmzZNH374oRITE/XNN9/o66+/Nm9r164t0rq+/fZbde/eXcHBwbLZbPrss8+clg8YMEA2m83p1qJFC6c+WVlZGjZsmPz8/OTl5aUePXro0KFDTn3S0tIUHR0th8Mhh8Oh6OhonTx5sqibDgAAAACFVuSwZbfbdeeddxbL4GfOnFGTJk00c+bMfPt07txZR44cMW9ffvml0/IRI0Zo+fLlWrp0qdavX6/Tp0+rW7duunjxotmnX79+SkhIUFxcnOLi4pSQkKDo6Ohi2QYAAAAAyEuRLyP8xz/+oRkzZuitt97624N36dJFXbp0KbCP3W5XYGBgnsvS09M1Z84cLVy4UO3bt5ckLVq0SCEhIVqzZo06deqkxMRExcXFadOmTYqIiJAkvf/++4qMjNSePXvMyyEBAAAAoDgVOWxt2bJFa9eu1RdffKGGDRvmmiDj008/LbbiJOmbb76Rv7+/KlWqpNatW+vVV1+Vv7+/JGn79u06f/68OnbsaPYPDg5WeHi4NmzYoE6dOmnjxo1yOBxm0JKkFi1ayOFwaMOGDfmGraysLGVlZZn3MzIyinW7AAAAANzYihy2KlWqpN69e1tRSy5dunTRAw88oNDQUO3fv18vvPCC2rVrp+3bt8tutys5OVlubm6qXLmy0+MCAgKUnJwsSUpOTjbD2eX8/f3NPnmZNGmSJkyYULwbBAAAAOCmUeSwNXfuXCvqyFPfvn3N/4eHh6t58+YKDQ3VypUrCwx8hmFcdZbEK/tcacyYMRo5cqR5PyMjQyEhIUXdBAAAAAA3qSJPkFGagoKCFBoaqr1790qSAgMDlZ2drbS0NKd+x44dU0BAgNnn6NGjudZ1/Phxs09e7Ha7Klas6HQDAAAAgMIq8pmtsLCwAs8I/f7773+roIKkpqbq4MGDCgoKkiQ1a9ZMrq6uio+PV58+fSRJR44c0a5duzRlyhRJUmRkpNLT07VlyxbdcccdkqTNmzcrPT1dLVu2tKxWqyUlJSklJaVEx/Tz81P16tVLdEwAAACgrCpy2BoxYoTT/fPnz+vHH39UXFyc/u///q9I6zp9+rR+++038/7+/fuVkJAgHx8f+fj4KDY2Vvfdd5+CgoJ04MABjR07Vn5+frr33nslSQ6HQ4MGDdKoUaPk6+srHx8fxcTEqFGjRubshPXr11fnzp01ePBgvfvuu5KkIUOGqFu3bmV2JsKkpCTVq19fmWfPlui4Hp6e+iUxkcAFAAAAFMI1Tf2el7ffflvbtm0r0rq2bdumtm3bmvdzPiPVv39/zZ49Wzt37tSCBQt08uRJBQUFqW3btlq2bJm8vb3Nx7z55psqX768+vTpo8zMTEVFRWnevHlycXEx+yxevFjDhw83Zy3s0aNHgd/tdb1LSUlR5tmzevqN9xRcs06JjHl436+aFTNEKSkphC0AAACgEIoctvLTpUsXjRkzpkgTaLRp00aGYeS7fNWqVVddh7u7u2bMmKEZM2bk28fHx0eLFi0qdF1lRXDNOgpreGtplwEAAAAgD8U2QcYnn3wiHx+f4lodAAAAAJRpRT6zddtttzlNkGEYhpKTk3X8+HHNmjWrWIsDAAAAgLKqyGGrV69eTvfLlSunKlWqqE2bNqpXr15x1QUAAAAAZVqRw9aLL75oRR0AAAAAcEMpU19qDAAAAABlRaHPbJUrV67ALzOWJJvNpgsXLvztogAAAACgrCt02Fq+fHm+yzZs2KAZM2YUOI07AAAAANxMCh22evbsmavtl19+0ZgxY/T555/r4Ycf1ssvv1ysxQEAAABAWXVNn9k6fPiwBg8erMaNG+vChQtKSEjQ/PnzVb169eKuDwAAAADKpCKFrfT0dI0ePVq1atXS7t279dVXX+nzzz9XeHi4VfUBAAAAQJlU6MsIp0yZosmTJyswMFAfffRRnpcVAgAAAAD+Uuiw9fzzz8vDw0O1atXS/PnzNX/+/Dz7ffrpp8VWHAAAAACUVYUOW48++uhVp34HAAAAAPyl0GFr3rx5FpYBAAAAADeWa5qNEAAAAABQMMIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFijVsPXtt9+qe/fuCg4Ols1m02effea03DAMxcbGKjg4WB4eHmrTpo12797t1CcrK0vDhg2Tn5+fvLy81KNHDx06dMipT1pamqKjo+VwOORwOBQdHa2TJ09avHUAAAAAbmalGrbOnDmjJk2aaObMmXkunzJliqZNm6aZM2dq69atCgwMVIcOHXTq1Cmzz4gRI7R8+XItXbpU69ev1+nTp9WtWzddvHjR7NOvXz8lJCQoLi5OcXFxSkhIUHR0tOXbBwAAAODmVb40B+/SpYu6dOmS5zLDMDR9+nSNGzdOvXv3liTNnz9fAQEBWrJkiZ544gmlp6drzpw5Wrhwodq3by9JWrRokUJCQrRmzRp16tRJiYmJiouL06ZNmxQRESFJev/99xUZGak9e/aobt26JbOxAAAAAG4q1+1ntvbv36/k5GR17NjRbLPb7WrdurU2bNggSdq+fbvOnz/v1Cc4OFjh4eFmn40bN8rhcJhBS5JatGghh8Nh9slLVlaWMjIynG4AAAAAUFjXbdhKTk6WJAUEBDi1BwQEmMuSk5Pl5uamypUrF9jH398/1/r9/f3NPnmZNGmS+Rkvh8OhkJCQv7U9AAAAAG4u123YymGz2ZzuG4aRq+1KV/bJq//V1jNmzBilp6ebt4MHDxaxcgAAAAA3s+s2bAUGBkpSrrNPx44dM892BQYGKjs7W2lpaQX2OXr0aK71Hz9+PNdZs8vZ7XZVrFjR6QYAAAAAhXXdhq2wsDAFBgYqPj7ebMvOzta6devUsmVLSVKzZs3k6urq1OfIkSPatWuX2ScyMlLp6enasmWL2Wfz5s1KT083+wAAAABAcSvV2QhPnz6t3377zby/f/9+JSQkyMfHR9WrV9eIESM0ceJE1a5dW7Vr19bEiRPl6empfv36SZIcDocGDRqkUaNGydfXVz4+PoqJiVGjRo3M2Qnr16+vzp07a/DgwXr33XclSUOGDFG3bt2YiRAAAACAZUo1bG3btk1t27Y1748cOVKS1L9/f82bN0/PPfecMjMz9fTTTystLU0RERFavXq1vL29zce8+eabKl++vPr06aPMzExFRUVp3rx5cnFxMfssXrxYw4cPN2ct7NGjR77f7QUAAAAAxaFUw1abNm1kGEa+y202m2JjYxUbG5tvH3d3d82YMUMzZszIt4+Pj48WLVr0d0oFAAAAgCK5bj+zBQAAAABlGWELAAAAACxA2AIAAAAAC5TqZ7ZQ9iQmJpb4mH5+fqpevXqJjwsAAAD8HYQtFMrJ40dls9n0yCOPlPjYHp6e+iUxkcAFAACAMoWwhUI5m5EuwzA08OW3VDO8cYmNe3jfr5oVM0QpKSmELQAAAJQphC0USVBYLYU1vLW0ywAAAACue0yQAQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYoX9oFAIWRmJhYouP5+fmpevXqJTomAAAAbiyELVzXTh4/KpvNpkceeaREx/Xw9NQviYkELgAAAFyz6zpsxcbGasKECU5tAQEBSk5OliQZhqEJEybovffeU1pamiIiIvT222+rYcOGZv+srCzFxMToo48+UmZmpqKiojRr1ixVq1atRLcF1+ZsRroMw9DAl99SzfDGJTLm4X2/albMEKWkpBC2AAAAcM2u67AlSQ0bNtSaNWvM+y4uLub/p0yZomnTpmnevHmqU6eOXnnlFXXo0EF79uyRt7e3JGnEiBH6/PPPtXTpUvn6+mrUqFHq1q2btm/f7rQuXN+CwmoprOGtpV0GAAAAUGjXfdgqX768AgMDc7UbhqHp06dr3Lhx6t27tyRp/vz5CggI0JIlS/TEE08oPT1dc+bM0cKFC9W+fXtJ0qJFixQSEqI1a9aoU6dO+Y6blZWlrKws835GRkYxbxkAAACAG9l1Pxvh3r17FRwcrLCwMD344IP6/fffJUn79+9XcnKyOnbsaPa12+1q3bq1NmzYIEnavn27zp8/79QnODhY4eHhZp/8TJo0SQ6Hw7yFhIRYsHUAAAAAblTXddiKiIjQggULtGrVKr3//vtKTk5Wy5YtlZqaan5uKyAgwOkxl3+mKzk5WW5ubqpcuXK+ffIzZswYpaenm7eDBw8W45YBAAAAuNFd15cRdunSxfx/o0aNFBkZqZo1a2r+/Plq0aKFJMlmszk9xjCMXG1XKkwfu90uu91+jZUDAAAAuNld12e2ruTl5aVGjRpp79695ue4rjxDdezYMfNsV2BgoLKzs5WWlpZvHwAAAACwQpkKW1lZWUpMTFRQUJDCwsIUGBio+Ph4c3l2drbWrVunli1bSpKaNWsmV1dXpz5HjhzRrl27zD4AAAAAYIXr+jLCmJgYde/eXdWrV9exY8f0yiuvKCMjQ/3795fNZtOIESM0ceJE1a5dW7Vr19bEiRPl6empfv36SZIcDocGDRqkUaNGydfXVz4+PoqJiVGjRo3M2QkBAAAAwArXddg6dOiQHnroIaWkpKhKlSpq0aKFNm3apNDQUEnSc889p8zMTD399NPmlxqvXr3a/I4tSXrzzTdVvnx59enTx/xS43nz5vEdWwAAAAAsdV2HraVLlxa43GazKTY2VrGxsfn2cXd314wZMzRjxoxirg4AAAAA8lemPrMFAAAAAGUFYQsAAAAALEDYAgAAAAALELYAAAAAwAKELQAAAACwAGELAAAAACxA2AIAAAAACxC2AAAAAMAChC0AAAAAsABhCwAAAAAsQNgCAAAAAAsQtgAAAADAAoQtAAAAALAAYQsAAAAALEDYAgAAAAALELYAAAAAwAKELQAAAACwAGELAAAAACxA2AIAAAAACxC2AAAAAMAChC0AAAAAsABhCwAAAAAsQNgCAAAAAAsQtgAAAADAAoQtAAAAALAAYQsAAAAALEDYAgAAAAALELYAAAAAwALlS7sA4HqVmJhYouP5+fmpevXqJTomAAAArEPYAq5w8vhR2Ww2PfLIIyU6roenp35JTCRwAQAA3CAIW8AVzmakyzAMDXz5LdUMb1wiYx7e96tmxQxRSkoKYQsAAOAGQdgC8hEUVkthDW8t7TIAAABQRjFBBgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABQhbAAAAAGABwhYAAAAAWICwBQAAAAAWIGwBAAAAgAUIWwAAAABgAcIWAAAAAFjgpgpbs2bNUlhYmNzd3dWsWTN99913pV0SAAAAgBvUTRO2li1bphEjRmjcuHH68ccfdffdd6tLly5KSkoq7dIAAAAA3IBumrA1bdo0DRo0SI8//rjq16+v6dOnKyQkRLNnzy7t0gAAAADcgMqXdgElITs7W9u3b9fzzz/v1N6xY0dt2LAhz8dkZWUpKyvLvJ+eni5JysjIsK7QQjp9+rQk6cDun3Tu7JkSGfPwvl8lSX8k7lQ5m1EiY5bWuKUxZvL+3yRJ27dvN1/fklKuXDldunSJMW+gcdnWG2/M0hr3ZhmzNMbds2ePJH6WM2bZHLe0tjXn96XTp0+X+u/kOeMbRsHbbzOu1uMGcPjwYVWtWlXff/+9WrZsabZPnDhR8+fPNw94l4uNjdWECRNKskwAAAAAZcjBgwdVrVq1fJffFGe2cthsNqf7hmHkassxZswYjRw50rx/6dIlnThxQr6+vvk+pqRkZGQoJCREBw8eVMWKFUu1FtyY2MdgNfYxWI19DCWB/ezmZRiGTp06peDg4AL73RRhy8/PTy4uLkpOTnZqP3bsmAICAvJ8jN1ul91ud2qrVKmSVSVek4oVK/LGhqXYx2A19jFYjX0MJYH97ObkcDiu2uemmCDDzc1NzZo1U3x8vFN7fHy802WFAAAAAFBcboozW5I0cuRIRUdHq3nz5oqMjNR7772npKQkPfnkk6VdGgAAAIAb0E0Ttvr27avU1FS99NJLOnLkiMLDw/Xll18qNDS0tEsrMrvdrhdffDHXZY5AcWEfg9XYx2A19jGUBPYzXM1NMRshAAAAAJS0m+IzWwAAAABQ0ghbAAAAAGABwhYAAAAAWICwBQAAAAAWIGyVMbNmzVJYWJjc3d3VrFkzfffdd6VdEm4gsbGxstlsTrfAwMDSLgtl2Lfffqvu3bsrODhYNptNn332mdNywzAUGxur4OBgeXh4qE2bNtq9e3fpFIsy6Wr72IABA3Id11q0aFE6xaJMmjRpkm6//XZ5e3vL399fvXr10p49e5z6cCxDfghbZciyZcs0YsQIjRs3Tj/++KPuvvtudenSRUlJSaVdGm4gDRs21JEjR8zbzp07S7sklGFnzpxRkyZNNHPmzDyXT5kyRdOmTdPMmTO1detWBQYGqkOHDjp16lQJV4qy6mr7mCR17tzZ6bj25ZdflmCFKOvWrVunoUOHatOmTYqPj9eFCxfUsWNHnTlzxuzDsQz5Yer3MiQiIkJNmzbV7Nmzzbb69eurV69emjRpUilWhhtFbGysPvvsMyUkJJR2KbgB2Ww2LV++XL169ZL011+Cg4ODNWLECI0ePVqSlJWVpYCAAE2ePFlPPPFEKVaLsujKfUz668zWyZMnc53xAq7V8ePH5e/vr3Xr1qlVq1Ycy1AgzmyVEdnZ2dq+fbs6duzo1N6xY0dt2LChlKrCjWjv3r0KDg5WWFiYHnzwQf3++++lXRJuUPv371dycrLTcc1ut6t169Yc11CsvvnmG/n7+6tOnToaPHiwjh07VtoloQxLT0+XJPn4+EjiWIaCEbbKiJSUFF28eFEBAQFO7QEBAUpOTi6lqnCjiYiI0IIFC7Rq1Sq9//77Sk5OVsuWLZWamlrapeEGlHPs4rgGK3Xp0kWLFy/W2rVrNXXqVG3dulXt2rVTVlZWaZeGMsgwDI0cOVJ33XWXwsPDJXEsQ8HKl3YBKBqbzeZ03zCMXG3AterSpYv5/0aNGikyMlI1a9bU/PnzNXLkyFKsDDcyjmuwUt++fc3/h4eHq3nz5goNDdXKlSvVu3fvUqwMZdEzzzyjHTt2aP369bmWcSxDXjizVUb4+fnJxcUl119Ijh07lusvKUBx8fLyUqNGjbR3797SLgU3oJyZLjmuoSQFBQUpNDSU4xqKbNiwYVqxYoW+/vprVatWzWznWIaCELbKCDc3NzVr1kzx8fFO7fHx8WrZsmUpVYUbXVZWlhITExUUFFTapeAGFBYWpsDAQKfjWnZ2ttatW8dxDZZJTU3VwYMHOa6h0AzD0DPPPKNPP/1Ua9euVVhYmNNyjmUoCJcRliEjR45UdHS0mjdvrsjISL333ntKSkrSk08+Wdql4QYRExOj7t27q3r16jp27JheeeUVZWRkqH///qVdGsqo06dP67fffjPv79+/XwkJCfLx8VH16tU1YsQITZw4UbVr11bt2rU1ceJEeXp6ql+/fqVYNcqSgvYxHx8fxcbG6r777lNQUJAOHDigsWPHys/PT/fee28pVo2yZOjQoVqyZIn++9//ytvb2zyD5XA45OHhIZvNxrEM+TNQprz99ttGaGio4ebmZjRt2tRYt25daZeEG0jfvn2NoKAgw9XV1QgODjZ69+5t7N69u7TLQhn29ddfG5Jy3fr3728YhmFcunTJePHFF43AwEDDbrcbrVq1Mnbu3Fm6RaNMKWgfO3v2rNGxY0ejSpUqhqurq1G9enWjf//+RlJSUmmXjTIkr/1LkjF37lyzD8cy5Ifv2QIAAAAAC/CZLQAAAACwAGELAAAAACxA2AIAAAAACxC2AAAAAMAChC0AAAAAsABhCwAAAAAsQNgCAAAAAAsQtgAAAADAAoQtAACKyXvvvaeQkBCVK1dO06dPL+1yAACljLAFALiuDBgwQL169crV/s0338hms+nkyZMlXlNhZGRk6JlnntHo0aP1559/asiQIXn2s9ls5s3Ly0u1a9fWgAEDtH379hKuGABgNcIWAACXOX/+/DU9LikpSefPn9c999yjoKAgeXp65tt37ty5OnLkiHbv3q23335bp0+fVkREhBYsWHCtZQMArkOELQBAmfWf//xHDRs2lN1uV40aNTR16lSn5TabTZ999plTW6VKlTRv3jxJ0oEDB2Sz2fTxxx+rTZs2cnd316JFi/IcKykpST179lSFChVUsWJF9enTR0ePHpUkzZs3T40aNZIk3XLLLbLZbDpw4EC+dVeqVEmBgYGqUaOGOnbsqE8++UQPP/ywnnnmGaWlpUmSUlNT9dBDD6latWry9PRUo0aN9NFHH5nrWLBggXx9fZWVleW07vvuu0+PPvroVZ87AID1CFsAgDJp+/bt6tOnjx588EHt3LlTsbGxeuGFF8wgVRSjR4/W8OHDlZiYqE6dOuVabhiGevXqpRMnTmjdunWKj4/Xvn371LdvX0lS3759tWbNGknSli1bdOTIEYWEhBSphmeffVanTp1SfHy8JOncuXNq1qyZvvjiC+3atUtDhgxRdHS0Nm/eLEl64IEHdPHiRa1YscJcR0pKir744gsNHDiwyM8BAKD4lS/tAgAAuNIXX3yhChUqOLVdvHjR6f60adMUFRWlF154QZJUp04d/fzzz3r99dc1YMCAIo03YsQI9e7dO9/la9as0Y4dO7R//34zRC1cuFANGzbU1q1bdfvtt8vX11eSVKVKFQUGBhZpfEmqV6+eJJlnxKpWraqYmBhz+bBhwxQXF6d///vfioiIkIeHh/r166e5c+fqgQcekCQtXrxY1apVU5s2bYo8PgCg+HFmCwBw3Wnbtq0SEhKcbh988IFTn8TERN15551ObXfeeaf27t2bK5hdTfPmzQtcnpiYqJCQEKezVQ0aNFClSpWUmJhYpLHyYxiGpL8ufZT+CpevvvqqGjduLF9fX1WoUEGrV69WUlKS+ZjBgwdr9erV+vPPPyX99VmwAQMGmOsAAJQuzmwBAK47Xl5eqlWrllPboUOHnO4bhpErVOQElhw2my1XW14TYHh5eRVYT15jFdR+LXJCW1hYmCRp6tSpevPNNzV9+nQ1atRIXl5eGjFihLKzs83H3HbbbWrSpIkWLFigTp06aefOnfr888+LpR4AwN9H2AIAlEkNGjTQ+vXrndo2bNigOnXqyMXFRdJfl/QdOXLEXL53716dPXv2msZKSkrSwYMHzbNbP//8s9LT01W/fv2/sRX/z/Tp01WxYkW1b99ekvTdd9+pZ8+eeuSRRyRJly5d0t69e3ON9/jjj+vNN9/Un3/+qfbt2xf5s2IAAOtwGSEAoEwaNWqUvvrqK7388sv69ddfNX/+fM2cOdPpc07t2rXTzJkz9cMPP2jbtm168skn5erqWuSx2rdvr8aNG+vhhx/WDz/8oC1btujRRx9V69atr3oJYl5Onjyp5ORk/fHHH4qPj9f999+vJUuWaPbs2apUqZIkqVatWoqPj9eGDRuUmJioJ554QsnJybnW9fDDD+vPP//U+++/r8cee6zItQAArEPYAgCUSU2bNtXHH3+spUuXKjw8XOPHj9dLL73kNDnG1KlTFRISolatWqlfv36KiYkp8Puv8pMzhXzlypXVqlUrtW/fXrfccouWLVt2TbUPHDhQQUFBqlevnp566ilVqFBBW7ZsUb9+/cw+L7zwgpo2bapOnTqpTZs2CgwMzPPLnitWrKj77rtPFSpUyHM5AKD02IwrL2YHAABlSocOHVS/fn299dZbpV0KAOAyhC0AAMqoEydOaPXq1Xr44Yf1888/q27duqVdEgDgMkyQAQBAGdW0aVOlpaVp8uTJBC0AuA5xZgsAAAAALMAEGQAAAABgAcIWAAAAAFiAsAUAAAAAFiBsAQAAAIAFCFsAAAAAYAHCFgAAAABYgLAFAAAAABYgbAEAAACABf4/KO40S0f57iAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "df_area_program_pd = df_area_program_July_onwards.toPandas()\n", + "\n", + "plt.figure(figsize=(10, 6))\n", + "sns.histplot(df_area_program_pd['hour'], bins=24, kde=False, color='skyblue')\n", + "plt.title('Distribution of Pickup Hours for Filtered Rides (Post-program change)')\n", + "plt.xlabel('Hour of Day')\n", + "plt.ylabel('Number of