-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathaudio_preprocessing.py
88 lines (70 loc) · 2.89 KB
/
audio_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from madmom.processors import SequentialProcessor
from general.Fprev_sub import Fprev_sub
import numpy as np
EPSILON = np.spacing(1)
def _nbf_2D(log_mel, nlen):
"""shift the feature and concatenate it in both left and right sides for nlen"""
log_mel = np.array(log_mel).transpose()
log_mel_out = np.array(log_mel, copy=True)
for ii in range(1, nlen + 1):
log_mel_right_shift = Fprev_sub(log_mel, w=ii)
log_mel_left_shift = Fprev_sub(log_mel, w=-ii)
log_mel_out = np.vstack((log_mel_right_shift, log_mel_out, log_mel_left_shift))
feature = log_mel_out.transpose()
return feature
class MadmomMelbankProcessor(SequentialProcessor):
def __init__(self, fs, hopsize_t):
from madmom.audio.signal import SignalProcessor, FramedSignalProcessor
from madmom.audio.stft import ShortTimeFourierTransformProcessor
from madmom.audio.filters import MelFilterbank
from madmom.audio.spectrogram import (FilteredSpectrogramProcessor,
LogarithmicSpectrogramProcessor)
# define pre-processing chain
sig = SignalProcessor(num_channels=1, sample_rate=fs)
frames = FramedSignalProcessor(frame_size=2048, hopsize=int(fs*hopsize_t))
stft = ShortTimeFourierTransformProcessor() # caching FFT window
filt = FilteredSpectrogramProcessor(
filterbank=MelFilterbank, num_bands=80, fmin=27.5, fmax=16000,
norm_filters=True, unique_filters=False)
spec = LogarithmicSpectrogramProcessor(log=np.log, add=EPSILON)
single = SequentialProcessor([frames, stft, filt, spec])
pre_processor = SequentialProcessor([sig, single])
super(MadmomMelbankProcessor, self).__init__([pre_processor])
def get_log_mel_madmom(audio_fn, fs, hopsize_t, channel):
"""
calculate log mel feature by madmom
:param audio_fn:
:param fs:
:param hopsize_t:
:param channel:
:return:
"""
madmomMelbankProc = MadmomMelbankProcessor(fs, hopsize_t)
mfcc = madmomMelbankProc(audio_fn)
if channel == 1:
mfcc = _nbf_2D(mfcc, 7)
else:
mfcc_conc = []
for ii in range(3):
mfcc_conc.append(_nbf_2D(mfcc[:,:,ii], 7))
mfcc = np.stack(mfcc_conc, axis=2)
return mfcc
def feature_reshape(feature, nlen=10):
"""
reshape mfccBands feature into n_sample * n_row * n_col
:param feature:
:param nlen:
:return:
"""
n_sample = feature.shape[0]
n_row = 80
n_col = nlen*2+1
feature_reshaped = np.zeros((n_sample,n_row,n_col),dtype='float32')
# print("reshaping feature...")
for ii in range(n_sample):
# print ii
feature_frame = np.zeros((n_row,n_col),dtype='float32')
for jj in range(n_col):
feature_frame[:,jj] = feature[ii][n_row*jj:n_row*(jj+1)]
feature_reshaped[ii,:,:] = feature_frame
return feature_reshaped