-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
125 lines (99 loc) · 3.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import gym
import numpy as np
import torch
import asset
from agent.UOF import UOF
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train():
#################### Hyperparameters ####################
env_name = "MountainCarContinuous-h-v1"
save_episode = 10 # keep saving every n episodes
max_episodes = 1000 # max num of training episodes
random_seed = 0
render = True
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
option_dim = 8
action_dim = env.action_space.shape[0]
"""
Actions (both primitive and subgoal) are implemented as follows:
action = ( network output (Tanh) * bounds ) + offset
clip_high and clip_low bound the exploration noise
"""
# primitive action bounds and offset
action_bounds = env.action_space.high[0]
action_offset = np.array([0.0])
action_offset = torch.FloatTensor(action_offset.reshape(1, -1)).to(device)
# state bounds and offset
state_bounds_np = np.array([0.9, 0.07])
state_bounds = torch.FloatTensor(state_bounds_np.reshape(1, -1)).to(device)
state_offset = np.array([-0.3, 0.0])
state_offset = torch.FloatTensor(state_offset.reshape(1, -1)).to(device)
goal_state = np.array([0.48, 0.04]) # final goal state to be achived
threshold = np.array([0.05, 1.0]) # threshold value to check if goal state is achieved
# (not considering velocity)
# DDPG & DIOL parameters:
gamma = 0.95 # discount factor for future rewards
tau = 0.15 # target soft update rate
n_iter = 100 # update policy n_iter times in one DDPG update
batch_size = 100 # num of transitions sampled from replay buffer
lr = 0.001
# time horizon to step with a subgoal
H = 100
testing_peoriod = 10
# save trained models
directory = "{}/preTrained/{}/".format(os.getcwd(), env_name)
filename = "UOF_{}".format(env_name)
#########################################################
if random_seed:
print("Random Seed: {}".format(random_seed))
env.seed(random_seed)
torch.manual_seed(random_seed)
np.random.seed(random_seed)
# creating UOF agent and setting parameters
agent = UOF(
env,
state_dim,
option_dim,
action_dim,
render,
threshold,
action_bounds,
action_offset,
lr,
gamma,
tau,
H,
use_aaes=False,
)
# logging file:
log_f = open("log.txt", "w+")
# training procedure
for i_episode in range(1, max_episodes + 1):
agent.reward = 0
agent.timestep = 0
state = env.reset(test=False)
# collecting experience in environment
last_state, done = agent.run_UOF(state, goal_state, option_dim)
# update all levels
agent.update(n_iter, batch_size)
agent.training_ep_count += 1
if agent.training_ep_count % testing_peoriod == 0:
state = env.reset(test=True)
# collecting experience in environment
last_state, done = agent.run_UOF(state, goal_state, option_dim)
# if agent.actor.use_aaes:
# agent.actor.actor_exploration.update_success_rates()
# logging updates:
log_f.write("{},{}\n".format(i_episode, agent.reward))
log_f.flush()
if agent.check_goal(last_state, goal_state, threshold):
print("################ Solved! ################ ")
name = filename + "_solved"
agent.save(directory, name)
if i_episode % save_episode == 0:
agent.save(directory, filename)
print("Episode: {}\t Reward: {}".format(i_episode, agent.reward))
if __name__ == "__main__":
train()