Rides')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "2fda94cd-990c-436b-93b0-979f7e3c8ad3", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHACAYAAAD+yCF8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFoElEQVR4nO3deXicZfn3/88syWSbJE3SbE26L0npQjewG5RFlE2RRfFhKcXli5QK9qdiRQERqKi4otXy9alUhPIotgLKUtQugKUbhdJ9b9omzdqszSSZuX9/TGaSdM0kM7lneb+OY442k5nJOWkhn97XeZ2XxTAMQwAAAEFgNbsAAAAQPQgWAAAgaAgWAAAgaAgWAAAgaAgWAAAgaAgWAAAgaAgWAAAgaAgWAAAgaAgWAAAgaAgWAAAgaEwLFmvWrNH111+v/Px8WSwWrVixIuDXMAxDP/3pTzVy5Eg5HA4VFhbqySefDH6xAACgW+xmfeHGxkaNHz9ec+bM0U033dSj17j//vv11ltv6ac//anGjh2r2tpaVVZWBrlSAADQXZZwOITMYrFo+fLluuGGG/z3tbS06Hvf+57+/Oc/68SJExozZoyeeuopzZo1S5K0Y8cOjRs3Th9//LFGjRplTuEAAKCLsO2xmDNnjt59910tW7ZMH330kW655RZ9+tOf1p49eyRJr776qoYOHarXXntNQ4YM0eDBg/XlL39Z1dXVJlcOAEDsCstgsW/fPr344ov6y1/+opkzZ2rYsGH65je/qRkzZmjJkiWSpP379+vQoUP6y1/+oqVLl+qPf/yjNm3apJtvvtnk6gEAiF2m9Vicy+bNm2UYhkaOHNnlfpfLpczMTEmSx+ORy+XS0qVL/Y/7wx/+oEmTJmnXrl0sjwAAYIKwDBYej0c2m02bNm2SzWbr8rmUlBRJUl5enux2e5fwUVxcLEk6fPgwwQIAABOEZbCYMGGC3G63ysvLNXPmzDM+Zvr06Wpra9O+ffs0bNgwSdLu3bslSYMGDeqzWgEAQAfTdoU0NDRo7969krxB4mc/+5kuu+wyZWRkaODAgbr99tv17rvv6umnn9aECRNUWVmpf//73xo7dqyuueYaeTweTZkyRSkpKfrFL34hj8ejuXPnKjU1VW+99ZYZbwkAgJhnWrBYtWqVLrvsstPunz17tv74xz+qtbVVjz/+uJYuXaqjR48qMzNTU6dO1Q9+8AONHTtWknTs2DHNmzdPb731lpKTk3X11Vfr6aefVkZGRl+/HQAAoDCZYwEAAKJDWG43BQAAkYlgAQAAgqbPd4V4PB4dO3ZMTqdTFoulr788AADoAcMwVF9fr/z8fFmtZ78u0efB4tixYyosLOzrLwsAAIKgpKREBQUFZ/18nwcLp9MpyVtYampqX395AADQA3V1dSosLPT/HD+bPg8WvuWP1NRUggUAABHmfG0MNG8CAICgCThYHD16VLfffrsyMzOVlJSkCy+8UJs2bQpFbQAAIMIEtBRSU1Oj6dOn67LLLtPrr7+u7Oxs7du3T+np6SEqDwAARJKAgsVTTz2lwsJCLVmyxH/f4MGDg10TACBCud1utba2ml0GeiAuLu60E8V7IqBg8corr+hTn/qUbrnlFq1evVoDBgzQvffeq6985Su9LgQAELkMw1BZWZlOnDhhdinohfT0dOXm5vZqzlRAwWL//v1atGiR5s+fr+9+97tav369vv71r8vhcOjOO+8843NcLpdcLpf/47q6uh4XCwAIT75QkZ2draSkJAYgRhjDMNTU1KTy8nJJUl5eXo9fK6Bg4fF4NHnyZD355JOSvMedb9u2TYsWLTprsFi4cKF+8IMf9LhAAEB4c7vd/lCRmZlpdjnoocTERElSeXm5srOze7wsEtCukLy8PI0ePbrLfcXFxTp8+PBZn7NgwQLV1tb6byUlJT0qFAAQnnw9FUlJSSZXgt7y/Rn2pk8moCsW06dP165du7rct3v3bg0aNOisz3E4HHI4HD2rDgAQMVj+iHzB+DMM6IrFN77xDa1bt05PPvmk9u7dqxdeeEGLFy/W3Llze10IAACIfAEFiylTpmj58uV68cUXNWbMGP3whz/UL37xC912222hqg8AgJjU0tKi4cOH69133+31a7322muaMGGCPB5PECo7t4Anb1533XXaunWrmpubtWPHDraaAgDQQwcPHpTFYtGWLVtO+9zixYs1aNAgTZ8+3X+fxWLRihUrunzsuyUnJ2vEiBG66667TpuIfd1118liseiFF14I1Vvx46wQhI2mlja1ukOfpgEgEvz617/Wl7/85fM+bsmSJSotLdW2bdv0m9/8Rg0NDbr44ou1dOnSLo+bM2eOfv3rX4eqXD+CBcLCGx+X6aIn/qXJj7+t763Yqg8O18gwDLPLAhDlPB6PnnrqKQ0fPlwOh0MDBw7UE088IUnaunWrLr/8ciUmJiozM1Nf/epX1dDQ4H/urFmz9MADD3R5vRtuuEF33XWX/+PBgwfrySef1N133y2n06mBAwdq8eLF/s8PGTJEknd8g8Vi0axZsyRJmzdv1t69e3Xttdee9z34hloNHjxYV111lf7617/qtttu03333aeamhr/4z7zmc9o/fr12r9/f6DfpoAQLGAqj8fQz1bu1j3Pb1KDq021J1v1/LrD+txv39MVP1ut3/xnr46dOGl2mQACYBiGmlraTLkF+g+SBQsW6KmnntL3v/99bd++XS+88IJycnLU1NSkT3/60+rXr582bNigv/zlL3r77bd13333Bfz9ePrppzV58mR98MEHuvfee/W1r31NO3fulCStX79ekvT222+rtLRUf/vb3yRJa9as0ciRI5Wamhrw15O8my3q6+u1cuVK/32DBg1Sdna21q5d26PX7K6AtpsCwdTgatM3XtqilduPS5Lunj5Es0b11982H9Eb28q0v6JRP3lzl3761i5NG5apmyYW6NNjcpUUz19bIJydbHVr9MNvmvK1tz/2qW7/P6K+vl6//OUv9cwzz2j27NmSpGHDhmnGjBl69tlndfLkSS1dulTJycmSpGeeeUbXX3+9nnrqKeXk5HS7pmuuuUb33nuvJOnBBx/Uz3/+c61atUpFRUXq37+/JCkzM1O5ubn+5xw8eFD5+fnd/hqnKioq8r9OZwMGDDjtvmDj/9AwxcHKRn1l6UbtKW9QvN2qJz83VjdPKpAkXTKyv+qbW/X61jL9dfMRrT9QrXf3VundvVX6/oqPdfXYPN00sUAXD8mQ1cq+eQA9s2PHDrlcLl1xxRVn/Nz48eP9oULyznLyeDzatWtXQMFi3Lhx/t9bLBbl5ub6R2efzcmTJ5WQkNDtr3Eq35WbU+dSJCYmqqmpqcev2x0EC/S51bsrNO+FzaprblNOqkO/v2OyLixM7/IYZ0KcPj+lUJ+fUqiS6ib9bfNRvbz5iA5XN+mvm47or5uOqKBfom6cMEA3TizQ4KzkM38xAH0uMc6m7Y99yrSv3e3Hto+wPhPDMM46LMp3v9VqPW3p5UwTK+Pi4k57/vm2fWZlZWnr1q3nfMy57NixQ1JHD4dPdXW1/ypJqNBjgT5jGIYWr9mnOUvWq665TRMHpuvV+2acFipOVZiRpPuvHKHV35qlv9wzVbdOKZTTYdeRmpP61b/3atZPV+nmRe/pxfWHVdfMcc2A2SwWi5Li7abcApkcOWLECCUmJupf//rXaZ8bPXq0tmzZosbGRv997777rqxWq0aOHClJ6t+/v0pLS/2fd7vd+vjjjwP6XsXHx/uf29mECRO0c+fOHjex/+IXv1BqaqquvPJK/33Nzc3at2+fJkyY0KPX7C6uWKBPNLe69eDLH+nvW45Jkr4wuVCP3XCBHPbu/+vCYrFoyuAMTRmcoUc/c4He3Famlzcf1Tt7KrTxUI02HqrRo69s01UX5OqmiQM0Y3iW7DayM4AzS0hI0IMPPqhvf/vbio+P1/Tp01VRUaFt27bptttu0yOPPKLZs2fr0UcfVUVFhebNm6c77rjDvwxy+eWXa/78+frHP/6hYcOG6ec//3nAx8ZnZ2crMTFRb7zxhgoKCpSQkKC0tDRddtllamxs1LZt2zRmzJhzvsaJEydUVlYml8ul3bt36/e//71WrFihpUuXKj093f+4devWyeFwaOrUqYF+qwJCsEDIHT1xUv/zp436+Gid7FaLHr5+tO74xKBezaRPiLPpsxcO0GcvHKDjdc1a/sFRvbzpiPaUN+jVD4/p1Q+PKdvp0A0TBuimiQUalesM4jsCEC2+//3vy2636+GHH9axY8eUl5ene+65R0lJSXrzzTd1//33a8qUKUpKStJNN92kn/3sZ/7n3n333frwww915513ym636xvf+IYuu+yygL6+3W7Xr371Kz322GN6+OGHNXPmTK1atUqZmZm68cYb9ec//1kLFy4852vMmTNHkjcoDRgwQDNmzND69es1ceLELo978cUXddttt4X8sDiL0cfDAurq6pSWlqba2toeb6NB5Fh/oFr3/nmTKhtalJEcr9/8n4maOiw0xyobhqGtR2v18qYjeuXDY6pp6lgWGTMgVTdNLNBnxucrM4VD8YBgam5u1oEDBzRkyJBeNRyiq61bt+rKK6/U3r175XT27h9HFRUVKioq0saNG0/ru+jsXH+W3f35TbBAyDy/7pAefWWb2jyGRuelavGdk1TQr2+OVW5p8+jfO8v1t81H9O+d5WrzeP+a260WXVaUrZsmFujyomzF21kqAXqLYBE6zz33nCZOnKixY8f26nXWr1+vAwcO6Atf+MI5H0ewQFhqafPo0Ve36YX3D0uSrhuXp5/cPF6J8d3vpwim6sYWvbLlqF7efFRbj9b67++XFKfPjM/XTZMKNHZAGkc+Az1EsIgewQgW9FggqCrqXbr3z5u04WCNLBbpW58apa9dOszUH9oZyfG6a/oQ3TV9iHYfr9fLm45o+QdHVV7v0nP/PaTn/ntII7JTdNOkAt1w4QDlpvE/RgDoKa5YIGg+OnJC//OnTSqtbZYzwa5f3TpBlxVlm13WGbW5PXpnb6Ve3nxUb20rk6vNu6fcapGmD8/SzZMKdNXoXNOusgCRhCsW0YMrFggbyz84ou+8vFWuNo+G9U/Ws3dO1tD+KWaXdVZ2m1WzRmVr1qhs1TW36h8flerlTUe08VCN1u6p1No9lXI67LpmbJ5umlSgKYP7sVQCnAcHB0a+YPwZEizQK21uj556Y6eeXXtAknRFUbZ+fuuFSk2IO88zw0dqQpy+eNFAffGigTpU1aiXNx/V3zYf0ZGak3ppY4le2liigRlJunGid+tqYUbfNKBGkpY2j8rrm1XV0KLUxDjlpDo40yWG+CZLNjU1nXOaJcKfb9z3qdNCA8FSCHrsRFOL5r34gdbuqZQk3XfZcM3/5MioOL/D4zG0/mC1Xt50RP/cWqrGlo6peBcNydDNEwt09dhcOSMoQPVUfXOrjtc1q7S2WWW1zTpe16yyOu/vvb+6VNngOu15Todd2akO5aQmKCc1wft7Z0L7x977+zsdSghgBDPCV2lpqU6cOKHs7GwlJSVxhS/CGIahpqYmlZeXKz09XXl5eac9hl0hCKndx+v1laUbdaiqSYlxNv30lvG6dtzpfxGjQVNLm3fK56ajendfpXz/xSTEWfXpC3J106QCTRuWJVuEBSqPx1Blo8sbEDoFhlLf79vv7xyqziXOZlFmskO1J1t1srV7z5Gk9KQ45TgTOoUQ76/Zzq4BJI4pqmHNMAyVlZUFPHkS4SU9PV25ublnDIYEC4TMm9vKNP+lLWpscaugX6IW3zFZo/Nj48/y2ImT3imfm49of0XHGQK5qQm6YcIA3TxpgIZnmz/ls7nV3REO6pr9Vxw6B4byepd/vsf5OBPsyk1NUG6a94pDXvuvvvty0xKUkRQvq9UiwzDU4GrT8TqXyuuadby+WcfrXDpe16zy9l9997W0nfsgJh+LRcpMju8SNrLbv37Hxw5lJjsiLuBFG7fbfcaDuBD+4uLiZLOd/QoiwQJB5/EY+uW/9uiX/9ojSZo6NFO/uW2iMpLjTa6s7xmGoS0lJ/Ty5iN69cNS1Z7s+B/p+II03TSpQNePy1e/IH9vDMNQ7clW/1LEqYHB9/vOU0fPxWKR+qc4vOGgU3DI9YWH9vuTHcHvl/C9F1/oOF7nDTu+3/uCSSAByGa1qH+KQzmpDmX7Qoez01JM+7JMv6Q4LtUDASJYIKgaXG2a/9IWvbX9uCTprmmD9dC1xVyeluRqc+vfO8r18uYj+s+uCrnbfwjG2Sy6oihHN00q0KxR/c/7vWpze1TR0LE0Uda+NHG8U2Aoq2tWc2v3/pXvsFu7BIbOv/oCQyQsMXg8hqqbWrpe8ahz6Xh9s/eKSPt9lQ0udTN/KN5mVX+nw3+140w9INmpCUpNCOy0TCCaESwQNAcrG/XVP23U7uMNirdZ9fjnxujzkwvNLissVTa49Pctx/TypiPaXlrnvz8zOV6fuTBfl4zor5qmljMGhor67v9g7JcU572ycIbAkNf++7TE2PpXeZvbo6rGlo7gUdcpeNR3XAGpamzp9msmxFm9QaNTD8hlo7I1Y0RWCN8JEJ4IFgiKNbsrdN8Lm1XX3KZsp0O/v2OSJgzsZ3ZZEWFHaZ1e3nREK7YcO+OuiTOxWy3Kdjr8AaFLH0OnpQp2UvRcS5v3ylCX4OFbeqnvWIbpvLzVWUKcVVsevoo/A8QcggV6xTAM/e/aA1r4+g55DGnCwHT97vZJykllql6g2twerdlToZc3HdXu4/X+f/n6+xg6BYfMFJoPw0Vzq9u79NIpbPxi5W7Vu9r02rwZGjMgzewSgT7F5E30WHOrWwv+tlXLPzgqSfr85AL98IYxctj5F1pP2G1WXV6Uo8uLcswuBQFIiLNpYGaSBmZ2DERbub1M6/ZXa0dpHcECOAuCBbo4duKk/udPm7T1aK1sVosevm607pw6KKbW6oGzKcpN1br91dpZVm92KUDYIljAb8PBan3t+U2qbGhRv6Q4/ea2iZo2jCY1wGd0nvfy786yuvM8EohdBAtIkv78/iE9+so2tboNFeU69eydkzkTAzhFUZ53+NmO0noZhsGVPOAMCBYxrqXNox+8uk1/fv+wJOnacXn6yc3jOEAKOIOROU5ZLVJ1Y4sq6l3KppkZOA0/PWJYRb1L9/55kzYcrJHFIn3zqlG6d9Yw/hUGnEVCnE1DspK1r6JR20vrCBbAGYT3yD2EzNYjtfrMM+9ow8EaOR12/WH2ZM29bDihAjiPYn+fBQ2cwJkQLGLQig+O6ubfvafS2mYN7Z+sFfdNZysk0E2+YLGjlAZO4ExYCokhbo+hp97YqcVr9kuSLi/K1i9uvVCpCXEmVwZEjuL2Bs6dpVyxAM6EYBEjaptadd+Lm7V2T6Ukae5lwzT/k6OY8ggEqCjXe8ViX0WDXG1uBscBpyBYxIDdx+v1laUbdaiqSYlxNv3klnG6bly+2WUBESkvzXvqaV1zm/aWN+iCfCZwAp3RYxHl3tpWps/95l0dqmrSgPRE/fVrUwkVQC9YLJaOBk6WQ4DTECyilMdj6Jdv79FX/7RJjS1ufWJohl65bzr/ugKCgAZO4OxYColCDa42/X//b4ve3HZcknTXtMF66NpixdnIkUAw+Bs42XIKnIZgEWUOVTXqK0s3avfxBsXbrHr8c2P0+cmFZpcFRBVfA+eO0jpGewOnIFhEkbV7KnTfCx+o9mSrsp0O/e6OSZo4sJ/ZZQFRxzfau6qxRRUNLmU7mcAJ+HBtPAoYhqH/Xbtfs//vetWebNWFhel6dd4MQgUQIonxNg3OSpbkPZAMQAeCRYRrbnVr/v/7UI//Y4c8hnTzpAIt++onlMMZBkBIdewMoYET6IylkAhWWntS//OnTfroSK1sVou+d22x7po2mPVeoA8U5zr1j49K2RkCnIJgEaE2HqzWPc9vVmWDS+lJcfrt/5moacOzzC4LiBm+Bk52hgBdRU2waGnzKM5miYl/rb/w/mE98srHanUbKsp16tk7J6swI8nssoCYUpzvDRZ7yxntDXQWNcHi0p/8R6W1zYq3WRVnsyjebu242ayKt9sUb7fKYTv1/q4fOzr9Pu6UxzhOfc5pn7Od9nrBDDstbR794NVt+vP7hyVJ147N009uGaek+Kj5YwQiRn6n0d77yhs1uj1oALEuan4itbR5vL+6PWpxS40tbpMr6nC2MNLd0OILRO/tq9LGQzWyWKRvXjVK984aFhNXaIBwZLFYVJSXqvUHqrWzrI5gAbSLmmCx6luz5GrzqMV3c3t/dXX6uLXT/S1tHrk6/d77GHeX55/p9c76+073tXmMLrV5w45HcvX+faY47PrlrRfqiuKc3r8YgF4pznVq/YFqGjiBTgIKFo8++qh+8IMfdLkvJydHZWVlQS2qJ5wJcXKaXUQ7t8dQq7trqDk1wJwttPifd9pzPLJbrbrtEwM1rH+K2W8RgDptOaWBE/AL+IrFBRdcoLffftv/sc1Gw9KpbFaLbFabEuL43gDRrIjDyIDTBBws7Ha7cnNzQ1ELAESUUTlOWSxSZUOLKupd6u90mF0SYLqAJ2/u2bNH+fn5GjJkiG699Vbt37//nI93uVyqq6vrcgOAaJAYb9OQTN9ob/7fBkgBBouLL75YS5cu1Ztvvqlnn31WZWVlmjZtmqqqqs76nIULFyotLc1/KyzkpE0A0aOjz4JgAUgBBourr75aN910k8aOHasrr7xS//jHPyRJzz333Fmfs2DBAtXW1vpvJSUlvasYAMJIUa63bZzDyACvXm03TU5O1tixY7Vnz56zPsbhcMjhYN0RQHSigRPoqlenm7pcLu3YsUN5eXnBqgcAIkpxnveKxb6KBv+gPiCWBRQsvvnNb2r16tU6cOCA3n//fd18882qq6vT7NmzQ1UfAIS1AemJcibY1eo2tK+iwexyANMFFCyOHDmiL37xixo1apRuvPFGxcfHa926dRo0aFCo6gOAsGaxWFScSwMn4BNQj8WyZctCVQcARKyiPKfWH6zWjtJ6fW6C2dUA5upVjwUAoGPLKQ2cAMECAHqNLadAB4IFAPTSqFzfaG+XKuqDcIwxEMEIFgDQS0nxdg1uH+1NAydiHcECAILAtxyyk+UQxDiCBQAEgb+BkysWiHEECwAIAho4AS+CBQAEge+Kxd7yerW6Ge2N2EWwAIAgKOiXKKeD0d4AwQIAgsBisagojwZOgGABAEFSlMsEToBgAQBB0rEzhCsWiF0ECwAIEt9SCFcsEMsIFgAQJKNyvKO9K+pdqmxgtDdiE8ECAIIk2WHXoIwkSTRwInYRLAAgiHwNnJwZglhFsACAIPI3cHLFAjGKYAEAQUQDJ2IdwQIAgmi0f7R3A6O9EZMIFgAQRAPSE5XisKvF7dH+ikazywH6HMECAILIarX4TzqlgROxiGABAEHm67PYTp8FYhDBAgCCzLczhFkWiEUECwAIMg4jQywjWABAkPl6LMrrXapitDdiDMECAIIs2WHXoEzvaO9dnHSKGEOwAIAQ8F21oIETsYZgAQAh4G/g5IoFYgzBAgBCgAZOxCqCBQCEgG+0957jDWpjtDdiCMECAEKgoF+ikuNt3tHelYz2RuwgWABACFitFhXlsRyC2EOwAIAQ8e0M2cEETsQQggUAhEjHzhCuWCB2ECwAIESK83xXLAgWiB0ECwAIkVHtW06P17lU3dhicjVA3yBYAECIpDjsGpjhHe3NcghiBcECAEKIBk7EGoIFAISQv4GTPgvECIIFAISQv4GTpRDECIIFAISQ74rFbkZ7I0YQLAAghAr7JXlHe7d5dIDR3ogBBAsACCGr1aJRvgZOjlBHDCBYAECIcWYIYgnBAgBCjJ0hiCUECwAIseL2pZCdLIUgBhAsACDEfD0WpbXNOtHEaG9Et14Fi4ULF8piseiBBx4IUjkAEH2cCXEqzEiUxARORL8eB4sNGzZo8eLFGjduXDDrAYCoVJRLAydiQ4+CRUNDg2677TY9++yz6tevX7BrAoCo42/gZAInolyPgsXcuXN17bXX6sorrwx2PQAQlYo5jAwxwh7oE5YtW6bNmzdrw4YN3Xq8y+WSy+Xyf1xXR1oHEHs6RnvXq83tkd1G7zyiU0B/s0tKSnT//ffr+eefV0JCQrees3DhQqWlpflvhYWFPSoUACLZwIwkJcXb5Grz6GAVo70RvQIKFps2bVJ5ebkmTZoku90uu92u1atX61e/+pXsdrvcbvdpz1mwYIFqa2v9t5KSkqAVDwCRostob5ZDEMUCWgq54oortHXr1i73zZkzR0VFRXrwwQdls9lOe47D4ZDD4ehdlQAQBYpyU/XB4RPaUVqn68fnm10OEBIBBQun06kxY8Z0uS85OVmZmZmn3Q8A6Ko4jwmciH50DwFAH+HMEMSCgHeFnGrVqlVBKAMAop+vx+JY+2jv9KR4kysCgo8rFgDQR1IT4lTQzzvam+UQRCuCBQD0IUZ7I9oRLACgD432NXCy5RRRimABAH2oqL2BcwdnhiBKESwAoA/5dobsKquX22OYXA0QfAQLAOhDAzOSlBjnHe19oJLR3og+BAsA6EO2TqO9OUId0YhgAQB9rJgGTkQxggUA9DG2nCKaESwAoI/5R3szJAtRiGABAH3M12Nx9MRJ1Ta1mlwNEFwECwDoY2mJcRqQ7hvtzXIIogvBAgBM4GvgpM8C0YZgAQAmoM8C0YpgAQAmYGcIohXBAgBM4FsK2XWc0d4InsoGlwzD3L9PBAsAMMGgzGQlxFnV3OrRwSpGe6P3DMPQZ595V9N/9G9Tm4IJFgBgAu9o7/Y+CyZwIgj2Vzbq6ImTqmxo0cCMJNPqIFgAgEmKOTMEQbRmd4UkafLgfkqKt5tWB8ECAExSlMuWUwTP2j2VkqRLRvY3tQ6CBQCYxLfldAdLIeglV5tb/91XJUm6ZATBAgBikm/L6dETJ1V7ktHe6LlNB2t0stWt/k6Hf8eRWQgWAGCStKSO0d67GJSFXli9x9tfMXNEliwWi6m1ECwAwET0WSAY1u5u768weRlEIlgAgKk6RnsTLNAzFfUubW8PpjNGZJlcDcECAExV1L4evp0GTvTQ2vZlkDEDUpWV4jC5GoIFAJjKd8VidxmjvdEzvvkV4bAMIhEsAMBUgzOT5bBbdbLVrcPVTWaXgwjj8RhhM7/Ch2ABACbyjvamgRM9s720TlWNLUqOt2niwH5mlyOJYAEApiv2nxlCsEBg1rT3V0wdlql4e3j8SA+PKgAghtHAiZ7y91eEyTKIRLAAANOx5RQ90ehq06ZDNZLCp3FTIlgAgOl8SyFHak6qrpnR3uiedfur1Oo2VJiRqEGZ5h2TfiqCBQCYLC0pTvlpCZIY7Y3u67zN1Owx3p0RLAAgDBT5TzplOQTdsybMtpn6ECwAIAz4TqTkCHV0R0l1kw5UNsputWjasEyzy+mCYAEAYcB3hDpXLNAdq9uXQSYO7CdnQpzJ1XRFsACAMODbGbKrrF4eRnvjPNZ2OiY93BAsACAMDM5MYrQ3uqXV7dF7e6skhV9/hUSwAICwYLdZNTKH0d44vy0lJ1TvalO/pDiNGZBmdjmnIVgAQJjwN3Cy5RTn4NtmOmNEf9ms4bPN1IdgAQBhggZOdIdvm2k49ldIBAsACBuM9sb51DS26KMjJySF1xjvzggWABAmfEshJdUnVc9ob5zBO3srZRjSqBynctuntYYbggUAhIn0pHjlMdob59Bxmml4LoNIBAsACCtFuewMwZkZhqE1e8LvmPRTESwAIIz4+izYGYJT7Slv0PE6lxx2q6YMzjC7nLMiWABAGPEdRraTKxY4hW8Z5OKhmUqIs5lczdkFFCwWLVqkcePGKTU1VampqZo6dapef/31UNUGADGnuH0pZCejvXGK1f5j0sO3v0IKMFgUFBToRz/6kTZu3KiNGzfq8ssv12c/+1lt27YtVPUBQEwZkpWseLtVTS1uldQw2hteza1urT9QLUm6NIz7K6QAg8X111+va665RiNHjtTIkSP1xBNPKCUlRevWrQtVfQAQU7yjvVMk0cCJDu8fqJarzaO8tAQNz04xu5xz6nGPhdvt1rJly9TY2KipU6ee9XEul0t1dXVdbgCAsyv2T+CkgRNea3d3nGZqsYTfGO/OAg4WW7duVUpKihwOh+655x4tX75co0ePPuvjFy5cqLS0NP+tsLCwVwUDQLTzNXByxQI+kbDN1CfgYDFq1Cht2bJF69at09e+9jXNnj1b27dvP+vjFyxYoNraWv+tpKSkVwUDQLTzTeDcyZZTSCqtPandxxtktUgzhod346Yk2QN9Qnx8vIYPHy5Jmjx5sjZs2KBf/vKX+v3vf3/GxzscDjkcjt5VCQAxxLcUcri6SfXNrXImxJlcEcy0drf30LFxBelKT4o3uZrz6/UcC8Mw5HK5glELAEBSv+R45aZ6R3vvPs5Vi1jnXwYJ822mPgFdsfjud7+rq6++WoWFhaqvr9eyZcu0atUqvfHGG6GqDwBiUlGeU2V1zdpRWq9Jg8J3yiJCy+0x9M5e7xWLSOivkAIMFsePH9cdd9yh0tJSpaWlady4cXrjjTf0yU9+MlT1AUBMKs5L1apdFTRwxritR2t1oqlVzgS7LixMN7ucbgkoWPzhD38IVR0AgE6KcmngRMcY7+nDsmS3RcYpHJFRJQDEmOJOZ4Yw2jt2dRyTHhnLIBLBAgDC0tCsZMXbrGpscetIzUmzy4EJ6ppb9UHJCUnewViRgmABAGHIbrNqRPto7+30WcSk9/ZWye0xNDQrWYUZSWaX020ECwAIU/7lkDKCRSyKpGmbnREsACBM+Ro42RkSewzD6NRfETnLIBLBAgDC1mj/FQt2hsSag1VNOlJzUnE2iy4ekml2OQEhWABAmPIdRnaoqkkNrjaTq0Ff8l2tmDwoQ8mOgE/fMBXBAgDCVEZyvHJSvWct7eKqRUyJxG2mPgQLAAhjRbk0cMaaljaP/ru/SlLk9VdIBAsACGu+nSE0cMaOjYeq1dTiVlaKw3/SbSQhWABAGCvOax/tXcpSSKxYu8d76NjMEVmyWi0mVxM4ggUAhLGOpZB6RnvHiEjdZupDsACAMDa0v3e0d4OrTUdPMNo72lXUu7TtmHfZa+aIyGvclAgWABDW4mxWDc9mtHeseGev92rFBfmpykpxmFxNzxAsACDMdZx0Sp9FtFuz29tfEYnbTH0IFgAQ5nwNnOwMiW4ej9GlcTNSESwAIMxxGFls2FFWp8oGl5LibZo8KMPscnqMYAEAYc53GNmh6iY1Mto7avmWQaYOzVS8PXJ/PEdu5QAQIzJTHMp2OmQY0q7j9FlEq0ge490ZwQIAIkARDZxRramlTRsPVUuK7P4KiWABABGhOJcGzmi2bn+VWt2GCvolakhWstnl9ArBAgAiAA2c0a3zNlOLJfLGeHdGsACACFDU6cwQw2C0d7Tx91dE6LTNzggWABABhvVPUZzNonpXm47UMNo7mpRUN2l/ZaNsVoumDc80u5xeI1gAQATwjvamzyIa+YZiTShMV2pCnMnV9B7BAgAihP8I9TJ2hkSTaNlm6kOwAIAIUdx+hDpXLKJHm9ujd/dF/vkgnREsACBCdOwM4YpFtNhSckL1zW1KT4rT2AFpZpcTFAQLAIgQvp0hB6sa1dTCaO9osKa9v2L68CzZrJG9zdSHYAEAESIrxaH+vtHeXLWICr7+ikujYJupD8ECACKI70AylkMi34mmFn105IQkaebIyB7j3RnBAgAiiK/PggbOyPfO3kp5DGlkTory0hLNLidoCBYAEEGKO03gRGSLpmmbnREsACCCFPm2nJbVMdo7ghmG4R+MNTNKtpn6ECwAIIL4R3s3t+noCUZ7R6q95Q0qrW2Ww27VxUMyzC4nqAgWABBB4u1WDeufIknawXJIxFrdvgxy0ZAMJcTZTK4muAgWABBhRvsGZdHAGbF88ysujbJlEIlgAQARp4gzQyJac6tb7++vkhQ9Y7w7I1gAQIRhy2lk23CwWq42j3JTEzQiO8XscoKOYAEAEca3M+RAVaNOtrhNrgaB8m0znTkiSxZLdIzx7oxgAQARpr/ToayUeO9o7+Msh0SaNbuj6zTTUxEsACACFdPAGZHKapu163i9LBZpxvDoGePdGcECACKQ78wQ+iwiy9o93mWQcQPS1C853uRqQoNgAQARyN/Ayc6QiOLbZhqtyyASwQIAIpJ/tHcpo70jhdtj6J32KxYECwBAWBmenSK71Tva+1hts9nloBs+PlqrmqZWOR12XViYbnY5IUOwAIAIFG+3anj7DIQdx+iziAS+babThmcqzha9P34DemcLFy7UlClT5HQ6lZ2drRtuuEG7du0KVW0AgHPw7wwpI1hEAv9pplF2TPqpAgoWq1ev1ty5c7Vu3TqtXLlSbW1tuuqqq9TY2Biq+gAAZ+HfGUIDZ9irb27V5sM1kqLzfJDO7IE8+I033ujy8ZIlS5Sdna1NmzbpkksuCWphAIBzY7R35HhvX5XaPIaGZCWrMCPJ7HJCKqBgcara2lpJUkbG2c+Sd7lccrlc/o/r6vgPAACCwXcY2cFK72jvxPjoOn47mvj6Ky4ZEZ1DsTrrcfeIYRiaP3++ZsyYoTFjxpz1cQsXLlRaWpr/VlhY2NMvCQDopH+KQ5nJ8fIY0m5Ge4e1WOmvkHoRLO677z599NFHevHFF8/5uAULFqi2ttZ/Kykp6emXBAB0YrFYaOCMAAcrG3W4uklxNoumDss0u5yQ69FSyLx58/TKK69ozZo1KigoOOdjHQ6HHA5Hj4oDAJxbUa5T7+yt1I5SrliEqzXtQ7EmDeqnZEevOhAiQkDv0DAMzZs3T8uXL9eqVas0ZMiQUNUFAOgGGjjDn7+/Isp3g/gEFCzmzp2rF154QX//+9/ldDpVVlYmSUpLS1NiYmJICgQAnJ2vgdM32ttisZhcETprafPov/uqJEmXxEB/hRRgj8WiRYtUW1urWbNmKS8vz3976aWXQlUfAOAcfKO965rbVMpo77Cz+XCNGlvcykyO1+j2q0vRLuClEABA+HDYbRrWP0W7jtdrZ1md8tO5ehxOfMsgM0dkyWqNjatJ0TusHABiRLF/OYQGznCzJgZOMz0VwQIAIlwRDZxhqbLBpY+Pev9MYmF+hQ/BAgAiHDtDwtM77UOxRuelqr8zdsYuECwAIMIVtx9GdqCyUc2tbpOrgY9vGWTmyOgf490ZwQIAIlx/p0MZjPYOK4Zh+Md4XxpDyyASwQIAIp53tLf3qsVOGjjDwo7SelXUu5QYZ9Okwf3MLqdPESwAIAoU5Xr7LLbTZxEWfMsgU4dlymGPrVNnCRYAEAU4jCy8rN3TMb8i1hAsACAKFOV2zLJgmKG5mlratOFAjaTYml/hQ7AAgCgwIidFNqtFtSdbVVbHaG8zvb+/Wi1ujwakJ2poVrLZ5fQ5ggUARAHvaG/vDzEaOM21utNpprF4KBzBAgCihK/PggZOc/kaNy+NsfkVPgQLAIgSvp0hO8u4YmGWIzVN2l/RKJvVoqnDCBYAgAhW5D+MjCsWZvENxbqwMF1piXEmV2MOggUARInR7Ush+ysaGO1tEt8x6ZfE2LTNzggWABAlsp0O9UuKk8eQ9hxvMLucmNPm9uidvd4rFpfEaH+FRLAAgKjhHe3dftIpg7L63IdHalXf3Ka0xDiNK0g3uxzTECwAIIr4Gjjps+h7vmWQGcOzZLPG3jZTH4IFAEQRDiMzj2+baSwvg0gECwCIKp3PDGG0d9+pbWrVhyUnJMXmGO/OCBYAEEWGZ3tHe9c0tep4ncvscmLGO3sr5TGkEdkpyktLNLscUxEsACCKJMTZ/OdT0MDZdzpOM43tqxUSwQIAoo5/ZwgNnH3CMIyO+RUx3l8hESwAIOoU0cDZp/ZVNOhYbbPi7VZdPCTT7HJMR7AAgChTzJbTPrV6t3co1sVDMpQYbzO5GvMRLAAgyviWQvZXNjLauw8wxrsrggUARJmcVIfSk+Lk9hjaW85o71BqbnXr/QNVkqSZ9FdIIlgAQNSxWCwsh/SRjQdr1NzqUU6qQ6NynGaXExYIFgAQhTqOUKeBM5TWdNpmarHE7hjvzggWABCFOk/gROh0bDOlv8KHYAEAUajzUgijvUOjvK5ZO8vqZbF4Dx6DF8ECAKLQiJwUWS1STVOryusZ7R0Ka/Z4t5mOHZCmjOR4k6sJHwQLAIhCCXE2De2fIokGzlBhm+mZESwAIEoV5dLAGSoej6F39nqvWNBf0RXBAgCiFA2cofPxsVpVN7YoxWHXhIHpZpcTVggWABCliv1bTgkWwba2vb9i6rBMxdn4UdoZ3w0AiFK+Kxb7KhrlamO0dzCtZpvpWREsACBK5aYmKC3RO9p7z3FGewdLfXOrNh+qkSRdSuPmaQgWABClLBaLfzlkZxkNnMHy331VavMYGpyZpIGZSWaXE3YIFgAQxYraB2XtpM8iaHz9FSyDnBnBAgCi2Oj2Posd7AwJms7ng+B0BAsAiGKdDyNjtHfvHapq1KGqJtmtFk0dlml2OWGJYAEAUWxkjlNWi1Td2KIKRnv3mm/a5qRB/ZTisJtcTXgiWABAFEuIs2lIVrIkaQcNnL22ejf9FedDsACAKFeU13HSKXqu1e3Rf/e1Bwv6K86KYAEAUc7XwMnOkN7ZfKhGjS1uZSbH64L8VLPLCVsECwCIchxGFhy+3SAzRmTJarWYXE34CjhYrFmzRtdff73y8/NlsVi0YsWKEJQFAAiWjtHeDYz27oU1u1kG6Y6Ag0VjY6PGjx+vZ555JhT1AACCLC8tQakJdrV5DO0rbzS7nIhU1eDSx8dqJUkzR2SZXE14C3ivzNVXX62rr746FLUAAELAO9o7Ve8fqNaO0jqNpj8gYO/srZRheJeVslMTzC4nrNFjAQAxwLccspMJnD3iWwa5lG2m5xXy6R4ul0suV8dQlro6/lIDQF8rzqOBs6cMw9DaPRyT3l0hv2KxcOFCpaWl+W+FhYWh/pIAgFP4DyPjikXAdpbVq7zepYQ4qyYP7md2OWEv5MFiwYIFqq2t9d9KSkpC/SUBAKfwjfaubGhReX2z2eVEFN/Vik8MzZTDbjO5mvAX8qUQh8Mhh8MR6i8DADiHxHibBmcla39Fo3aW1ivbSQNid7HNNDABX7FoaGjQli1btGXLFknSgQMHtGXLFh0+fDjYtQEAgqg4l9HegTrZ4tb6g9WS6K/oroCDxcaNGzVhwgRNmDBBkjR//nxNmDBBDz/8cNCLAwAEj6+BcyeHkXXbugNVamnzaEB6oob1Tza7nIgQ8FLIrFmzZBhGKGoBAIRQEVcsAuY7Jv2SkVmyWBjj3R3MsQCAGFHcPhhrb3mDWto8JlcTGdbu8fZXzKS/otsIFgAQI/I7j/auaDC7nLB37MRJ7S1vkNUiTR/GGO/uIlgAQIywWCwqymM5pLt8yyAXFqYrLSnO5GoiB8ECAGJIcS4NnN21hmmbPUKwAIAYUswVi25xewy9095fQbAIDMECAGJIx1IIVyzO5cMjJ1TX3KbUBLvGDUgzu5yIQrAAgBgyMidFFotU2eBSRb3r/E+IUb7+ihkjsmS38aMyEHy3ACCGJMXbNSTTO+iJA8nOzj+/gm2mASNYAECMKfIfoU6wOJPaplZtKTkhSZpJf0XACBYAEGN8Z4bspM/ijN7bVymPIQ3rn6wB6YlmlxNxCBYAEGP8DZxsOT0jtpn2DsECAGKM7zCyveX1jPY+hWEYHcekEyx6hGABADFmQHqinAl2tboN7a9ktHdn+yoadfTEScXbrfrEkEyzy4lIBAsAiDEWi8XfZ0EDZ1e+3SAXDc5QYrzN5GoiE8ECAGKQb2cIDZxdrW3vr5g5gkPHeopgAQAxyDfaeztXLPxcbW6t218tif6K3iBYAEAMKuIwstNsPFijk61uZTsd/u8PAkewAIAYNCrXKYtFqqh3qbKB0d5SR3/FzBH9ZbFYTK4mchEsACAGJcXbNdg32ps+C0nSGv9ppvRX9AbBAgBilO9yPztDpPL6Zu0orZPFIs0YTrDoDYIFAMSoYv8EToLF2vahWGPy05SZ4jC5mshGsACAGOVv4GQppNMYb65W9BbBAgBilO+Kxd7yBrW6Y3e0t8djaK2vv4Jj0nuNYAEAMaqgX6KcDrta3B7tr2g0uxzTbC+tU3Vji5LjbZowsJ/Z5UQ8ggUAxCiLxeKfwBnLDZyr27eZTh2WpXg7PxZ7i+8gAMSwolwaOH3zKy6lvyIoCBYAEMM6rljEZgNng6tNmw7VSGKMd7AQLAAghvkaOHfG6FLIun1VavMYGpSZpEHtA8PQOwQLAIhho3K8o73L612qisHR3ms4zTToCBYAEMOSHXYNykiSFJsHkvn6K9hmGjwECwCIcf4GzhhbDjlc1aSDVU2yWy2aOizT7HKiBsECAGKcf7R3jDVwrm5fBpk4qJ+cCXEmVxM9CBYAEON8O0N2xtiW07X+ZRD6K4KJYAEAMW50+xWLPcdjZ7R3q9uj9/ZVSWKbabARLAAgxg1IT1RK+2jvA5WxMdr7g8Mn1OBqU0ZyvMbkp5ldTlQhWABAjLNaLf6TTmOlgdO3G2TG8CxZrRaTq4kuBAsAQMxN4Ow4Jp1lkGAjWAAAYmrLaXVji7YerZXEYKxQIFgAADpGe8fAzpB39lbKMKSiXKdyUhPMLifqECwAABrV3mNxvM6l6sYWk6sJLf+0TZZBQsJudgEAAPOlOOwalJmkQ1VNuvP/vq8B6YnKTHEoMzlemcnxykhxKCs5Xhkp8cpMdqhfUpzstsj7t6lhGFq7hzHeoUSwAABIkqYNy9ShqiZ9fLROHx8995KIxSKlJ8YpIzm+I4CkxCsj2aGslHjv/ckOZaZ4g0l6UrxsYbD7YvfxBh2vcykhzqrJg/uZXU5UIlgAACRJj312jD43oUAV9S5VN7pU2dCi6sYWVTW6VNXQoqpG78c1TS0yDKmmqVU1Ta3aV3H+2RdWi9QvqT1wpHQOHQ5lpMR7r4Z0CilpiXEh2QbqWwa5eEimEuJsQX99ECwAAO3ibFZdNCTjvI9rc3t04mRre9jwho7qxhZVNbhU1dji/7iy/XO1J1vlMeT9XGOL9pSfvxab1aJ+SfEdVz+6LMt0vRqSmexQaqJdFsv5gwjbTEOPYAEACIjdZlVWikNZKQ5JzvM+vtXtUU17qDgtjJxyNaSywaX65ja5PYYqG1yqbHB1q6Y4mzeIdF2WiVdWiqN9Wca7HPP+gWpJ0qUj2WYaKgQLAEBIxdmsyk5NUHY3t3a2tHm6hA5f4Kj2BxPv53wfN7ja1Oo2VF7vUnn9+YNIflqChvVP6e3bwlkQLAAAYSXeblVuWoJy07oXRJpb3apuPEsAaf+4srFF1Y3eqyFfmjm0W8sm6BmCBQAgoiXE2ZSfnqj89ESzS4F6OCDrt7/9rYYMGaKEhARNmjRJa9euDXZdAAAgAgUcLF566SU98MADeuihh/TBBx9o5syZuvrqq3X48OFQ1AcAACKIxTAMI5AnXHzxxZo4caIWLVrkv6+4uFg33HCDFi5ceN7n19XVKS0tTbW1tUpNTQ28YgAA0Oe6+/M7oCsWLS0t2rRpk6666qou91911VV67733zvgcl8ulurq6LjcAABCdAgoWlZWVcrvdysnJ6XJ/Tk6OysrKzvichQsXKi0tzX8rLCzsebUAACCs9ah589RtOoZhnHXrzoIFC1RbW+u/lZSU9ORLAgCACBDQdtOsrCzZbLbTrk6Ul5efdhXDx+FwyOFw9LxCAAAQMQK6YhEfH69JkyZp5cqVXe5fuXKlpk2bFtTCAABA5Al4QNb8+fN1xx13aPLkyZo6daoWL16sw4cP65577glFfQAAIIIEHCy+8IUvqKqqSo899phKS0s1ZswY/fOf/9SgQYNCUR8AAIggAc+x6C3mWAAAEHlCMscCAADgXAgWAAAgaAgWAAAgaPr82HRfSwejvQEAiBy+n9vna83s82BRX18vSYz2BgAgAtXX1ystLe2sn+/zXSEej0fHjh2T0+k86xjwnqirq1NhYaFKSkqidrdJtL9H3l/ki/b3yPuLfNH+HkP5/gzDUH19vfLz82W1nr2Tos+vWFitVhUUFITs9VNTU6PyL0tn0f4eeX+RL9rfI+8v8kX7ewzV+zvXlQofmjcBAEDQECwAAEDQRE2wcDgceuSRR6L6JNVof4+8v8gX7e+R9xf5ov09hsP76/PmTQAAEL2i5ooFAAAwH8ECAAAEDcECAAAETcQHizVr1uj6669Xfn6+LBaLVqxYYXZJQbVw4UJNmTJFTqdT2dnZuuGGG7Rr1y6zywqaRYsWady4cf4911OnTtXrr79udlkhs3DhQlksFj3wwANmlxI0jz76qCwWS5dbbm6u2WUF3dGjR3X77bcrMzNTSUlJuvDCC7Vp0yazywqKwYMHn/ZnaLFYNHfuXLNLC4q2tjZ973vf05AhQ5SYmKihQ4fqsccek8fjMbu0oKmvr9cDDzygQYMGKTExUdOmTdOGDRtMqaXPB2QFW2Njo8aPH685c+bopptuMrucoFu9erXmzp2rKVOmqK2tTQ899JCuuuoqbd++XcnJyWaX12sFBQX60Y9+pOHDh0uSnnvuOX32s5/VBx98oAsuuMDk6oJrw4YNWrx4scaNG2d2KUF3wQUX6O233/Z/bLPZTKwm+GpqajR9+nRddtllev3115Wdna19+/YpPT3d7NKCYsOGDXK73f6PP/74Y33yk5/ULbfcYmJVwfPUU0/pd7/7nZ577jldcMEF2rhxo+bMmaO0tDTdf//9ZpcXFF/+8pf18ccf609/+pPy8/P1/PPP68orr9T27ds1YMCAvi3GiCKSjOXLl5tdRkiVl5cbkozVq1ebXUrI9OvXz/jf//1fs8sIqvr6emPEiBHGypUrjUsvvdS4//77zS4paB555BFj/PjxZpcRUg8++KAxY8YMs8voM/fff78xbNgww+PxmF1KUFx77bXG3Xff3eW+G2+80bj99ttNqii4mpqaDJvNZrz22mtd7h8/frzx0EMP9Xk9Eb8UEmtqa2slSRkZGSZXEnxut1vLli1TY2Ojpk6danY5QTV37lxde+21uvLKK80uJST27Nmj/Px8DRkyRLfeeqv2799vdklB9corr2jy5Mm65ZZblJ2drQkTJujZZ581u6yQaGlp0fPPP6+77747qOc5mWnGjBn617/+pd27d0uSPvzwQ73zzju65pprTK4sONra2uR2u5WQkNDl/sTERL3zzjt9Xk/EL4XEEsMwNH/+fM2YMUNjxowxu5yg2bp1q6ZOnarm5malpKRo+fLlGj16tNllBc2yZcu0efNm09Y7Q+3iiy/W0qVLNXLkSB0/flyPP/64pk2bpm3btikzM9Ps8oJi//79WrRokebPn6/vfve7Wr9+vb7+9a/L4XDozjvvNLu8oFqxYoVOnDihu+66y+xSgubBBx9UbW2tioqKZLPZ5Ha79cQTT+iLX/yi2aUFhdPp1NSpU/XDH/5QxcXFysnJ0Ysvvqj3339fI0aM6PuC+vwaSQgpypdC7r33XmPQoEFGSUmJ2aUElcvlMvbs2WNs2LDB+M53vmNkZWUZ27ZtM7usoDh8+LCRnZ1tbNmyxX9ftC2FnKqhocHIyckxnn76abNLCZq4uDhj6tSpXe6bN2+e8YlPfMKkikLnqquuMq677jqzywiqF1980SgoKDBefPFF46OPPjKWLl1qZGRkGH/84x/NLi1o9u7da1xyySWGJMNmsxlTpkwxbrvtNqO4uLjPayFYRIj77rvPKCgoMPbv3292KSF3xRVXGF/96lfNLiMoli9f7v8P3XeTZFgsFsNmsxltbW1mlxgSV155pXHPPfeYXUbQDBw40PjSl77U5b7f/va3Rn5+vkkVhcbBgwcNq9VqrFixwuxSgqqgoMB45plnutz3wx/+0Bg1apRJFYVOQ0ODcezYMcMwDOPzn/+8cc011/R5DSyFhDnDMDRv3jwtX75cq1at0pAhQ8wuKeQMw5DL5TK7jKC44oortHXr1i73zZkzR0VFRXrwwQejbveEJLlcLu3YsUMzZ840u5SgmT59+mnbvHfv3q1BgwaZVFFoLFmyRNnZ2br22mvNLiWompqaZLV2bSm02WxRtd3UJzk5WcnJyaqpqdGbb76pH//4x31eQ8QHi4aGBu3du9f/8YEDB7RlyxZlZGRo4MCBJlYWHHPnztULL7ygv//973I6nSorK5MkpaWlKTEx0eTqeu+73/2urr76ahUWFqq+vl7Lli3TqlWr9MYbb5hdWlA4nc7T+mGSk5OVmZkZNX0y3/zmN3X99ddr4MCBKi8v1+OPP666ujrNnj3b7NKC5hvf+IamTZumJ598Up///Oe1fv16LV68WIsXLza7tKDxeDxasmSJZs+eLbs94n80dHH99dfriSee0MCBA3XBBRfogw8+0M9+9jPdfffdZpcWNG+++aYMw9CoUaO0d+9efetb39KoUaM0Z86cvi+mz6+RBNl//vMfQ9Jpt9mzZ5tdWlCc6b1JMpYsWWJ2aUFx9913G4MGDTLi4+ON/v37G1dccYXx1ltvmV1WSEVbj8UXvvAFIy8vz4iLizPy8/ONG2+8MWp6ZDp79dVXjTFjxhgOh8MoKioyFi9ebHZJQfXmm28akoxdu3aZXUrQ1dXVGffff78xcOBAIyEhwRg6dKjx0EMPGS6Xy+zSguall14yhg4dasTHxxu5ubnG3LlzjRMnTphSC6ebAgCAoGGOBQAACBqCBQAACBqCBQAACBqCBQAACBqCBQAACBqCBQAACBqCBQAACBqCBQAACBqCBQDTPfroo7rwwgvNLgNAEBAsAPQpi8WiFStWmF0GgBAhWAAAgKAhWAAxatasWZo3b54eeOAB9evXTzk5OVq8eLEaGxs1Z84cOZ1ODRs2TK+//rr/OatXr9ZFF10kh8OhvLw8fec731FbW1uX1/z617+ub3/728rIyFBubq4effRR/+cHDx4sSfrc5z4ni8Xi/9jnT3/6kwYPHqy0tDTdeuutqq+vD+W3AEAIECyAGPbcc88pKytL69ev17x58/S1r31Nt9xyi6ZNm6bNmzfrU5/6lO644w41NTXp6NGjuuaaazRlyhR9+OGHWrRokf7whz/o8ccfP+01k5OT9f777+vHP/6xHnvsMa1cuVKStGHDBknSkiVLVFpa6v9Ykvbt26cVK1botdde02uvvabVq1frRz/6Ud99MwAEBaebAjFq1qxZcrvdWrt2rSTJ7XYrLS1NN954o5YuXSpJKisrU15env773//q1Vdf1csvv6wdO3bIYrFIkn7729/qwQcfVG1traxW62mvKUkXXXSRLr/8cn9IsFgsWr58uW644Qb/Yx599FH95Cc/UVlZmZxOpyTp29/+ttasWaN169b1xbcDQJBwxQKIYePGjfP/3mazKTMzU2PHjvXfl5OTI0kqLy/Xjh07NHXqVH+okKTp06eroaFBR44cOeNrSlJeXp7Ky8vPW8vgwYP9oSKQ5wEILwQLIIbFxcV1+dhisXS5zxciPB6PDMPoEiokyXfBs/P9Z3pNj8fTo1q68zwA4YVgAaBbRo8erffee0+dV0/fe+89OZ1ODRgwoNuvExcXJ7fbHYoSAYQBggWAbrn33ntVUlKiefPmaefOnfr73/+uRx55RPPnz5fV2v3/lQwePFj/+te/VFZWppqamhBWDMAMBAsA3TJgwAD985//1Pr16zV+/Hjdc889+tKXvqTvfe97Ab3O008/rZUrV6qwsFATJkwIUbUAzMKuEAAAEDRcsQAAAEFDsAAAAEFDsAAAAEFDsAAAAEFDsAAAAEFDsAAAAEFDsAAAAEFDsAAAAEFDsAAAAEFDsAAAAEFDsAAAAEFDsAAAAEHz/wNBvKtsMI0dvQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# basic plots for all rides (not just in the program area)\n", + "df_2023.groupby(\"month\").agg({'ID':'count'}).orderBy(F.col('month').asc()).toPandas().plot(x=\"month\",y=\"count(ID)\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "90914451-ac49-44f6-98d5-4eb6b5f8dbf6", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "df_total = df_2023.groupby(\"pickup_area\").agg({'ID':'count'}).orderBy(F.col('pickup_area').asc()).toPandas()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "748f2fd1-b2d6-47bb-8315-b4034acbbcee", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHICAYAAAASm6MRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVH0lEQVR4nO3deXhM1/8H8M9MlsmeSCKJyL4hmwRBRCqJECKWElqC2GpXS2stWtTSRb9a3RSlautP6UZLqapWv2pfYomdWIpSQpBI5v37wzP3ayRB4kaE9+t55nkyd+bce+7ckzvvOfecGQ0ACBEREZEKtOVdASIiInp6MFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWrKLVhs3LhRWrZsKe7u7qLRaOTbb78t8ToAyLvvvitBQUGi0+nE09NTpkyZon5liYiI6KGYlteGc3JypGbNmtK9e3dp165dqdYxePBg+fnnn+Xdd9+VsLAwuXr1qvzzzz8q15SIiIgeluZJ+BEyjUYj33zzjbRp00ZZlpeXJ2PHjpVFixbJlStXJDQ0VN566y2Ji4sTEZEDBw5IeHi4ZGRkSLVq1cqn4kRERGTkiR1j0b17d9m0aZMsXbpU9uzZI+3bt5dmzZrJ4cOHRUTkhx9+ED8/P1m5cqX4+vqKj4+P9OrVSy5fvlzONSciInp2PZHB4ujRo7JkyRJZtmyZxMbGir+/v7z66qvSsGFDmTdvnoiIHDt2TE6ePCnLli2TBQsWyPz582X79u2SmppazrUnIiJ6dpXbGIv72bFjhwCQoKAgo+W5ubni5OQkIiJ6vV5yc3NlwYIFyvPmzp0rtWvXlszMTF4eISIiKgdPZLDQ6/ViYmIi27dvFxMTE6PHbGxsRESkSpUqYmpqahQ+atSoISIip06dYrAgIiIqB09ksIiMjJSCggK5cOGCxMbGFvmcmJgYyc/Pl6NHj4q/v7+IiBw6dEhERLy9vR9bXYmIiOh/ym1WyPXr1+XIkSMicidIvPfeexIfHy+Ojo7i5eUlnTt3lk2bNsn06dMlMjJS/vnnH1m/fr2EhYVJcnKy6PV6iYqKEhsbG5kxY4bo9XoZMGCA2NnZyc8//1weu0RERPTMK7dgsWHDBomPjy+0PD09XebPny+3b9+WN998UxYsWCBnzpwRJycniY6OlgkTJkhYWJiIiJw9e1YGDRokP//8s1hbW0vz5s1l+vTp4ujo+Lh3h4iIiOQJ+R4LIiIiejo8kdNNiYiIqGJisCAiIiLVPPZZIXq9Xs6ePSu2trai0Wge9+aJiIioFADItWvXxN3dXbTa4vslHnuwOHv2rHh6ej7uzRIREZEKsrKyxMPDo9jHH3uwsLW1FZE7FbOzs3vcmyciIqJSyM7OFk9PT+V9vDiPPVgYLn/Y2dkxWBAREVUwDxrGwMGbREREpBoGCyIiIlLNE/lbIUREVDEVFBTI7du3y7saVApmZmaFfvizNBgsiIjokQGQv//+W65cuVLeVaFH4ODgIG5ubo/0dRAMFkRE9MgMocLFxUWsrKz4PUUVDAC5ceOGXLhwQUREqlSpUup1MVgQEdEjKSgoUEKFk5NTeVeHSsnS0lJERC5cuCAuLi6lvixS4sGbZ86ckc6dO4uTk5NYWVlJRESEbN++vVQbJyKiis8wpsLKyqqca0KPynAMH2WcTIl6LP7991+JiYmR+Ph4+emnn8TFxUWOHj0qDg4Opa4AERE9HXj5o+JT4xiWKFi89dZb4unpKfPmzVOW+fj43LdMbm6u5ObmKvezs7NLVkMiIiKqMEp0KeT777+XOnXqSPv27cXFxUUiIyNl9uzZ9y0zdepUsbe3V278nRAiIqKnlwYAHvbJFhYWIiIybNgwad++vWzZskWGDBkis2bNkq5duxZZpqgeC09PT7l69Sq/0puI6Clw69YtOX78uPj6+irvEyIiPqNWPdZ6nJjW4rFur6zl5eVJcHCwfPHFFxITE/NI61q5cqWMGzdOtm/fft9fJi3uWIrcef+2t7d/4Pt3iXos9Hq91KpVS6ZMmSKRkZHSp08feemll+STTz4ptoxOp1N+F4S/D0JERPQ/J06cEI1GI7t27Sr02GeffSbe3t5GoUKj0ci3335rdN9ws7a2lsDAQOnWrVuhSRUpKSmi0Whk8eLFZbUrihIFiypVqkhwcLDRsho1asipU6dUrRQREdGzbubMmdKrV68HPm/evHly7tw52bdvn3z00Udy/fp1qVevnixYsMDoed27d5eZM2eWVXUVJQoWMTExkpmZabTs0KFD4u3trWqliIiIHge9Xi9vvfWWBAQEiE6nEy8vL5k8ebKIiOzdu1cSEhLE0tJSnJycpHfv3nL9+nWlbFxcnAwZMsRofW3atJFu3bop9318fGTKlCnSo0cPsbW1FS8vL/nss8+Ux319fUVEJDIyUjQajcTFxYmIyI4dO+TIkSPSosWDL+8Yvi3Tx8dHmjZtKl9//bWkpaXJwIED5d9//1We16pVK9myZYscO3aspC9TiZQoWAwdOlQ2b94sU6ZMkSNHjsjixYvls88+kwEDBpRV/Z4oPqNWGd2IiKhiGz16tLz11lsybtw42b9/vyxevFhcXV3lxo0b0qxZM6lUqZJs3bpVli1bJuvWrZOBAweWeBvTp0+XOnXqyM6dO6V///7Sr18/OXjwoIiIbNmyRURE1q1bJ+fOnZMVK1aIiMjGjRslKCio1MMHhg4dKteuXZO1a9cqy7y9vcXFxUV+//33Uq3zYZUoWERFRck333wjS5YskdDQUJk0aZLMmDFD0tLSyqp+REREZeLatWvy/vvvy9tvvy3p6eni7+8vDRs2lF69esmiRYvk5s2bsmDBAgkNDZWEhAT58MMP5csvv5Tz58+XaDvJycnSv39/CQgIkJEjR4qzs7Ns2LBBREQqV64sIiJOTk7i5uYmjo6OInJn7IW7u3up96169erKeu5WtWrVQsvUVuKv9E5JSZGUlJSyqAsREdFjc+DAAcnNzZXGjRsX+VjNmjXF2tpaWRYTEyN6vV4yMzPF1dX1obcTHh6u/K3RaMTNzU35TY7i3Lx5s9CsjJIwTPi89wuvLC0t5caNG6Ve78Mo8Vd6ExERPQ0Mv41RFADFfgulYblWq5V7v7GhqK/CNjMzK1Rer9fft27Ozs5G4yNK6sCBAyLyvzEcBpcvX1Z6ScoKgwURET2TAgMDxdLSUn755ZdCjwUHB8uuXbskJydHWbZp0ybRarUSFBQkIncuY5w7d055vKCgQDIyMkpUB3Nzc6Xs3SIjI+XgwYOFgsvDmjFjhtjZ2UliYqKy7NatW3L06FGJjIws1TofFoMFERE9kywsLGTkyJEyYsQIWbBggRw9elQ2b94sc+fOlbS0NLGwsJD09HTJyMiQX3/9VQYNGiRdunRRLoMkJCTIqlWrZNWqVXLw4EHp37+/XLlypUR1cHFxEUtLS1m9erWcP39erl69KiIi8fHxkpOTI/v27XvgOq5cuSJ///23nDx5UtauXSupqamyePFi+eSTT4x+y2vz5s2i0+kkOjq6RHUsKf5sOhERlYmK8E2Y48aNE1NTUxk/frycPXtWqlSpIn379hUrKytZs2aNDB48WKKiosTKykratWsn7733nlK2R48esnv3bunatauYmprK0KFDJT4+vkTbNzU1lQ8++EAmTpwo48ePl9jYWNmwYYM4OTlJ27ZtZdGiRTJ16tT7rqN79+4icicoVa1aVRo2bChbtmyRWrVqGT1vyZIlkpaWVua/Qluir/RWw8N+JeiT6N4pphXhn4aIqKzd72ugqfT27t0riYmJcuTIEbG1tX2kdV28eFGqV68u27ZtKzTu4m6P/Su9iYiI6PEICwuTt99+W5XpocePH5ePP/74vqFCLbwUQkRE9IRKT09XZT1169aVunXrqrKuB2GPBREREamGwYKIiIhUw2BBRESqeMxzAagMqHEMGSyIiOiRGL5Zsqy/KprKnuEY3vttoSXBwZtERPRITExMxMHBQfn9Cysrq2K/DpueTADkxo0bcuHCBXFwcBATE5NSr4vBgoiIHpmbm5uIyAN/XIuebA4ODsqxLC0GCyIiemQajUaqVKkiLi4uRf4QFz35zMzMHqmnwoDBgoiIVGNiYqLKmxNVXBy8SURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWoYLIiIiEg1DBZERESkGgYLIiIiUg2DBREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqKVGweOONN0Sj0Rjd3NzcyqpuREREVMGYlrRASEiIrFu3TrlvYmKiaoWIiIio4ipxsDA1NWUvBRERERWpxGMsDh8+LO7u7uLr6ysvvviiHDt27L7Pz83NlezsbKMbERERPZ1KFCzq1asnCxYskDVr1sjs2bPl77//lgYNGsilS5eKLTN16lSxt7dXbp6eno9caSIiInoyaQCgtIVzcnLE399fRowYIcOGDSvyObm5uZKbm6vcz87OFk9PT7l69arY2dmVdtPlwmfUKqP7J6a1KKeaEBERPV7Z2dlib2//wPfvEo+xuJu1tbWEhYXJ4cOHi32OTqcTnU73KJshIiKiCuKRvsciNzdXDhw4IFWqVFGrPkRERFSBlShYvPrqq/Lbb7/J8ePH5a+//pLU1FTJzs6W9PT0sqofERERVSAluhRy+vRp6dixo/zzzz9SuXJlqV+/vmzevFm8vb3Lqn5ERERUgZQoWCxdurSs6kFERERPAf5WCBEREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWoYLIiIiEg1DBZERESkGgYLIiIiUg2DBREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWoYLIiIiEg1DBZERESkGgYLIiIiUs0jBYupU6eKRqORIUOGqFQdIiIiqshKHSy2bt0qn332mYSHh6tZHyIiIqrAShUsrl+/LmlpaTJ79mypVKmS2nUiIiKiCqpUwWLAgAHSokULSUxMfOBzc3NzJTs72+hGRERETyfTkhZYunSp7NixQ7Zu3fpQz586dapMmDChxBUjIiKiiqdEPRZZWVkyePBgWbhwoVhYWDxUmdGjR8vVq1eVW1ZWVqkqSkRERE++EvVYbN++XS5cuCC1a9dWlhUUFMjGjRvlww8/lNzcXDExMTEqo9PpRKfTqVNbIiIieqKVKFg0btxY9u7da7Sse/fuUr16dRk5cmShUEFERETPlhIFC1tbWwkNDTVaZm1tLU5OToWWExER0bOH37xJREREqinxrJB7bdiwQYVqEBER0dOAPRZERESkGgYLIiIiUg2DBREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWoYLIiIiEg1DBZERESkGgYLIiIiUg2DBREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQa0/KuAFFF4jNqlfL3iWktyrEmRERPJvZYEBERkWrYY0H0BGLPCBFVVOyxICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlJNiYLFJ598IuHh4WJnZyd2dnYSHR0tP/30U1nVjYiIiCqYEgULDw8PmTZtmmzbtk22bdsmCQkJ0rp1a9m3b19Z1Y+IiIgqkBJ9j0XLli2N7k+ePFk++eQT2bx5s4SEhKhaMSIiIqp4Sv0FWQUFBbJs2TLJycmR6OjoYp+Xm5srubm5yv3s7OzSbpKIiIiecCUevLl3716xsbERnU4nffv2lW+++UaCg4OLff7UqVPF3t5euXl6ej5ShYmIiOjJVeJgUa1aNdm1a5ds3rxZ+vXrJ+np6bJ///5inz969Gi5evWqcsvKynqkChMREdGTq8SXQszNzSUgIEBEROrUqSNbt26V999/X2bNmlXk83U6neh0ukerJREREVUIj/w9FgCMxlAQERHRs6tEPRZjxoyR5s2bi6enp1y7dk2WLl0qGzZskNWrV5dV/YiIiKgCKVGwOH/+vHTp0kXOnTsn9vb2Eh4eLqtXr5YmTZqUVf2IiIioAilRsJg7d25Z1YOIiIieAvytECIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWoYLIiIiEg1DBZERESkGgYLIiIiUg2DBREREamGwYKIiIhUY1reFSgvPqNWGd0/Ma1FOdWEiIjo6cEeCyIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWoYLIiIiEg1DBZERESkGgYLIiIiUg2DBREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKopUbCYOnWqREVFia2trbi4uEibNm0kMzOzrOpGREREFYxpSZ7822+/yYABAyQqKkry8/Pltddek6ZNm8r+/fvF2tq6rOpI9EA+o1YZ3T8xrUU51YSI6NlWomCxevVqo/vz5s0TFxcX2b59uzz33HOqVoyIiIgqnhIFi3tdvXpVREQcHR2LfU5ubq7k5uYq97Ozsx9lk0RERPQEK/XgTQAybNgwadiwoYSGhhb7vKlTp4q9vb1y8/T0LO0miYiI6AlX6mAxcOBA2bNnjyxZsuS+zxs9erRcvXpVuWVlZZV2k0RERPSEK9WlkEGDBsn3338vGzduFA8Pj/s+V6fTiU6nK1XliIiIqGIpUbAAIIMGDZJvvvlGNmzYIL6+vmVVLyIiIqqAShQsBgwYIIsXL5bvvvtObG1t5e+//xYREXt7e7G0tCyTChIREVHFUaJg8cknn4iISFxcnNHyefPmSbdu3dSqU7m7+zsR+H0IRERED6/El0KIiIiIisPfCiEiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWoYLIiIiEg1DBZERESkGgYLIiIiUg2DBREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSDYMFERERqYbBgoiIiFTDYEFERESqYbAgIiIi1TBYEBERkWoYLIiIiEg1DBZERESkGtPyrgDRvXxGrTK6f2Jai3KqCRERlRR7LIiIiEg1DBZERESkGgYLIiIiUg2DBREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFq+AVZREREz6iy+EJC9lgQERGRahgsiIiISDUMFkRERKSaEgeLjRs3SsuWLcXd3V00Go18++23ZVAtIiIiqohKHCxycnKkZs2a8uGHH5ZFfYiIiKgCK/GskObNm0vz5s3Loi5ERERUwZX5dNPc3FzJzc1V7mdnZ5f1JomIiKiclPngzalTp4q9vb1y8/T0LOtNEhERUTkp82AxevRouXr1qnLLysoq600SERFROSnzSyE6nU50Ol1Zb4aIiIieAPweCyIiIlJNiXssrl+/LkeOHFHuHz9+XHbt2iWOjo7i5eWlauWIiIioYilxsNi2bZvEx8cr94cNGyYiIunp6TJ//nzVKkZEREQVT4mDRVxcnAAoi7oQ0TPm7l9WVONXFYmo/HGMBREREamGwYKIiIhUU+bTTdXEblN61t39PyDC/wMievKwx4KIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSjWl5V4CIiIiePD6jVil/n5jW4qHLsceCiIiIVMNgQURERKrhpRB66pW2O4+IiEqOPRZERESkGgYLIiIiUg2DBREREamGYyyIysndYz9EOP6DiJ4ODBZERM8ohlsqC+UWLEJfXyNanZWIlG1j5owAIiKix4c9FlRuGPqoNNhuiJ5sT02w4Mmm5PiaERGR2jgrhIiIiFTz1PRY0LOBvSzPBg4qJKq42GNBREREqmGPBZFK2JtSvvj6Ez0ZnshgwRNExcNjRkTPOp4H73gigwUREdGz4GkMIxxjQURERKphj8VTorjUy9H1pPYnoqfxE5Ya+L9GdAeDBVEZ4xsxET1LGCyIiIhKgB8W7o/BgqgIPHEQPRv4v64+Bguip0R5nyDLe/v05Lpf23hS2w3HzJQeZ4UQERGRathjQURED42f5OlBGCzomfWkdsE+bZ7kNyK2AaqInvR2y2BRxiritUUienLxvEFPOgYLKoRfqERET7KKeE4p7zo/zu0zWFQw5d04iYiK86Sen57ky3FPo1IFi48//ljeeecdOXfunISEhMiMGTMkNjZW7boREalCzTe80qyrIn7l/pMaEujJV+Jg8dVXX8mQIUPk448/lpiYGJk1a5Y0b95c9u/fL15eXmVRx2cO/6HpcWFboyeVmgGuoqqo+1PiYPHee+9Jz549pVevXiIiMmPGDFmzZo188sknMnXqVNUrWFFU1AZQUs/Kfj7reJwrJh43ehKUKFjk5eXJ9u3bZdSoUUbLmzZtKn/++WeRZXJzcyU3N1e5f/XqVRER0efeUJZlZ2cblSnuMTXL3L38cZWpiPtZEetcmjLcT+7nvWVCX1+j/J0xIanM63zvYyXd/v0ee5h1qVFntsHy3c+7j7OI+u3W8BgAuS+UwJkzZyAi2LRpk9HyyZMnIygoqMgyr7/+OkSEN95444033nh7Cm5ZWVn3zQqlGryp0WiM7gMotMxg9OjRMmzYMOW+Xq+Xy5cvi5OTk1y7dk08PT0lKytL7OzslOdkZ2cXufx+j6lZpry3z/3kfj4r+1ne2+d+cj+flf1UY10A5Nq1a+Lu7i73U6Jg4ezsLCYmJvL3338bLb9w4YK4uroWWUan04lOpzNa5uDgICL/Cyh2dnaFdvR+yx9XmfLe/uMqU97bf1xlynv7j6tMeW//WalzacqU9/YfV5ny3v7jKlPe2y+POtvb2xdZ9m4l+hEyc3NzqV27tqxdu9Zo+dq1a6VBgwYlWRURERE9hUp8KWTYsGHSpUsXqVOnjkRHR8tnn30mp06dkr59+5ZF/YiIiKgCKXGweOGFF+TSpUsyceJEOXfunISGhsqPP/4o3t7eJd64TqeT119/vdClkuKWP64y5b197if381nZz/LePveT+/ms7Kfa278fDR44b4SIiIjo4ZRojAURERHR/TBYEBERkWoYLIiIiEg1DBZERESkGgYLIiIiUg2DBVUI95u8VNKJTXq9XrV1VVQVcT+Lq7Oax78066uoKuJ+sg2oq6z2s1yCxcPuzLlz52T//v1FPlZQUFDsum7cuCG3b98utPz06dOyc+fOEtT0TgN8UCOsSHJych74nMfxT/Ww2zD8Mq5GoylU5vz588pj9y7/559/ilzf8ePHZc6cOVJQUGC0PsMxLu43b54WhuP/oP2sCG2guONveKyoNlDc8Rcp3Aae1jeXh2kDj2vfn/Q28LR62PNAaakeLAxv+PfKycmRa9euSXZ2ttHOXL58WQ4ePCiHDx+WvLw8ZfmZM2ckLCxMxo4dK9u2bTNa144dOyQ+Pl5ycnIKvTAZGRnSsWNH2bx5s9HPte/bt08aNGggCxcuFBHjxHr69Gn56quvZPny5bJnzx5l+f79+6Vbt27SpEkT6d27tyxduvS++17af0YARb5uly9flosXLxZZJjMzUzZt2lRo+ZEjR+Tbb781ei3vLtO3b185ffq00fIbN27Iv//+K7du3RKRh3vTOXXqlKxatUrmzJkj586dUxqqYR33On/+vGzdulV++OEHZRuG1+vUqVPy9ddfy3vvvWdUt8zMTOnVq5f8+uuvhcrs3r1bIiIiZP369Ubb2bt3r8TExMiiRYvk+vXrRo/t2bNHgoODZcKECUbrO3z4sIwfP17S09NlwYIFcunSJaVMVlaWrFu3Tj7//HM5f/683Lhh/BPD974upVHc8Rcpvg0Ud/xFim8DxR1/kZK1gfsd/5s3bxZbrrg2UNzxN9S5qDZQ3PEXKb4NFHf8RaTINqDRaIo9/mp9cr67nFptoLzPASKP5zzwONqASMnOAYbXpjTKuw2o6r6/fVpCmZmZePfdd3H27Fmj5fv27UPTpk0RGRkJd3d3LFy4EACwZ88eREZGIiwsDDqdDpMmTUJ+fj4AYP369TA1NUVCQgK6du2K7du3AwB27doFa2trDBs2zGgber0eGRkZqFSpEvr374/Tp08rj+3atQtWVlbw9fWFm5sbzp8/rzy2Z88eeHt7o06dOnB1dUWrVq1w9OhRHDhwAJUqVULPnj0xffp0JCYmwt/fHwMHDsTBgwcxdOhQvPDCC5g6dapSt/Pnz+Py5ctFvjbHjh3De++9h2HDhmHp0qVGr9ngwYPRokULTJgwAf/88w8A4OjRo/Dz88O4ceNw5swZo3Xt3LkTVlZW+OCDD4yW79mzB66urujXr1+hY7Br1y5YWlpCo9Fg3rx5yvKMjAwkJyejRo0aaN26NVatWqU8dvDgQYwaNQpdunTBO++8g507dwIAdu/eDVdXV0RGRsLBwQGenp549dVXsXr1atSvXx8bNmwoVK/w8HCEhITAxsYGderUwY0bN5R1+fj4oEGDBnB0dISvry/OnTuH3NxctG3bFhqNBunp6di0aZPR/ltYWGDEiBFG28nMzISTkxOGDx+OS5cuFdp/KysrdO7cGYGBgZg8ebJSNycnJ3To0AH169dHaGgoVq5cqdStSpUqaNSoEdzd3eHj44ORI0diw4YNZX78geLbQHHH37A/RbWB4o4/UHwbKO3x//XXX4usV1FtYM+ePUUefwDFtoFdu3YVefwNdS6qDRR3/A11K6oNFHf8s7KycPDgQQwZMuSJawPlfQ44duwYMjIyyvw88KS0gSfxPFCaNqA21YLF4cOH4ejoCI1Gg9GjR+PixYsA7oQKJycnDB06FIsXL8awYcNgZmaGr7/+Gk5OTnj11Vexb98+vPvuu9BoNDh16hQA4NKlS2jVqhVmzZqFWrVqIS0tDcuXL4e1tTVeffVVo23fvHkT169fR9OmTdGvXz9l+YEDB/DVV1/BwsICY8aMwcWLFxESEoI333wTer0ex48fR9WqVTFq1Chcv34dP/74I9zc3PDHH38gLS0NL7/8stE2atasCRGBmZkZUlJS0LlzZ7i5uSE2NhYjRoyAubk5UlNTceXKFaP67dmzBx4eHkhMTESDBg2g1Wrx9ttvY8+ePXBxcUFqair69OkDc3NzvPHGGwCATz75BBqNBpGRkZg8ebJysjX8c9wbrE6ePAkvL68i/9EMjWn48OF49dVXERsbi3PnzmHfvn2oVKkSBgwYgE8//RQxMTHo3LmzctwcHBzQvn179O3bF+7u7oiIiMD06dNRu3Zto3/aCRMmICoqCjY2NjAzM0PVqlXx+++/AwAOHToEV1dXjBkzBgcOHMDBgwdRvXp1dOnSBQcPHoSLiwvGjRuHy5cvQ6/Xw93dHQsWLAAATJo0CS1atED16tWRkpKCjRs3Yt++fbCwsFBeJ71ej5MnT2LLli0YNmwYOnbsCAAoKCjAt99+i3feeQefffYZrKys8NprrwEAXnzxRTRp0gRnz55FREQExo4dq7xWcXFxyusdGhqKN954A9nZ2QCAAQMGKMc/Pj6+TI9/cW3g7uOv1+uLbAPDhw8v8viPGDECr7zyinL8Dce5qDZw9/Hv06dPiY//xo0ble0X1wZatWp13+NfVBtYsGCB0fHPz89Xjn9eXh5eeeWVQm1g6NChsLCwwODBgwEAL7zwApo0aYLbt2/jwoULRbaBUaNGGR3/goICDBgwABqNBo0bN4atrW2ZnwNK2gbuPgfc2zYexzkgNjYWiYmJ8PPzg7m5eZmdB+5tA3efAx62DRjOASVpAwCeyjZQFlQJFtevX0ePHj3QrVs3fPjhh9BoNBg+fDgOHTqEpk2bGr1BA0BMTAzc3d0xePBgZef1ej2aNWuGP//8E9u2bcPOnTsRFBSE06dPY8WKFYiIiIClpSUcHBzQrl075OfnY9CgQUhKSoKvry/Gjx+PiIgI7NixA/n5+UhKSkJISAhEBO7u7pgzZw4KCgqQmpqKqKgoAMCnn36KuLg4owOQnJyMWbNmITg4GOnp6QDuhAoAeOWVV+Dl5QUnJye88847AO4cyK5du8La2hp+fn5wdnZG+/btlUZ14sQJBAQEYMSIEUpvzNy5c+Hs7AwPDw+MHj1a2fYbb7yB/v37Iy8vD7t370Z6ejrefPNNuLu7Y9KkSdi2bRt0Op3yBpmXl4cVK1Zg5syZGD58OBITE5Xlr732Gp5//nm0adMGlpaWGDNmDABg8eLFsLe3xy+//II2bdoYHZvvvvsObdu2xbFjx5CYmKiEFL1ej1OnTsHBwQGVK1eGg4MD1qxZo5TLy8tDx44d4eTkhOTkZKSkpMDZ2Rlr165Feno6+vTpo+w7AEyfPh3R0dHo0qULBg0ahPz8fOUYtGrVClOmTMHIkSPRr18/jBo1CsePH0e1atWQkpKCyMhI2NraIjMzEwDQoUMHhIaGwsLCAlZWVujQoQOuXLmCmJgYNGjQAG5ubhAR+Pr64uDBgwCA33//HRqNBu+99x6qVauGbdu2KXXr3r07unXrhpiYGLi5uWHdunVK3TMzM2FjYwNnZ2ekp6fj0qVLZXb8AShtYNKkSXB3d8eQIUOKPf5Lly7Fl19+ieTkZKM2EBcXBzMzM7Rs2RIAsGTJEtjb2+OPP/7AjRs30Lp1a+Vka2gDrVq1Qnx8PIYMGaIsP3nyZLHHPzc3t8jj//vvvyMnJ6fINjBlyhRUrly5yOM/depUjBgxAuvWrcOkSZMwceJEHD9+HAEBAXB0dISbmxtGjhyJzMxMo+MfGBiI0NBQ5ZNoTEwMatWqBRFB5cqV0bRpUxw8eFA5/suXL8eePXuKbAPJycmws7PDyy+/jH379gG488nRx8cHTk5OCAwMVN5Un5Q2UJ7nAMM++fn5wcPDA7/88gtSU1NVPw+Udxs4duxYubeBwYMHq9YG/vjjDwB3ApiaVAkWN27cwEcffaR07Xz11VfQaDTo378/atWqpXx6MVQ+LS0NNWvWxKFDh5R1TJw4ERqNBhEREahatSqSkpLQpEkTrF69GgDw5ZdfwtzcHFqtFoMGDUKzZs2QmJiIMWPG4NVXX0X16tWh0+kwd+5cDB06FElJSVi4cCE6duyI4cOHw9XVFcuWLcPBgwdhb2+Pjz/+GJ988gn8/PywY8cOAMCbb74JEUF8fDxsbGxgYWGBOXPmAABOnz4Nb29vhISEwN/fH/Hx8co/waJFi1C9enWEhoZiwoQJcHR0RPv27fHvv/9i2rRpaNasmVF63bVrF+zt7dGxY0dcvXpVWd6rVy9ER0cjKioKqampcHd3h16vx4QJE+Dh4YHnnnsO5ubmeP755wEAzZs3R82aNREQEACtVotKlSrh119/RWJiIuLi4tC/f3+YmJigcuXKRg23cePGiI+PR8OGDTFhwgRl+auvvgofHx+4u7vD1tYWrVq1AgDk5OQAAFJTUxETEwNLS0sMHToUAHD79m0AwNq1a9GnTx+Eh4dj/vz5aNeuHZycnNC6dWslhBn88ssv8PDwwOeff250iWPixIkwNTVFu3btUK9ePVStWhU1atRAQUEB9u7di+DgYDg4OMDExAStW7dG7dq1kZKSghUrViAzMxOBgYGwt7dHp06d0LRpU2RlZaGgoAADBw5EUlISunXrhuvXryMvLw/PP/884uPj4ePjg48++ggXLlzAlClTYGZmhvHjxyM+Ph5mZmZo0qSJ0vv2119/wcHBAWFhYfD29sZvv/0GvV6PhQsXolq1aqoe/759++L9999HYGAg9Ho9xo8fDxsbG1hbW6Nu3boYM2aM0fE3MzNDtWrVEBwcrBzj2NhYmJmZwcvLCxEREUobaNy4MRISEpCbm1tkG/Dy8oKZmRmCg4MxatSohzr+a9asKXT8nZ2dsXHjRvTu3bvINuDo6Ih169YpJ9C7j3/dunXh5+eHQYMGKaFo7969cHFxgU6ng6mpKUJCQpCSkoLly5cjMzMT6enpsLOzQ3JyMqZMmYKmTZvi9OnTmD17NlasWIGkpCR07doV2dnZeP7559GuXTusW7cOfn5+hdpA+/btodPp0KhRI6SkpODixYv466+/EBsbC29vb1hbW2Pjxo3Q6/UoKCgo8hyQmpqKy5cvF2oDer0eO3fuLFEbKCgoeGAbuPcc0KhRI/Tr1++xnQMAYMiQIfD29sYXX3wBvV7/UOeBuXPnlug8UJo2MGfOnGLbwPr16x+5Dej1eixevLjI88DVq1cxbdo0JCUlGZ0H9u7dC3t7e7z44ovFtoE+ffoYnQfeeOMN2NjYwMrK6qHaQFxcHAYMGFBsG0hISDA6fmpR7VLI9evXje4vXboUGo0GPXv2VK4X3bp1C8eOHcP48ePx4osvKs9dsmQJNBoNli5dikuXLuG3335D3bp1UbNmTYwaNQoA0LNnT9jb28Pe3h4mJiaoW7eu0fWzFStWQKfTISkpCSkpKUogAYCsrCx07twZffr0waVLl9CmTRt06NABhw8fRoMGDRAQEIB27dpBo9Hg22+/hV6vxw8//ACNRgN7e3t06NABVlZW6NGjB7p3747GjRvD2toaBw4cQH5+Pi5cuIClS5eiefPmaNWqFf773/8qjWrVqlXKPhiCSEFBATw9PfHRRx8pdZw0aRJMTEzw2muv4YMPPkBUVBQcHR2xZcsWAMDbb78NS0tLmJubo0aNGvD09ESLFi2QmZmJ/Px8fPbZZ7C2tkatWrXQpEkTZYzJ7t27MWHCBNSvXx979uwBAMyaNQv+/v6Ijo7G888/j5kzZ2L06NGwtLTE559/jiVLlsDW1hZVq1bFd999p7yGwcHB+OKLL2BrawsnJyf8+++/AIxPLKmpqYiOjkZeXh5SU1Ph5OSkpOK8vDysXbsW33//PQIDA40+vfz888+oUaMGvv/+e2V97du3h5mZGc6ePYuCggK0bNkSZmZmCAgIgK+vL5o1a4azZ88q65kyZYpSt2nTphnV6/3334ePj4/SFj/++GPY29ujTZs2CAwMREJCAqysrPD9998rbdXV1RU6nQ6ffvop1qxZAysrK0RERKBNmzaoV68eevfujYKCApw/f77Y479y5Urln7mkx79x48Zo1KgRjh8/DgAYPnw4TE1NlZPE3cd/79698Pb2RuXKlTFnzhylDRw7dgxXrlzBhAkTUK9ePezbtw+zZ89GUFAQNmzYgKSkJLRu3Roffvih0gZmzJgBJycnNGnSBLVq1cK8efPwyy+/FDr+Bw4cQEZGRpHH/9SpU2jSpAmcnZ3xyy+/KO1kyZIl+OOPP7BhwwajNrB79274+vpi5syZyvr69u0Lb29veHt7488//wQAtGzZElqtFlZWVoiOjsbOnTuVT5MAEBgYCGtrayQnJxt9Etfr9UobyMjIwLhx42Bvb4+DBw+ia9euCAwMRExMDCwsLPD999/j1q1b8Pf3R3h4OJydnTFz5kxYW1tjzJgx6N69OxwdHdGzZ0/cvn0bBQUF+Pvvvwu1gUqVKqF9+/b44YcfjM4B+fn5xbYBrVaL1157De+//75RGzhy5AiAO2/8d7eB5OTkYs8BJ06cAHAnyN59DsjPz8fs2bOLPAdYWFhg3rx5WLRokdE5ICcnB8eOHVPagJ2dnXIOyMnJMTr/G9pATk4Orl27VuR54IcffsDy5csLnQe+//57VK9eHT/88IPRecDU1BRHjx4tsg0cOXJECad3t4HWrVtj4sSJuJuhDZw6dQoffPCB0ga6deuGwMBANGrUCJaWlkobCAwMVNrAm2++CQsLC4wfP96oDZw6dQp79uzBtWvXCrUBBwcHJCUlYf369UZtICsrCwcOHICXl1eRbaBnz56FzgN//vknjhw5gjFjxhi1gYSEBHzzzTdFtoEtW7bg77//RmZmZqH3AcN5wDA2RM1eC1UHbwIw6s4yBIbhw4cjKysLQ4cORdu2bTFixAg0bdpUKTN8+HAMHTpUaUh6vR4tW7ZEREQExo8fj379+qFKlSo4duwY5syZAwcHB7Rs2RI3b940ejF8fX1hamoKjUajvEEYvPLKK3juueeg1+uxfPlyaDQa/PHHHzh+/DiWLVuGN954A6mpqUZlBgwYAAcHB3Tv3l05+Bs2bIBWq4WLi4uSPg112LJlC0QE27Ztw+bNm40Sa15eHmbOnImff/4Zer0efn5++PnnnwHcGezTtm1bo8E8+/fvh4gonwp69uwJOzs7ODs7o1atWmjcuLFRj8+BAwfg5OQEEUG9evWU5YYuTCsrK2XQ7LVr1+Dp6Yl27dqhefPm6NSpE4KCgjB37lyl3JQpUyAiiIyMxPDhw2FjY4OXXnoJwJ0uPBMTEzRs2NBoICwAzJw5E1FRUbh48aISLgxvLj169EBgYCAWLVoEf39/pZ28/PLLqF+/vjIwzHCSmDNnDuzs7HDs2DGkpaXBw8MDS5YsQVhYGIKCgjB58mTlGBjajoeHB0QEHTt2NBoAtWPHDlSvXh379+9XPh3Uq1cPL774Ivbt24e1a9ciMDAQe/fuVcp88803MDMzU7p/R44cif/+978wMTFBSEgI2rVrh8zMzELHf8OGDcolh7uP/9tvv405c+bg4MGDRsf/n3/+QUpKCqZPn45Dhw4hLy8P+/fvh0ajQY0aNTB16lQcPHgQPXv2VHrSatSogVWrVuHAgQM4dOgQCgoKsHDhQogIfHx8UL9+fWRmZuLWrVsAoLSBzz77DNu2bYObmxsGDBiAnTt3Ijk5Ge3atYOPj4/ShTx79mxoNBpYWlrCzMwMpqamyqdXw/E3LDOEXwDKmCjDp9SEhAQ4Ozvj119/RadOnWBiYoLk5GR8+umnRm2gR48eyvr++9//AgC++OILVK9eHWZmZmjVqhVSUlKUNuDh4YHq1avD3t4ezz//vBI8Ro0aBRsbG4gIvLy8lHUZ2kBAQAAqVaqE559/HsHBwXjxxReh1+uxfv162Nvbw8bGBt988w2AO9fEg4KCoNVqYWpqqvwvbtiwARqNBmFhYYiNjcW1a9cKtYHFixcjIiJCCReGNjBy5EiEhoYiOzu7UBuIj49H9erVlTdpQxsICAhAUFAQsrOzjdqAj48PatasqTz/7nNAWFgYGjZsiGvXrhmdAyZPnqxcW7/3HODt7Y3AwEBlPIHhHBASEoKgoCBYWlqiW7duShswNTVFnTp1lPFPhoGYs2fPRlhYmLL86tWrRueB9u3bw8bGBpMnT4avr6/SBtLT0+Ho6IglS5bg1q1bynlgwoQJMDU1xffff4/OnTsbtYHAwEDExsZi48aNSr1HjRoFa2triAiSkpJw7do1ozbg6+uLJk2aYOPGjahTp47SBr777js0bNgQXl5e2L9/P4A7gbdatWrQarXQarXKZfR169ZBRBAeHg5PT08MHToUBQUFyM/PV9rA119/rXw4MfRgGi5PODs7Y8iQIfDz88NPP/2ktIHExEQ4OTkpY+j27t0LjUaDoKAgODo6YsiQIejZsyesra1hYWEBPz8/uLi4GD3f0AbCw8Ph4eGhtNvjx4/DysoKixcvBvC/94EBAwZAbaoHCwBK9yBwp+fC0E1rYmKCnTt3YuzYsWjevDkAYNy4cdBoNNi1a5dS9tatW+jYsSN69eoFjUYDNzc3o+tfCxcuVK6XG8pcvnwZsbGxGDVqFDQaDVJSUpCRkaE85+WXX0avXr2Ql5eH3NxcNG3aFGlpaUb/DC1atEBubq5Splu3bggODlY+LRhERUVBRDBp0iSj5fv370dAQABGjhyJs2fP4q+//lLCRdu2baHVarFx40Zcv34dAQEB2Lx5MzIzM5GQkAARwZkzZ5T9z8jIgJOTE5o3b44ePXrA3d0dx44dw5QpU2Bubo569erh2LFjyv7r9Xq8/vrrEBGjT97AnWvg9evXx0svvYSsrCwAwEcffQR/f3/88ccf2L9/P7y9vfHpp58qZQyf2CwsLGBnZwc7OzssXLgQBQUFGDNmDKysrGBmZgZzc3O88847uHnzJjIyMlC1alXY2toqs39u376N9u3bQ0RgYmKCatWqwdnZGQ4ODrh9+zZeeuklaLVaBAUFGc0YAu4MsDJc/tJqtZg4cSLy8/OxbNky2NnZISQkxGg7ANC0aVOljL29vbJPPXr0gJ2dHcLDw+Hu7o4vv/wSEyZMQGhoKNavX4/o6GhYWFjA1dVVqUPPnj1hYWEBf39/mJmZKQOqhg0bBhGBnZ0dzM3NMXHiRNy+fRv79u2Dv78/goODERYWBjMzM1haWiI1NRWtW7eGiCAoKAjm5uZwdHRUun979eoFEUGNGjWg0+kwceJEbN++HcHBwXBycoKnpye0Wi1sbW1x7NgxDB8+HGZmZnB3d0dYWBjMzc3x+uuvY+XKlXBxcVFea3Nzc2WmVW5uLurWrQt/f3+EhYXBxMQElSpVwrZt2/DXX38hMjISVlZWMDExwcSJE5GXl4fZs2fDysoKIgJ/f3907doVW7ZswcyZM5UAZ29vj9atWytv7C+99BJq1aoFU1NTZYBrYmIiNBoNLCwsYGJigoSEBDRv3hzOzs64ffs2xowZAzMzM+UxwyywAQMGoFGjRtBoNNBqtbCwsMD8+fMBANu3b0dQUJDRzLHNmzejS5cuaNq0qVKmfv36WL9+PQBg5MiRRmUiIiLg5+eH06dPY/369TAxMYGVlRXatWunfIrr3r07NBqN0sNqOLf5+flBRJCYmGg0RisjIwP+/v7KwLq7zwGtWrWCiCA9Pd3oHGBonyKC3r17K9vYuXMnatSoAVNTUzRr1gyDBg1SPmClp6dDRBAbG6v0gOj1eowbNw4iAhEx6hXOzc1FVFQULCwslLEzH374Ifz9/fHbb79h+/bt0Gq1aNGihdE5wM/PD1qtFp6enkbd6DNnzoS3tzc0Gg3c3d3x22+/KWPR2rVrB1NTU/Tu3VvpOb37PCAiSE1NxXfffQd3d3flPCAiaNeunXKOMryeOp0OFhYWsLS0hJubG7Zu3QoA+L//+z+YmJiga9euRrMAW7ZsCXNzc7i6usLKygqffvqp0rvdo0cPmJiYoFevXsjKysKkSZMQGhqKX375RQmB1apVw8mTJ5X1GdqAu7s7XF1dlR5Uf39/iAicnZ2NZhsazgOWlpbw9fWFk5MTHBwc0KFDB6UNeHh4wNXVFT4+PoXagJeXF9zc3HDu3DlkZGQobaBy5cqwsrKCq6urURswjDkxvH/c3Qbc3d2VuuXm5iIhIQGrV69WeokM7wN3v7+qoUyCBfC/NzsASEhIgKOjoxIeXn/9deW6q06nU/6JDcaNGwcvLy/s27cPc+fOxe7du5V1FmfcuHEICAjA8ePH8dtvv8Hd3R1169ZFz5490aVLF9jb2xt9Gp06dSrs7OyMRsfb29vj7bffxoIFC/DSSy9Bo9EYzXLZs2cP0tLSlINm6FHYtm0bLl68iD59+kCr1RqV+eOPPyAiyrpGjRqFrKws+Pv745tvvoGlpaVysjFcyweAfv36QavVQkRgbW2NtWvXArgz+8bKyqrQ7BvgzkndxMREGaw4a9YsHD58GH369Cm0L9u2bUPVqlUxfvx4ODo6QkQQExODI0eO4Nq1a+jbt68yxeuLL74wms1jGCT15ptvwtnZWXnjMTMzg5mZGaZOnao8f9u2bWjfvj00Gg26du2KxYsX44UXXlDCn4ggLS3NaMbQf//7X6XODRo0QEREBNLS0mBmZoZly5bByckJL7/8cqEyvXv3hkajQVpaGkJDQ+Hg4KAkd8Pyu8ts3LhRCWJDhgyBu7s7HB0dodVqERsbq9T57llLy5cvh6WlJUxNTSEiSEhIUIJxr169oNVq0a9fP+zdu1cpYzj+Xbp0wd69e5VPgitXrsTAgQOV1+Du7XTq1El5cxYR2NjYQKPR4MSJE9i3bx+srKzQs2dPozIdOnSAmZkZkpKSoNFoEBgYCI1Gg40bNyp169OnD/bt24chQ4ZARDBo0CDl9QwLC1P2Z//+/Rg3bhxcXFyQkJCg9ER06tQJnTp1QqtWrfDcc88hICBACUpxcXGwtbXFr7/+ilatWuHTTz9FrVq1EBAQADs7O2zatAktW7bErFmzEBQUBAcHB3Tp0gXm5uZYt26dMgssIiJCOX6bNm1CREQEoqKiUL16daSlpSnng9OnTytlIiMjERoaikqVKmHz5s1ITk5GZGSk8qYUHR0NJycnrF+/XiljmOU1cOBAXLp0CS1btoSvry90Oh38/f0RGxsLEUHXrl2V/7GLFy+ia9euEBFERUVBq9Vi9OjR2LZtG7KystCjRw9lfJnhfGU4BxjWVVBQgJycHPj7+2PTpk3o378/RESZjWHQrVs3aLVaNGnSBBqNBq6urti6dSs2b94Ma2trNGrUyKjX8vr160oZEUGTJk2wZMkSHD58GOnp6dBoNOjTp4/y/G3btsHd3R1jxoyBtbU1qlSpgtdeew3//vsvrl27hmHDhsHc3BxpaWnKB64DBw5g586dSEtLg6urK1JTUxEcHAx/f3+EhIQgJiYGJiYmaN++PYA7vbkHDhzA9u3b0aFDB5iamuKFF15QXpdq1arhxRdfhEajMeoxPnDgAH799Vd4enrCwsICkydPRrNmzfD1119j165dyMjIQNOmTdG7d2+lzK5du5Ceng5TU1N07NgR169fR0JCAry9veHk5IQGDRooYycMb6x//fUXRATe3t7o168f9Ho9goKC4Ofnh9atWyv/fz179lRmFY4aNQrdunWDiKBOnTrKwNB+/frhwoULShAZPHiwUsYQnEQEPXr0wPnz5xEcHAxHR0ds3boVffv2hYigW7duRrMXe/bsqbQBEYGpqSn69u2L7du3w9LSEvHx8di8eTNCQkKUDzjdunVTzjvx8fFKr8XIkSNRpUoVZealoQ1UrVrV6HKMGsosWAB3LosMHToUGo1GORkAdwZJGsYvGNInACxbtgwDBgyAk5OTMqDyQdd9lixZgj59+qBSpUpKGeDOXOaxY8ciMTFROdED/wsnly9fRu3atZXr18Cd787w9/eHv78/3Nzc0KpVK2WWy7Bhw/Dpp5/C19cXrVq1wsyZM6HRaGBtbQ1XV1cEBQXBysoKLVu2NCrTqVMnmJmZoU2bNkYzZkJCQuDs7AytVovhw4cry//44w+MGDECZmZmSEhIQLNmzZTHjh07psy+MWx/+PDh2Lhxo/IptnXr1hg0aJDyhunn5wc7Ozujeg0fPhwXL15Ep06dYG9vj65du6J79+4QEVSqVAnh4eGwsLBAx44djcJc7dq1YWtrCzMzM6Pj6e/vDzs7O9SrVw8HDhxQlsfHx6NRo0YQEeVkAvyvG1Gr1SrdkAY1a9ZUTiYdO3bEv//+q4QnQzflyy+/bNQuDL0QOp0OHTp0UJavWbMGvr6+cHR0RHp6utF24uLi0Lt3bwQGBqJTp04A7pyYO3bsiEqVKsHKygpdunQxmrVUr149uLi4wMrKCqtWrcL3338PNzc3mJubw8PDQ3n9DW7evAl3d3flk6Dhk5her4etrS0CAwMhIsolBuBOV6aPjw+0Wi2aN2+OX375Be+++y527tyJZs2a4YcffkCtWrXQo0cPpczu3bvh7e2tlMnJycH27dtRv359mJmZwcPDAzqdzqhuer0ebm5u0Ol0eOGFF5CTk4Off/5ZaTfBwcFwc3PD4sWLldlZH3zwAVxdXWFqaorQ0FDY2dnh9OnT6NmzJ6pUqYLatWsjIiICKSkpCAoKwsmTJ5Upum3atFGmpJ4+fRrjx4+HiECn0yE8PFwps2DBAtSuXRvm5uZo06aNMlBwz549WLFiBaKiovDSSy8hOjpaKTN//nylh6hNmzaIjIyEvb09Tp8+jbFjx8LLywuNGjVCZGSkUub48eNYsWIFPDw8kJqaisjISNjZ2eHQoUOIiYmBra0tTExMYGtrq8xC69Spk9JT4+npiW3btmH58uWwsrJSBhNqNBqEh4cDuHP+69+/P9zd3ZVPooZZa4MGDYKtrS3Mzc2VSxeGMobLEobtLF26FNOmTUPHjh0RFxcHExMTBAQEYPv27cq6DHUWEdSuXRtbtmxB/fr1YWlpqXx48fT0NNp+UlKS8iElNjYWP/74I0QEDg4OsLe3h1arhZubGxYtWqTMtDP0kGk0GqP9qVGjBqpUqQJzc3NYW1tj/PjxShlDT8m9dTC8KRva3N1lgoKCYGJiAo1Gg379+iE/Px8JCQmIioqCra0t6tati8DAQOU1qFWrFuzs7JR1jRkzxmhdOp0Ofn5+8PHxUbbftGlTREVFKXU2lElMTISjo6PyIe25554DcOe9qGnTpsqlhh49eqCgoADz58+HTqeDmZkZfHx8lMcMZdq2bYtKlSopPVKG5ampqbCyslJmLxouMxm2U7lyZYgIevXqhczMTLz22mtITExESEgIdDodxowZo/RupaamIiQkROn97NWrF9atW4f69esr4TooKAg7duwo9AE9PT0d1apVQ15e3n0/vJdEmQeLOXPmKNfODbZu3QqNRmM06Aq40+3VoUOHQsvvZ/fu3WjRooXRZY+7FRQUFBlO9Hp9oQGnwJ3vzzh+/DjeeeedQrNcBg0ahIkTJxZa/uKLL+LLL7/E5MmTCz3m6OiIgQMHKssN407MzMyg0Wjw9ttvGz0/MDAQ/v7+GD16NJYuXYqcnBzlscGDB+Ott94qtA1fX1+lq9Lw2Jw5c5RP6ePHjy9UZvjw4fjuu+8wYcIE5bEJEyZAo9HgueeeQ0hIiNFsnuzsbKWL2zAWw3ANtFOnTnBycio0+6dnz56Ij49HzZo1jR67evUq3NzcYG9vX6hMeno6wsLCEB4ejt9++83oseK2k56ejuDgYISHh2Pjxo1K1/CD6ta2bVtERUVh48aNRu0kLS0N4eHhhWYtGbodXVxc0LRpUxw9elQJhT4+PrC1tUXDhg2Vuft9+vRRukpdXV2RlJSEDRs2YOzYscoJ1cbGRinz999/o0aNGkqZKlWqICUlBWvWrFFmTRne0A1lzp49i4CAAKPtJCYmIjMzE2PHjlWu0d9bN8P+uLi4KGUOHjyo9BR5enrCzc1NmZ31ww8/4IMPPkB4eLgyFqFevXrKIOlVq1bB2dkZNjY2mDdvHtLS0rB69Wps3boVn3/+OZycnGBra4v69etj9erVuHr1qjIG4e4y3333nfLdI05OTrC2tkZ0dLSynZUrVxbazrfffotJkyZh1qxZynYepm7AncGCTk5OhfanuFlobdu2hY+PDywtLdGgQQMkJiaiYcOG6Ny5M1JSUmBjY4NKlSrho48+QrNmzVC3bl3lcpalpSViYmLQsGFDxMXFQafTKR9ODGXi4uJQuXJlODo6wsvLC5aWlnjuueeUbb388ssIDAxU1hUbG4uGDRsqHyAM61q4cCEaN26MBg0aoFOnTvDz8zMqY5hR165dO6XOX375JerXrw9/f380b94caWlpMDExwXPPPYf09HQkJiZi5MiRCA8PR4cOHZTeGsMsvF27dmHx4sWwsrJCpUqV0KJFC2X5zJkz0blzZ2i1WowdOxZDhw5F48aNER0djWnTphUqs3nzZqSlpcHCwgIODg5ISUlR1vXTTz+hf//+RutKTEzEwIEDMX36dGVdycnJ9y1jeOzLL78sssyMGTNQv359uLm54auvvgJw5wOrpaUl4uLijM4n69atg42NDTp06KBM3zY8tmzZMmg0GkRHRyvLCwoKsHnzZqU309CTVFBQgBMnTiiXD2NiYpTlN2/exMGDB2Ftba0MJbh7+6ampnBwcMBLL72kBI5//vkHq1evhq2trfJeY2AIEVu2bFEuq6ulTIMFUPzli6Le1AEYje59WHePi1BLcbNcXn75ZeUT9O3bt5VegFdffVW5LldQUIBTp04ZlTEMJLx9+7YyMC4tLU1Znp+fj1mzZimNzNCTUlBQgGPHjhW5LsMoYI1Gg969eyvbv337No4fP15kmYKCArz//vtKnQ0jx/Py8nDx4sUiZ/PcvHkT58+fx9ixY5XvSTCUyc7Oxvjx49G6dWvlWN+9vEuXLkZv0IbX7rXXXjP6BJ2Xl4erV68WWcbwLXaG7TxqmWvXrhVZxrC/95u1dOLECWzYsAF16tRRvhHQMJvpp59+Qt26dfHGG28oZebMmYMTJ04oM50Ms48GDx6MTZs2FVnmo48+wokTJ/Drr78albnfdj788ENlO3Xq1HmoMob9+e233xAVFVVof+6dnfXPP/+gc+fOqFSpEoKDgxEQEIAuXboAuBPUDMt79OiB5ORkoxldRZXp3r27UZnmzZsXW8ZwOeLe7ZSmzMPU7d5ZaFFRUcp1+rNnzyIuLk7pabh7dtrcuXNhYWGhTFU+ceIELl++XGSZr776ChkZGYXKbNq0CVlZWUZlwsPD77v93bt34+TJk5g7d67y6blJkyZFlrl7XYY6F1VGr9ejYcOGsLS0RK1atbB69WpcunQJly9fxqlTp+Dt7Y3Q0FC0aNECP/74I4A755dWrVqhWrVq8Pb2NvoWz7vLJCcnY/Xq1cqnZEMZLy8v5Ztv715uWJfhHGNYV0hIiLKu4soY3nyLq/O9ZX744Qej7XTu3Bl9+/ZFbm4urly5oswqvH37NvLz85Gfn2+0/O4JDHq9HqdPn0aLFi2UxwzB4sqVK4iKikJSUlKhMps3b0ZSUhI6dOigvEZ6vb7I7RiWx8fHIyUlRanX/cqUtTIPFhVdcbNcTp06hSFDhqBt27aYN2+esvzMmTMYPHgwWrdujRs3bhRZ5vnnn8f8+fMLLW/Tpg2++OKLQut6/vnnkZOTU+S67lfm+vXrWLx4cZF1vnv7hjJt2rQpVMYwm6dNmzZGs3kKCgowZcoUTJ8+HaNHj37gcuDOJbB3330Xt2/fxmuvvfbQZaZPn15uZYDCs5aAOwPEGjduXGh8UMuWLdGyZUucOHGiyMcSEhKKXJ6SklJsmeK2U5oyJambYXZWzZo1jWZnHT16FCtWrEDlypVRu3Zt9O7dWxlUuHz5cuV7XsaMGVNkmVq1at23TN++fUu8ndKUeZj9KW4W2pkzZ+Ds7Iw2bdoobcsgMDAQtWvXVr7a/N4yhqB7b5latWoVW+be7TxoXffbfnF1Lmr7ht5lESk00y4tLU0ZU3b3Y1u3boWZmRlERJmuXtoyaq6rtGXunlEIwGhW4d2KW17UYw9aV2m2U5p1lRUGi4dwv1kuhhPx3ctNTU2xffv2Istotdoiy5iYmCgjc+9d144dO4rdfmnKFFfn+5XZsWNHodk8IoJdu3Y99HKNRqNcFqtIZYqbtXT3bw0Ut/xpKFPc7CzDWKl7l3/zzTdKz9fTUKa4WWjR0dH47LPPCi2PjY3Fhx9+aNSTeneZWbNmlbhMUdsp7fZLWsYw+LmomXYpKSlFPtauXTuICJKTkx+5jJrrKm0Zw4xCAEXOKrzf8sdVpjTrKisMFg+pqFkue/bsKXZ5acqouS41yxQ3m8cw8PZhl98dtipSmeJmLd19GeV+yyt6meJmZ+Xl5RU7a6u4xypqmaJeM8MstIdZ/rjKlNX2ly5dWuxMu+Jm4c2bN0+1Mmquq7Rl7nbvrMIHLX9cZUqzrrLAYFECxc1yKW55acqouS61yxQ3m6ekyytqmaJmLd1v+dNUprjZWfebtfW0lQGKn4VW3PLHVeZxbL+4mXb3e0zNMuW9faD4WYX3m234OMqUZl1licGiBIqb5VLc8tKUUXNdapcpbjZPSZdX1DLFzVq632ymp63Ms664WWj3m532OMo8ru0Dxc+0u99japYp7+0Dxc8qLG754ypTmnWVBQ0ACD00AKLRaB56eWnKqLkutcvk5OSItbX1Iy+vqGVu374tZmZmD738aSzzrMvLyxNzc/OHXv64yjyu7RM9CIMFERERqUZb3hUgIiKipweDBREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIniI+Pj4yY8aMh3ru/PnzxcHBoUzrQ0TPHtPyrgARqWfr1q3FfukXEdHjwGBB9BSpXLlyeVehTBUUFIhGoxGtlp2tRE8q/ncSVSBxcXEycOBAGThwoDg4OIiTk5OMHTtWDF+ge++lkCtXrkjv3r3F1dVVLCwsJDQ0VFauXFnkui9duiR169aVVq1aya1btyQuLk6GDBli9Jw2bdpIt27dlPs+Pj4yadIk6dSpk9jY2Ii7u7vMnDnzoffnvffek7CwMLG2thZPT0/p37+/XL9+XXnccLlm5cqVEhwcLDqdTk6ePCl5eXkyYsQIqVq1qlhbW0u9evVkw4YNRvvSsWNH8fDwECsrKwkLC5MlS5Y8dL2IqPQYLIgqmC+++EJMTU3lr7/+kg8++ED+85//yJw5cwo9T6/XS/PmzeXPP/+UhQsXyv79+2XatGliYmJS6LmnT5+W2NhYqV69uqxYsUIsLCweuj7vvPOOhIeHy44dO2T06NEydOhQWbt27UOV1Wq18sEHH0hGRoZ88cUXsn79ehkxYoTRc27cuCFTp06VOXPmyL59+8TFxUW6d+8umzZtkqVLl8qePXukffv20qxZMzl8+LCIiNy6dUtq164tK1eulIyMDOndu7d06dJF/vrrr4feLyIqpcfyU2dEpIpGjRqhRo0ayk8hA8DIkSNRo0YNAIC3tzf+85//AADWrFkDrVaLzMzMItc1b9482NvbIzMzE15eXhg0aJDRehs1aoTBgwcblWndujXS09OV+97e3mjWrJnRc1544QU0b968VPv3f//3f3BycjKqo4hg165dyrIjR45Ao9HgzJkzRmUbN26M0aNHF7vu5ORkvPLKK6WqFxE9PI6xIKpg6tevb/TLs9HR0TJ9+nQpKCgwet6uXbvEw8NDgoKCil3XzZs3pWHDhtKxY0d5//33S1Wf6OjoQvcfdmbKr7/+KlOmTJH9+/dLdna25Ofny61bt4x+Xdbc3FzCw8OVMjt27BAAhfYrNzdXnJycROTOWIxp06bJV199JWfOnJHc3FzJzc3lwFaix4DBgugpZWlp+cDn6HQ6SUxMlFWrVsnw4cPFw8NDeUyr1SpjNwxu3779UNu+O/gU5+TJk5KcnCx9+/aVSZMmiaOjo/zxxx/Ss2dPo+1YWloarU+v14uJiYls37690GUdGxsbERGZPn26/Oc//5EZM2YoYziGDBkieXl5D1V/Iio9jrEgqmA2b95c6H5gYGChN9nw8HA5ffq0HDp0qNh1abVa+fLLL6V27dqSkJAgZ8+eVR6rXLmynDt3TrlfUFAgGRkZD1Wf6tWrP3A/tm3bJvn5+TJ9+nSpX7++BAUFGW2/OJGRkVJQUCAXLlyQgIAAo5ubm5uIiPz+++/SunVr6dy5s9SsWVP8/PyU8RdEVLYYLIgqmKysLBk2bJhkZmbKkiVLZObMmTJ48OBCz2vUqJE899xz0q5dO1m7dq0cP35cfvrpJ1m9erXR80xMTGTRokVSs2ZNSUhIkL///ltERBISEmTVqlWyatUqOXjwoPTv31+uXLlSaDubNm2St99+Ww4dOiQfffSRLFu2rMj63Mvf31/y8/Nl5syZcuzYMfnyyy/l008/fWC5oKAgSUtLk65du8qKFSvk+PHjsnXrVnnrrbfkxx9/FBGRgIAAWbt2rfz5559y4MAB6dOnj7JfRFS2GCyIKpiuXbvKzZs3pW7dujJgwAAZNGiQ9O7du8jnLl++XKKioqRjx44SHBwsI0aMKDQWQ0TE1NRUlixZIiEhIZKQkCAXLlyQHj16SHp6unTt2lUaNWokvr6+Eh8fX6jsK6+8Itu3b5fIyEiZNGmSTJ8+XZKSkh64HxEREfLee+/JW2+9JaGhobJo0SKZOnXqQ70G8+bNk65du8orr7wi1apVk1atWslff/0lnp6eIiIybtw4qVWrliQlJUlcXJy4ublJmzZtHmrdRPRoNLj3IioRPbHi4uIkIiLioQdHljUfHx8ZMmRIoe+7IKJnF3ssiIiISDUMFkRUJhYtWiQ2NjZF3kJCQsq7ekRURngphIjKxLVr1+T8+fNFPmZmZibe3t6PuUZE9DgwWBAREZFqeCmEiIiIVMNgQURERKphsCAiIiLVMFgQERGRahgsiIiISDUMFkRERKQaBgsiIiJSzf8DQotuXn9VwKQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "plt.figure(figsize=(10, 10))\n", + "ax = df_total.plot(x=\"pickup_area\",y=\"count(ID)\", kind='bar')\n", + "plt.xticks(rotation=45, ha='right')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5758417d-edcd-448a-9535-16f5b9c1528a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAHDCAYAAABiYLNcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8PklEQVR4nO3de5xNZf//8ffec9hzHppmjMmcCk0ySqjboaIUQhQdboRKfSsV6Uh3SQejc26V0teP3B3ctw7uCqGDKEmIhDLO7sxwlzKMGpr5/P7osffXNgf22GtOXs/HYz8e5lrruta1Zl2z1tvaa1/bZWYmAAAAB7iruwMAAKDuImgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMdUW9BYuHChevbsqZSUFLlcLs2cOTPgNsxMTz31lJo2bSqPx6PU1FSNHTs2+J0FAACVElpdGy4sLNQZZ5yha6+9Vn369KlUG8OGDdO8efP01FNPKTs7W3v27NFPP/0U5J4CAIDKctWEL1VzuVx699131bt3b1/ZgQMH9Le//U2vv/66fv31VzVv3lyPP/64OnbsKElat26dWrRooe+++06nnnpq9XQcAABUqMY+o3Httdfqiy++0PTp0/Xtt9/qiiuuUNeuXZWbmytJev/993XyySfrgw8+UGZmpjIyMjRkyBDt3r27mnsOAAC8amTQ2Lhxo958803NmDFD5557rk455RTddddd6tChg6ZMmSJJ2rRpk7Zu3aoZM2Zo2rRpmjp1qpYvX66+fftWc+8BAIBXtT2jUZEVK1bIzNS0aVO/8qKiIiUkJEiSSkpKVFRUpGnTpvnWmzx5slq1aqUffviBt1MAAKgBamTQKCkpUUhIiJYvX66QkBC/ZTExMZKkhg0bKjQ01C+MnHbaaZKkbdu2ETQAAKgBamTQaNmypYqLi7Vr1y6de+65Za7Tvn17/fHHH9q4caNOOeUUSdL69eslSenp6VXWVwAAUL5q+9TJvn37tGHDBkl/BotnnnlGnTp10gknnKC0tDQNGDBAX3zxhZ5++mm1bNlSP/30kz755BNlZ2frkksuUUlJidq0aaOYmBg999xzKikp0dChQxUXF6d58+ZVxy4BAIDDVFvQWLBggTp16lSqfNCgQZo6daoOHjyoRx99VNOmTdOPP/6ohIQEtW3bVmPGjFF2drYkaceOHbrttts0b948RUdHq1u3bnr66ad1wgknVPXuAACAMtSIeTQAAEDdVCM/3goAAOqGKn8YtKSkRDt27FBsbKxcLldVbx4AAFSCmWnv3r1KSUmR23309ymqPGjs2LFDqampVb1ZAAAQBNu3b1ejRo2Oev0qDxqxsbGS/uxoXFxcVW8eAABUQkFBgVJTU33X8aNV5UHD+3ZJXFwcQQMAgFom0MceAn4Y9Mcff9SAAQOUkJCgqKgonXnmmVq+fHmgzQAAgONAQHc0fvnlF7Vv316dOnXSnDlzlJSUpI0bN6pevXoOdQ8AANRmAQWNxx9/XKmpqb5vUJWkjIyMYPcJAADUEQEFjffee09dunTRFVdcoc8++0wnnXSSbrnlFt1www3l1ikqKlJRUZHv54KCgsr3FgBQoxUXF+vgwYPV3Q1UQlhYWKkvMg2GgILGpk2bNHHiRI0YMUKjRo3S0qVLdfvtt8vj8WjgwIFl1snJydGYMWOC0lkAQM1kZsrPz9evv/5a3V3BMahXr56Sk5ODOs9VQFOQh4eHq3Xr1lq8eLGv7Pbbb9fXX3+tL7/8ssw6Zd3RSE1N1Z49e/jUCQDUEXl5efr111+VlJSkqKgoJmSsZcxM+/fv165du1SvXj01bNiw1DoFBQWKj48P+Pod0B2Nhg0bqlmzZn5lp512mt5+++1y63g8Hnk8nkA2AwCoRYqLi30hIyEhobq7g0qKjIyUJO3atUtJSUlBexsloI+3tm/fXj/88INf2fr165Wenh6UzgAAah/vMxlRUVHV3BMcK+8xDOZzNgEFjTvuuENLlizR2LFjtWHDBr3xxhuaNGmShg4dGrQOAQBqJ94uqf2cOIYBBY02bdro3Xff1ZtvvqnmzZvrkUce0XPPPaf+/fsHvWMAAKD2C3gK8h49eqhHjx5O9AUAANQxVf5dJwCA40PGfbOqdHtbxnWv0u057cCBA2rWrJleffVVtW/f/pja+uCDD/TAAw9o+fLlAX3FezBU7dYAAIDPli1b5HK5tHLlylLLJk2apPT0dL+Q4XK5NHPmTL+fva/o6Gg1adJEgwcPLvUdZD169JDL5dIbb7zh1K6Ui6ABAEANNGHCBA0ZMuSI602ZMkV5eXlas2aNXnjhBe3bt0/nnHOOpk2b5rfetddeqwkTJjjV3XIRNAAAx62SkhI9/vjjaty4sTwej9LS0vTYY49JklavXq0LLrhAkZGRSkhI0I033qh9+/b56nbs2FHDhw/3a693794aPHiw7+eMjAyNHTtW1113nWJjY5WWlqZJkyb5lmdmZkqSWrZsKZfLpY4dO0qSVqxYoQ0bNqh79yO/HeSdzTMjI0MXX3yx3nrrLfXv31+33nqrfvnlF996l156qZYuXapNmzYF+ms6JgSNAGTcN8vvBQCo3UaOHKnHH39cDzzwgNauXas33nhDDRo00P79+9W1a1fVr19fX3/9tWbMmKGPPvpIt956a8DbePrpp9W6dWt98803uuWWW3TzzTfr+++/lyQtXbpUkvTRRx8pLy9P77zzjiRp4cKFatq0aaVn0L7jjju0d+9ezZ8/31eWnp6upKQkLVq0qFJtVhYPgwIAjkt79+7V+PHj9fzzz2vQoEGSpFNOOUUdOnTQK6+8ot9++03Tpk1TdHS0JOn5559Xz5499fjjj6tBgwZHvZ1LLrlEt9xyiyTp3nvv1bPPPqsFCxYoKytLiYmJkqSEhAQlJyf76mzZskUpKSmV3resrCxfO4c66aSTSpU5jTsaAIDj0rp161RUVKQLL7ywzGVnnHGGL2RIf86OXVJSUmqG7CNp0aKF798ul0vJycnatWtXhXV+++03RUREBLSdQ3m/xuzwCbgiIyO1f//+SrdbGQQNAMBxyfvdHmUxs3JnyfSWu91uHf69pGVN3R0WFlaqfklJSYV9O/HEE/2erwjUunXrJP3fMyBeu3fv9t1FqSoEDQDAcalJkyaKjIzUxx9/XGpZs2bNtHLlShUWFvrKvvjiC7ndbjVt2lSSlJiYqLy8PN/y4uJifffddwH1ITw83Ff3UC1bttT3339fKsgcreeee05xcXHq3Lmzr+z333/Xxo0b1bJly0q1WVkEDQDAcSkiIkL33nuv7rnnHk2bNk0bN27UkiVLNHnyZPXv318REREaNGiQvvvuO3366ae67bbbdM011/iez7jgggs0a9YszZo1S99//71uueUW/frrrwH1ISkpSZGRkfrwww+1c+dO7dmzR5LUqVMnFRYWas2aNUds49dff1V+fr62bt2q+fPnq2/fvnrjjTc0ceJE1atXz7fekiVL5PF41LZt24D6eKx4GBQA4IjaMFPnAw88oNDQUD344IPasWOHGjZsqJtuuklRUVGaO3euhg0bpjZt2igqKkp9+vTRM88846t73XXXadWqVRo4cKBCQ0N1xx13qFOnTgFtPzQ0VH//+9/18MMP68EHH9S5556rBQsWKCEhQZdffrlef/115eTkVNjGtddeK+nP4HTSSSepQ4cOWrp0qc466yy/9d58803179+/yr9l12WVvS9TSQUFBYqPj9eePXsq/bGd6nL4R1prwx8RADjt999/1+bNm5WZmXlMDzDC3+rVq9W5c2dt2LBBsbGxx9TWf//7X2VlZWnZsmWlnts4VEXHsrLXb946AQCgBsrOztYTTzwRlI+jbt68WS+++GKFIcMpvHUCAEAN5Z3f41idffbZOvvss4PSVqC4owEAABxD0AAAAI4haAAAguJIk1Ch5nPiGPKMBgDgmISHh8vtdmvHjh1KTExUeHh4ubNqomYyMx04cED//e9/5Xa7fROJBQNBAwBwTNxutzIzM5WXl6cdO3ZUd3dwDKKiopSWlia3O3hveBA0AADHLDw8XGlpafrjjz9KTaeN2iEkJEShoaFBvxtF0AAABIXL5VJYWFipLxHD8Y2HQQEAgGMIGgAAwDEEDQAA4BiCBgAAcAxBAwAAOIagAQAAHEPQAAAAjiFoAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDEEDQAA4BiCBgAAcAxBAwAAOCagoPHQQw/J5XL5vZKTk53qGwAAqOVCA61w+umn66OPPvL9HBISEtQOAQCAuiPgoBEaGhrQXYyioiIVFRX5fi4oKAh0kwAAoJYK+BmN3NxcpaSkKDMzU1dffbU2bdpU4fo5OTmKj4/3vVJTUyvdWQAAULsEFDTOOeccTZs2TXPnztUrr7yi/Px8tWvXTj///HO5dUaOHKk9e/b4Xtu3bz/mTgMAgNohoLdOunXr5vt3dna22rZtq1NOOUWvvvqqRowYUWYdj8cjj8dzbL0EAAC10jF9vDU6OlrZ2dnKzc0NVn8AAEAdckxBo6ioSOvWrVPDhg2D1R8AAFCHBBQ07rrrLn322WfavHmzvvrqK/Xt21cFBQUaNGiQU/0DAAC1WEDPaPznP//RX//6V/30009KTEzUX/7yFy1ZskTp6elO9Q8AANRiAQWN6dOnO9UPAABQB/FdJwAAwDEEDQAA4BiCBgAAcAxBAwAAOIagAQAAHEPQAAAAjiFoAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDEEDQAA4BiCBgAAcAxBAwAAOIagAQAAHEPQAAAAjiFoAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDHHFDRycnLkcrk0fPjwIHUHAADUJZUOGl9//bUmTZqkFi1aBLM/AACgDqlU0Ni3b5/69++vV155RfXr1w92nwAAQB1RqaAxdOhQde/eXZ07dz7iukVFRSooKPB7AQCA40NooBWmT5+uFStW6Ouvvz6q9XNycjRmzJiAOwYAAGq/gO5obN++XcOGDdNrr72miIiIo6ozcuRI7dmzx/favn17pToKAABqn4DuaCxfvly7du1Sq1atfGXFxcVauHChnn/+eRUVFSkkJMSvjsfjkcfjCU5vAQBArRJQ0Ljwwgu1evVqv7Jrr71WWVlZuvfee0uFDAAAcHwLKGjExsaqefPmfmXR0dFKSEgoVQ4AAMDMoAAAwDEBf+rkcAsWLAhCNwAAQF3EHQ0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDEEDQAA4BiCBgAAcAxBAwAAOIagAQAAHEPQAAAAjiFoAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGNCq7sDQG2Scd8s37+3jOtejT0BgNqBOxoAAMAx3NEAaiDunACoK7ijAQAAHEPQAAAAjiFoAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADgmoKAxceJEtWjRQnFxcYqLi1Pbtm01Z84cp/oGAABquYCCRqNGjTRu3DgtW7ZMy5Yt0wUXXKBevXppzZo1TvUPAADUYqGBrNyzZ0+/nx977DFNnDhRS5Ys0emnn15mnaKiIhUVFfl+LigoqEQ3AQBAbVTpZzSKi4s1ffp0FRYWqm3btuWul5OTo/j4eN8rNTW1spsEAAC1TMBBY/Xq1YqJiZHH49FNN92kd999V82aNSt3/ZEjR2rPnj2+1/bt24+pwwAAoPYI6K0TSTr11FO1cuVK/frrr3r77bc1aNAgffbZZ+WGDY/HI4/Hc8wdBQAAtU/AQSM8PFyNGzeWJLVu3Vpff/21xo8fr5dffjnonQMAALXbMc+jYWZ+D3sCAAB4BXRHY9SoUerWrZtSU1O1d+9eTZ8+XQsWLNCHH37oVP8AAEAtFlDQ2Llzp6655hrl5eUpPj5eLVq00IcffqiLLrrIqf4BAIBaLKCgMXnyZKf6AQAA6iC+6wQAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDEEDQAA4BiCBgAAcAxBAwAAOIagAQAAHEPQAAAAjiFoAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjQqu7A9Ul475Zfj9vGde9mnoCAEDdxR0NAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDEEDQAA4BiCBgAAcAxBAwAAOIagAQAAHEPQAAAAjiFoAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4JqCgkZOTozZt2ig2NlZJSUnq3bu3fvjhB6f6BgAAarmAgsZnn32moUOHasmSJZo/f77++OMPXXzxxSosLHSqfwAAoBYLDWTlDz/80O/nKVOmKCkpScuXL9d5550X1I4BAIDaL6Cgcbg9e/ZIkk444YRy1ykqKlJRUZHv54KCgmPZJAAAqEUq/TComWnEiBHq0KGDmjdvXu56OTk5io+P971SU1Mru0kAAFDLVPqOxq233qpvv/1Wn3/+eYXrjRw5UiNGjPD9XFBQQNhA0GXcN8vv5y3juldTTwAAh6pU0Ljtttv03nvvaeHChWrUqFGF63o8Hnk8nkp1DgAA1G4BBQ0z02233aZ3331XCxYsUGZmplP9AgAAdUBAQWPo0KF644039O9//1uxsbHKz8+XJMXHxysyMtKRDgIAgNoroKAxceJESVLHjh39yqdMmaLBgwcHq0/V7tD3+3mvHwCAygv4rRMAAICjxXedAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDGh1d0BAABQPTLum+X385Zx3YO+De5oAAAAxxA0AACAYwgaAADAMQQNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDEEDQAA4BiCBgAAcExodXcAOFzGfbP8ft4yrns19QQAcKy4owEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDEEDQAA4BiCBgAAcAxBAwAAOCbgoLFw4UL17NlTKSkpcrlcmjlzpgPdAgAAdUHAQaOwsFBnnHGGnn/+eSf6AwAA6pCApyDv1q2bunXrdtTrFxUVqaioyPdzQUFBoJsEAAC1lOPPaOTk5Cg+Pt73Sk1NdXqTAACghnA8aIwcOVJ79uzxvbZv3+70JgEAQA3h+Le3ejweeTwepzcDAABqID7eCgAAHEPQAAAAjgn4rZN9+/Zpw4YNvp83b96slStX6oQTTlBaWlpQOwcAAGq3gIPGsmXL1KlTJ9/PI0aMkCQNGjRIU6dODVrHAJSWcd8sv5+3jOteTT0JjkP3p7bvC4CyBRw0OnbsKDNzoi8AAKCO4RkNAADgGIIGAABwDEEDAAA4hqABAAAcQ9AAAACOcXwK8mDio3AAANQu3NEAAACOIWgAAADHEDQAAIBjCBoAAMAxBA0AAOAYggYAAHAMQQMAADiGoAEAABxD0AAAAI4haAAAAMcQNAAAgGMIGgAAwDEEDQAA4BiCBgAAcEyt+pp4AABQNTLum+X795Zx3SvdDnc0AACAY7ijgTovWKkcqGsO/duQ+PuAM7ijAQAAHEPQAAAAjiFoAAAAxxA0AACAY3gYFKgmPIgH4HhQbUGj+ei5cnuiJDl7guUTBwAAVJ86c0eDQAEcH/hbB2qXOhM0UPtwwQCAuo+gAaDG4fkVoO4gaBzHauMdhdrYZwA4nvHxVgAA4BjuaABBwt0WACiNoAGgTiDooboxBstWI4MGB6v24ZgBQOCOh3Mnz2gAAADH1Mg7GgCC53j4HxOAmougUUeUdzFhPoLqV9cu9HVtf4KFvzWgbAQNAAACQNgODEEDKENtPJFUd5+re/uonap73FT39o8HBA0AgKNq48Wct8KCh0+dAAAAx3BHA8Bxqzb+TxuobQgaOG5xkaka3IKuWzie1a+2nbsIGg6rbQMCQM3GOaV2Op6PG0GjGlVm4FXFYA32No7nPzAAwcc5JXDV+TsjaACAw2rjhHo19T9ClVGTf8/Hg0oFjRdffFFPPvmk8vLydPrpp+u5557TueeeG+y+AUBQBPMCWFMvpqh76spYCzho/POf/9Tw4cP14osvqn379nr55ZfVrVs3rV27VmlpaU708bhTVwYXaj7GGmqqunRH5XgXcNB45plndP3112vIkCGSpOeee05z587VxIkTlZOTE/QO1hbHywA/XvbzeMdxrp2/g9rYZwRPTX2LKKCgceDAAS1fvlz33XefX/nFF1+sxYsXl1mnqKhIRUVFvp/37NkjSSop2u8rKygo8KtT3rJg1jm0vKrq1Mb9rI19rkwd9pP9rGn72Xz0XN+/vxvT5Zj6fDRtBaPPx8uxOV7307vMzBQQC8CPP/5okuyLL77wK3/sscesadOmZdYZPXq0SeLFixcvXrx41YHX9u3bA4kOVqmHQV0ul9/PZlaqzGvkyJEaMWKE7+eSkhLt3r1bCQkJ2rt3r1JTU7V9+3bFxcX51ikoKCizvKJlwaxT3dtnP9nP42U/q3v77Cf7ebzsZzDaMjPt3btXKSkpCkRAQePEE09USEiI8vPz/cp37dqlBg0alFnH4/HI4/H4ldWrV0/S/wWWuLi4UjteUXlV1anu7VdVnereflXVqe7tV1Wd6t7+8dLnytSp7u1XVZ3q3n5V1anu7VdHn+Pj48usW5GAvlQtPDxcrVq10vz58/3K58+fr3bt2gW8cQAAULcF/NbJiBEjdM0116h169Zq27atJk2apG3btummm25yon8AAKAWCzhoXHXVVfr555/18MMPKy8vT82bN9fs2bOVnp4e8MY9Ho9Gjx5d6q2V8sqrqk51b5/9ZD+Pl/2s7u2zn+zn8bKfwd5+IFwW8OdUAAAAjk5Az2gAAAAEgqABAAAcQ9AAAACOIWgAAADH1KmgwXOtAADULJWagrym8ng8WrVqlU477TTHt5WXl6eJEyfq888/V15enkJCQpSZmanevXtr8ODBCgkJcbwPAADUdDXi462//fabZs+erddff13vvPOO37KVK1fq+eef11133aWsrCx9//33uuqqq1RcXKysrCylpaX51h0/frwGDBighIQESX9+pf0vv/yiV199VYsXL1ZqaqqGDx+u1NRUvfbaa5o4caK2bdum4uJi3XjjjXrooYdK9W3ChAlatmyZunfvriuvvFL/+Mc/9OCDD2rbtm1KTExUZmamli5dqv79++vAgQOaO3euTjvtNM2dO1exsbGO/t5qqsLCQr3xxhtavHix8vPz5XK51KBBA7Vv315//etfFR0dXWa9b775Rm+99ZYee+wxv/L8/HxNnz5dAwcO1AknnKCffvpJkydPVlFRka644gq/YHnyySdr7ty5atKkiSTp4MGDmjVrlnJzc+XxeNSrVy/fnC+LFi3SSy+9pMWLF+uMM87Qvffeq7Zt25bq1/vvv69ly5apa9euatu2rT755BM99dRTOnjwoFJSUhQSElIqbF544YXB+nXWSpUZAzt37tQTTzyhMWPGKCYmxlf+888/a8WKFSoqKlKPHj0COv7S/42Br7/+Wo0aNdLAgQMVHR3tO/7btm3T/v37df/99+vyyy8v1a/yjn9JSYl69OihqKioMv/DwRionjEgBf88wBg4RgF9BZsDfvjhB0tPTzeXy2WS7Pzzz7cdO3aYmdmcOXMsPDzcJFlERITNmTPHEhMTTZLFxMSYy+WyM844wzp27GgdO3Y0l8tlYWFh1r59e+vUqZNt2rTJkpOTLTk52WJjY+3EE0+0+Ph4e/jhhy0yMtJuv/12mzhxou8b6Ro0aGDjxo2zvLw8MzN7+OGHLTY21vr06WPJyck2btw4S0hIsLS0NLvwwgstMTHRHnzwQfvHP/5h55xzjpmZ7d6927Kzs+2CCy6wwYMHW9euXa1bt242ePBge+WVV2zfvn3l/i5WrFhho0aNKlWel5dnzz77rP38889mZvbf//7Xxo0bZ2PGjLG1a9f6rZuZmWnr16/3Kztw4IC9++67NmrUKHvxxRd9fVi4cKH169fPMjIyrFevXrZ48eIy+/Xee+/Zgw8+6Fv+8ccfW7du3axz5842cOBAu/baa61r167WvXt369evnyUkJFi9evWsV69eduONN9oNN9xgvXr1snr16tlJJ51ka9as8Wt/x44d1qZNG3O73SbJBg4caHv37jUzs6+++sri4uJMktWvX9+WLVtmmZmZlpiYaCeeeKKFhYXZXXfdZePHj7fx48ebJLvjjjts/Pjx9thjj1l2draFh4dbkyZNzOVyWWJiov3nP/+xmTNnmtvttksvvdQkmcvlMpfLZffcc48VFRX5+jZx4kQLDQ21Vq1aWVxcnL322msWGxtrV1xxhcXExJgki4uLM5fLZd27d7dzzjnHQkJC7LLLLrOJEycGNAby8/NtxIgRvn33+umnn2zevHn2/vvvO3L8O3ToYGeddZa9/fbbAR3/Ll262IQJE2zy5MlBGQOnn366SbKQkBDfGPjqq68sPj7ed3440vEPCQmxk046yXJycmz8+PG2a9cu3xiIiIiwsLAwS0tLs8mTJ/uO/7333us7B5x55pk2ffp03xgo7/gPGTLErr76anO5XBYdHW0NGzYMyhiornNAZcdAWeeAW2+91SZPnmwpKSmOjoEmTZqUOQaCfR6o7Bhwu93WqlUrGzhwYK24DhxpDByLKgsa//73v8t8nXPOOdamTRt75JFHzOVyWc+ePS0zM9O2bt1qbdu2teHDh5vb7bY333zT6tevb6NGjbKxY8daZmam9evXzy666CLfNkJDQ83lctnOnTvNzOzqq6+2jh07WmFhoUVFRdn69eutR48eVq9ePXv55Zd99Vwul40cOdJOOOEE38C99NJLLTk52WbMmGFmZitXrrSQkBB77bXXLDIy0jZu3GjvvPOONW7c2IqLiy0sLMzy8/NtzZo1lpCQYC6Xq1outJU50QbzQhsbG2sul8v69OljBw8e9NvPZcuWWdeuXa1169a2atUq36tnz57WokULGzt2rLlcLmvdurW1atXKdu/ebZ07d7b+/fubJHvyySetUaNGNmTIEHO5XNaoUSOLiYmxqKgoy8jIsIyMDJNkycnJlpGRYbGxsXbmmWf6gmNMTIydddZZdt1119k555xj48aN8x3/KVOmWHZ2trlcLktISLBhw4bZ6tWr7bTTTrNJkyaZmdknn3xiERER9sILL1i3bt3sf/7nf2zy5Ml22mmnWU5OjnXr1s3MzGbPnm0hISEWERFxXF5oyxsDq1atqnAMeC8C8+fP942B888/34YMGWIbNmwwSUc8/t7fU2pqqmVmZtoNN9zgGwOxsbG2YsUKa9eunSUmJvqOv3cM9O/f3+Lj4y0sLMw3Bk4++eQyj7+ZWbdu3axjx46WlZVlZnZMY6C6zwGVGQMVhW3vMSgsLPQb58EcA97jFh0d7TcGgn0eqMwYWLNmjSUlJZnb7bZTTz21VlwHKhoDx6rKgobL5TK32+27oHlf3h3zLjczu+WWWywtLc1iYmLsyy+/NLfbbcXFxRYaGmrLly83M7OlS5daRkaGRUVF2YEDB8ysdNDIzMy0jz/+2MzMEhISbNmyZbZkyRJzu922cuVKv7599dVXFhkZaQcOHLB//vOf1qVLF5NkSUlJNmrUKMvNzbWwsDD77rvvLD093T7//HPbsmWLRUVF2Y4dO8zlctn+/futY8eO1rNnT/N4PKV+B1Vxoa3MiTaYF9rIyEibPXu2ZWRk2OjRo8scA4cGG29/vf92u932+++/W69evezMM8+0evXq2cKFC83tdtuBAwfM7XbbV199ZTfeeKOdeeaZ9tZbb9lJJ53k24YkW7hwoZmZNW3a1D744APfsvj4ePvf//1fy8jIsKSkJFu1apWvXzt37rQNGzZYZGSkPf7445aVlWVut9vcbrfl5ORYQUGBmZmFhYXZ6tWrfcF18+bNFhUVZUVFRRYWFmY//fSTdezY0c4991xLT0/32//j5UJb3hg49BxQ1hiQ5DsHeMdASEiILV682PLz8331Kzr+h58DDh0D8fHxtmrVKvv000/N7Xb7jv+h54CoqCjbuXOnbwxIshYtWtikSZOsoKDAd/zNzKKiouyTTz6xqKgoM7NjGgPVfQ6ozBioKGxHRERYSkpKueeAYIwBM7Mbb7zRTj31VEtKSvLbTjDPA5UZA+3bt7err77aZsyYYRkZGX59q6nXgYrGgHd/K6vKgkZKSoq9++67pcpjY2Nt7dq19s033/gGmJnZrbfeai6Xy9544w1feUxMjG3cuNG3zpo1a8ztdluLFi3s22+/tbCwMHO5XLZr1y7fNr/77jszMxswYIBdf/31tnnzZnO73fa3v/3N147L5bJRo0ZZdna2X99SU1Otf//+vrd23G63/etf/7Jhw4ZZ8+bNbcyYMdagQQPr1KmTdezY0czMIiMj7eWXX7ZTTjml1L5WxYW2MifaYF5ok5OTbebMmTZz5sxSf2AnnniiDR061JKSkmzLli2+V1RUlH366ac2a9Ys37E+ePCg9e7d29xut82ZM6fMMfDuu+9aSkqKhYaG+rYhyRYtWmRmZklJSX7/a7j00kvt5ptvNo/HY126dLHx48f77f8rr7xiTZo08a2/cOFCi4qKsoiICIuOjrYff/zRXC6XzZo1y1JSUmz58uW2YMECa9Sokf3yyy/mcrmsoKDAIiMjbe7cuaXC5vFyoS1vDJx44ok2efJke/nll8scA5MmTfI7Bxw8eNBCQkIsKyvLvv32W3O73Uc8/t79954DDh0Dl156qd133322ZcsWc7lcvuPv3f+nn37a7/ibmSUmJlrXrl0tOjraIiMjfcff7M/zy6RJk6xRo0ZmZsc0Bqr7HFCZMVBR2E5JSbGRI0eWeQ4I5hgwM5s0aZJJsgkTJvjKgnkeqMwYiIyMtDVr1timTZvKHQM17TpQ0Rhwu93Wpk0b3xgIVJUFjZ49e9oDDzxQqrxNmzY2bdo0W7lypblcLr9lCQkJFh0d7Rt4q1ev9rsVu2jRIsvMzLQ333zTGjRo4PsDzs7OtpYtW1pMTIy98847Zmb2448/WkZGhp1xxhkWExNjkZGR1qFDB7vhhhtMkoWFhfkGj9f9999viYmJdv3111tycrKNHDnS0tLS7Nlnn7VWrVr5Lg7t2rWzTZs2mZn5Uvy//vWvUvtaFRfaypxog3mhve+++yw+Pt5GjhxpYWFhlpeXZ/n5+bZy5Upr2rSpRURE2JgxY/x+L9nZ2fbWW2+VGgMHDx60mJgY3y1IM7MPPvjA9u/f71vnvffeM4/HY127drW8vDyTZOedd55ddtllVr9+fZs9e7Zv3bVr11p8fLxFRETYI488YjExMTZgwABzuVx2xRVXmMfjsSlTpvj1bejQoXbKKadYr1697Oyzz7ZBgwZZVlaWde7c2bKzs61JkyZ2xRVX2FVXXWUtW7b0jYFHH33UUlNTSx3/4+FCW94YaNeunXXp0sXq169f5hh46qmnSp0DsrKyrH379paWlmZut/uIx9+7/5dcckmpMbB27VpLSEiwbt26WXR0tO/4P/bYY+ZyuSw8PLzM49+kSRP729/+ZhkZGb7jP2fOHOvcubNFR0fb5Zdfbps2bTqmMVDd54DKjIGKwvbo0aMtNjbWQkJCbOXKlY6OgSVLlljDhg3tggsucOQ8UJkxkJKSYjNnzrQFCxaUOQZq4nWgojGwcOFCGzRokEVHR1t0dLQFqsqCxsKFC23OnDmlyseOHWvdunWzffv22YIFC/yWTZw40S655JJSA89r1KhRdv3115uZ2fbt223mzJk2atQoe+ihh3yvDz/80Lf+L7/8YmeffbbFxcVZRESEhYeHW3p6ukVHR9v8+fNLtf/HH3/Yo48+aj169PDdXnrzzTctNTXVEhISbMCAAZafn+9XZ/To0RYfH29PPvmk3x9YVV1oK3OiDfaF1vvQrPd/6N4AWL9+fbvqqqtK/Z7vueceu/jii2337t02depUv2UPPvigtWrVyu8CfKhRo0bZZZddZmPHjrXk5GRzuVzWu3dvGzx4sA0ePLhU4BsyZIjv4eBD/yfRunXrMu+47du3z4YMGWLNmze3m266yQ4cOGBPPvmkhYWF+d2FyMjIsBUrVvjGQFRUlPXq1cvxk2xNvdCWNQYkWXx8vD3++ONljoFOnTqVOv4PPfSQvfbaa3bppZeWOQYOP/4hISF+x//wMbBhwwbLysqykJAQ3/H3HsvD972i4+99SN37bMKxjoHqPgdUZgxUdA4w+/NtDe/fvtNj4PLLL7eSkhJHzgOVGQPe68A111xj9957b624DlQ0Brz27NnjexstENX+qZO6aNy4cb6H44J1oa0obB3riTbYF1ozsxkzZtjo0aNt8eLFtnjxYt8dn7IcPHjQ9uzZU+7yP/74w7Zs2VLmssLCQvv999/N7M/3Pp977jnbvXt3uW3t27fPfvvtNyspKbH8/HzbsWOH7xmfQPz2229WUFBg69evL3WnzazsMVBTLrSnnnqq4xdas9Jj4NDb3YcqKSkpdwyUlJSYWekx4C0//Pg/88wz5R5/b519+/bZ/v37fce/ogfevHUOV1hY6LuFfPgY8NYJZAwEM2xXVdgq6xzgfYbO7M/j//e//902bdrk6Hng0DFgVnXnAe85wKz0GDBz5joQyBjo1atX0MbAsaoR82jUVZs3b1Z+fr4kKTk5WZmZmWWu98cff2j//v2Ki4src3lxcbH+85//+D73faj9+/crJCREHo9Hy5cv1+eff66BAweqfv365farsLBQbrdbBQUFKikp0YknnqiwsLCA9u3333/XwYMHlZ+fr6KiImVlZSk0tE7N/xYUTo+B6j7+sbGxys3NPaoxEB4eXuaEeuWVV6ZOMNsKVp2jGQPBOgesWLFCixYt4hxQg9Tl68DRYlQ4KDMzs9Sg2r59u0aPHq3/9//+n68sNDRUcXFxZS6TpB07dmjMmDGlyqU/J7Lx1mnVqpVatWpV7na8du/eXeay8uqUVR4REaGIiAj9+uuvysnJ8VtW0QRsv/zyi55++mn169dPzZo186uzePFiLV26VCNHjjymOsFsq7J1vBPN3X333Wrbtq2+//57PfHEE9q5c6caN26s6667zjcB3fjx41VUVKRzzz1XktS2bVu/ZYfWkVRmeVZWlqKjo/X999/rzjvv9LXVrl07nXrqqaXqXH/99b7yhx9++Ki2f2idw/vcrl07hYaGVjih3sGDB9WnTx9FRkZKks4//3xJf55AyyqvqE4w2wp2neLiYo0bN85v4sB69erp1VdfVW5urlJSUjRw4EClpqb6JhTMzc1Vw4YNNWjQoDLLBw8e7LvAVFRn4cKFys3N1QsvvOArr6jO77//Xma/jrSdQ+sMGjRITZo08Ss3M/Xv31/t27eXJN8EiRs2bFBqaqruuusuXX311X4TJyYkJOi6667T7bffXqPqVKatVatWKTMzU/fff7+uvvpqv+vAbbfdpiuvvNL3t+N1xx13lFleUZ2yyr3XgaOt4x3DFW3nmAX9HgkqtHLlynJvf5W3rLrrBNJWRROw/fDDD9aoUSPfrVbvsmDWqe7tm5U/0dyZZ57pWz88PNxX3rlzZzvzzDNNksXGxh5VnWC2Few6KmdCPUkWFRVl9erVs3r16vlNtOetc2h5RXWC2Vaw63hvQx86cWDDhg0tOTnZwsPDrWHDhhYfH2/z58/3TShYXvlFF11kbrfbYmNjbd26dX6TEFZ3nYraCgsLs+joaFu3bp298sorvgkSU1NTrU+fPhYTE2ODBg3ymzgxMTHRIiIibPLkyTWqTmXaOvTTJH369PHN4WH2f586adKkid8EkeWV14Q6x4qgEWTlTUz273//2/fwqsvlKlVe0TKn6wSzrYomYOvdu7dddNFF5nK5LDc317esS5cu1qNHD1uzZs0x1wlmW5WtU95Ec23btrX777/f91Fqb7mZWdu2ba1du3Z20UUXHVWdYLYV7DrlTajndrutUaNGvrltvEJDQ2348OF+894cqU4w2wp2nYomDnS5XLZt2zbr0aOHpaamHrHc7M+T/0UXXWR9+/Y9qraqqk5FbUVFRdmFF15offv2tZYtW/omSIyKirKtW7fa66+/bhEREX4TJ0ZFRdn48eOtWbNmNapOZdpyuVz20UcfWdeuXS0kJMQ3CeT777/vWzZs2DC/CSJdLpfNmzevVHlNqPP+++9bcXGxVRZBI8i8ifDQRHvoQ5feV3nlFS1zqo4TbXl/D2b/NwFbQkKC77PbXrfccou53W6bPXu25efnH3OdYLZV2TrlTTQXFxdnubm5tnr1aktKSvKbgC4uLs5mzZplDRo0OKo6wWwr2HXMyp9Qb/r06da0aVO78847/crXrFljS5cuLXNZeXWC2Vaw6xwaNA4NI97yJUuWWEhIyBHLvctmz55tjRo1Oqq2qqpORW0lJCTY1KlTrVGjRpaUlOSbINE7caJ3ArpDJ05MSEiwmTNnWmRkZI2qU5m2vL+bDRs2WEREhG8SyJCQEJNkw4YNs9zc3FITRDZo0MBGjRpla9eurVF1QkJCLCUlxTd5ZaAIGkFW3sRk3mXPPPNMqbchvHUOn7SsquoEs60jTcA2bdq0Um2FhYVZgwYNfBPSHEudYLZ1LHXKmmjOe9HesmWLRURE+H0WPi4uzhYsWGARERFHVSeYbQW7jldZE+qtWbPG9u7dawMHDixVbmblLgu0vDJtBbOOy1X2xIHe8s2bN5ukI5Z7ly1btsw8Hs9RtVVVdSpqa8CAAXbllVeax+OxK664wjdBonfixLFjx1p8fLzfxIkDBgyw1q1bW3Z2do2qU5m2vEFj7NixfhNBbt261aQ/Z/g9/JzicrnsrrvusvT0dL9lNaHO1q1bbfTo0aXqHC2CRpCVNzGZd9mNN95oLperzDplTVpWFXWC2VZFE7AlJSVZVFRUqYHapk0b69y5s9WrV6/UskDrBLOtytYpb6K5Fi1a2Jw5c3wTzR36cbgWLVrYU089ZZmZmUdVJ5htBbuOV1kT6h06Q2N55RUtq4q2glHH5Sp74kBvuXe6+SOVe5edfPLJFhYWdlRtVVWditr68ccffc9xjBgxwjdBYr9+/czj8ZjL5bLLLrvMb+JE73ekNG/evEbVqUxbkuwvf/mLhYeHl5oI0uVyWX5+vs2bN69U+c6dO62kpKTMZdVZx6usOkeDT50E2d13363CwsJyl/3888/q169fmXUaN26sTz/9tMrrBLOtyy67TG+++aYuv/zyUm0NHz5cL730krZv3+5Xftlll2nRokX661//qpdeeumY6gSzrcrWefTRR/X+++9rzpw5kqTmzZtLkm6++WYVFxdrzpw5uuCCC3zl3mWffvqpLrjggqOqE8y2gl3Hy1vn6quvVocOHbR8+XK/j+aVV17RsqpoKxh1li5dqvDwcN+yqKgoSdLo0aMlSfPmzZPH4zliuXfZvHnzFBUVpb59+9aYOhW1lZKSor59++rjjz/Whx9+KDPT0qVLtX37dvXs2VNRUVFatmyZX3n79u2Vk5OjuXPn6v33369RdQJtKyQkRCeddJImTJig1q1b+42T9PR0hYaG6qKLLipVHhISIpfLVeay6qzjVVado8E8GgAAwDHu6u4AAACouwgaAADAMQQNAADgGIIGAABwDEEDqKU6duyo4cOHV3c3JEmTJk1Samqq3G63nnvuuXLLABx/+HgrgGNSUFCgW2+9Vc8884z69Omj+Pj4MssAHJ+4owHUQQcOHKiybW3btk0HDx5U9+7d1bBhQ0VFRZVZFmxVuY8AKo+gAdQChYWFGjhwoGJiYtSwYUM9/fTTfsszMjL06KOPavDgwYqPj9cNN9wgSXr77bd1+umny+PxKCMjo8x6jzzyiPr166eYmBilpKRowoQJfuts27ZNvXr1UkxMjOLi4nTllVdq586dkqSpU6cqOztbknTyySfL5XKVWbZly5YK92/jxo3q1auXGjRooJiYGLVp00YfffTRUe3j4sWLdd555ykyMlKpqam6/fbb/SbNe+2119S6dWvFxsYqOTlZ/fr1065du47m1w4gGAKeSxRAlbv55putUaNGNm/ePPv222+tR48eFhMTY8OGDTMzs/T0dIuLi7Mnn3zScnNzLTc315YtW2Zut9sefvhh++GHH2zKlCkWGRlpU6ZM8bWbnp5usbGxlpOTYz/88IP9/e9/t5CQEN80wyUlJdayZUvr0KGDLVu2zJYsWWJnnXWWnX/++WZmtn//fvvoo49Mki1dutTy8vJs3759pcr++OOPCvdv5cqV9tJLL9m3335r69evt/vvv98iIiJs69atfn09fB+//fZbi4mJsWeffdbWr19vX3zxhbVs2dIGDx7sqzd58mSbPXu2bdy40b788kv7y1/+Yt26dQvOgQFwRAQNoIbbu3evhYeH2/Tp031lP//8s0VGRvoFjd69e/vVO/xr2s3M7r77bmvWrJnv5/T0dOvatavfOldddZXvQjxv3jwLCQmxbdu2+ZavWbPGFyLMzL755huTZJs3b/atU1ZZoJo1a2YTJkzw6+vh+3jNNdfYjTfe6Fe2aNEic7vd9ttvv5XZ7tKlS02S7d27t9J9A3D0eOsEqOE2btyoAwcOqG3btr6yE044Qaeeeqrfeod/p8K6devUvn17v7L27dsrNzdXxcXFvrJD2/X+vG7dOl8bqampSk1N9S1v1qyZ6tWr51snGAoLC3XPPff42o6JidH333+vbdu2+a13+D4uX75cU6dOVUxMjO/VpUsXlZSUaPPmzZKkb775Rr169VJ6erpiY2PVsWNHSSrVNgBn8KkToIazo/w6oujo6FL1XC5Xpdry1iurjYrKK+vuu+/W3Llz9dRTT6lx48aKjIxU3759Sz3wefg+lpSU6H/+5390++23l2ozLS1NhYWFuvjii3XxxRfrtddeU2JiorZt26YuXbrwMClQRQgaQA3XuHFjhYWFacmSJUpLS5Mk/fLLL1q/fr3OP//8cus1a9ZMn3/+uV/Z4sWL1bRpU4WEhPjKlixZ4rfOkiVLlJWV5Wtj27Zt2r59u++uxtq1a7Vnzx6ddtppQdk/SVq0aJEGDx6syy67TJK0b9++Iz5AKklnnXWW1qxZo8aNG5e5fPXq1frpp580btw4X/+XLVsWtH4DODLeOgFquJiYGF1//fW6++679fHHH+u7777T4MGD5XZX/Od755136uOPP9Yjjzyi9evX69VXX9Xzzz+vu+66y2+9L774Qk888YTWr1+vF154QTNmzNCwYcMkSZ07d1aLFi3Uv39/rVixQkuXLtXAgQN1/vnnl3ob41g0btxY77zzjlauXKlVq1apX79+KikpOWK9e++9V19++aWGDh2qlStXKjc3V++9955uu+02SX/e1QgPD9eECRO0adMmvffee3rkkUeC1m8AR0bQAGqBJ598Uuedd54uvfRSde7cWR06dFCrVq0qrHPWWWfpX//6l6ZPn67mzZvrwQcf1MMPP6zBgwf7rXfnnXdq+fLlatmypR555BE9/fTT6tKli6Q/30KZOXOm6tevr/POO0+dO3fWySefrH/+859B3b9nn31W9evXV7t27dSzZ0916dJFZ5111hHrtWjRQp999plyc3N17rnnqmXLlnrggQfUsGFDSVJiYqKmTp2qGTNmqFmzZho3bpyeeuqpoPYdQMVcdrRv2gKoczIyMjR8+PAaM5U5gLqHOxoAAMAxBA0Ajjv99NP9PoJ66Ov111+v7u4BcBBvnQBw3NatW3Xw4MEylzVo0ECxsbFV3CMAVYWgAQAAHMNbJwAAwDEEDQAA4BiCBgAAcAxBAwAAOIagAQAAHEPQAAAAjiFoAAAAx/x/EeVVn03mj+UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_2023.groupby(\"dropoff_area\").agg({'ID':'count'}).orderBy(F.col('dropoff_area').asc()).toPandas().plot(x=\"dropoff_area\",y=\"count(ID)\", kind='bar')" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "4876aef0-e741-4302-82d5-24f133f1d762", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \r" + ] + } + ], + "source": [ + "# storing data on the bucket\n", + "df_area_program.write.option(\"header\", \"true\").csv(\"gs://msca-bdp-student-gcs/bdp-rideshare-project/rideshare/processed_data/program_area_time_rides_2023.csv\")\n", + "df_2023.write.option(\"header\", \"true\").csv(\"gs://msca-bdp-student-gcs/bdp-rideshare-project/rideshare/processed_data/rides_2023.csv\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "PySpark", + "language": "python", + "name": "pyspark" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}