-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplayers.py
332 lines (287 loc) · 10.3 KB
/
players.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import os
import time
from openai import OpenAI
import anthropic
import google.generativeai as googleai
from google.api_core.exceptions import DeadlineExceeded
import json
with open('llms.json', 'r') as f:
llms = json.load(f)
class LLMPlayer:
def __init__(self, model, **model_kwargs):
self.temperature = model_kwargs['temperature']
self.do_sample = self.set_sample(model_kwargs['temperature'])
self.model_name = model
def update(self, **model_kwargs):
pass
def set_sample(self, temperature):
do_sample = True
if temperature == 0:
do_sample = False
return do_sample
def decide(self, prompt):
return ""
class Llama2Player(LLMPlayer):
def __init__(self, model, sys_key, **model_kwargs):
super().__init__(model, **model_kwargs)
self.model_kwargs = model_kwargs
self.model_name = llms[model]['hf_name'] + '/' + model
self.model_type = llms[model]['model_type']
self.sys_prompt = ''
self.sys_key = sys_key
self.pipe = self.set_pipe()
self.top_p = self.set_p(model_kwargs['temperature'])
def set_p(self, temperature):
top_p = 0.9 # Default
if temperature == 0:
top_p = 1 # Turn off
return top_p
def update(self, player_id='player1', **model_kwargs):
for k, v in model_kwargs.items():
if k in self.model_kwargs.keys():
self.model_kwargs[k] = v
if 'sys_' + player_id in k:
self.set_sys(v)
def set_sys(self, sys):
if type(sys) == dict:
sys = sys['prefix']
sys = "<s>[INST] <<SYS>>\n" + sys + "\n<</SYS>>\n\n"
self.sys_prompt = sys
return sys
def set_pipe(self):
tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
use_auth_token=os.environ["HF_KEY"]
)
model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map="auto",
use_auth_token=os.environ["HF_KEY"],
trust_remote_code=False,
)
pipe = pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=False,
task="text-generation",
)
return pipe
def decide(self, prompt):
self.set_sys(self.model_kwargs[self.sys_key])
prompt = self.sys_prompt + '\n' + prompt + "[/INST]"
res = self.pipe(
prompt,
do_sample=self.do_sample,
temperature=self.temperature,
top_p=self.top_p,
max_new_tokens=1024
)
return res[0]['generated_text']
class MistralPlayer(LLMPlayer):
def __init__(self, model, sys_key, **model_kwargs):
super().__init__(model, **model_kwargs)
self.model_kwargs = model_kwargs
self.model_name = llms[model]['hf_name'] + '/' + model
self.model_type = llms[model]['model_type']
self.sys_prompt = ''
self.sys_key = sys_key
self.pipe = self.set_pipe()
self.top_p = self.set_p(model_kwargs['temperature'])
def set_p(self, temperature):
top_p = 0.9 # Default
if temperature == 0:
top_p = 1 # Turn off
return top_p
def update(self, player_id='player1', **model_kwargs):
for k, v in model_kwargs.items():
if k in self.model_kwargs.keys():
self.model_kwargs[k] = v
if 'sys_' + player_id in k:
self.set_sys(v)
def set_sys(self, sys):
if type(sys) == dict:
sys = sys['prefix']
sys = "<s>[INST] " + sys
self.sys_prompt = sys
return sys
def set_pipe(self):
tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
token=os.environ["HF_KEY"]
)
pipe = pipeline(
"text-generation",
model=self.model_name,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto",
token=os.environ["HF_KEY"],
return_full_text=False
)
return pipe
def decide(self, prompt):
self.set_sys(self.model_kwargs[self.sys_key])
prompt = self.sys_prompt + '\n' + prompt + "[/INST]"
res = self.pipe(
prompt,
do_sample=self.do_sample,
temperature=self.temperature,
top_p=self.top_p,
max_new_tokens=1024
)
return res[0]['generated_text']
class GPTPlayer(LLMPlayer):
def __init__(self, model, sys_key, **model_kwargs):
super().__init__(model, **model_kwargs)
self.model_kwargs = model_kwargs
self.model_type = llms[model]['model_type']
self.sys_prompt = self.set_sys(model_kwargs[sys_key])
self.client = OpenAI()
def update(self, player_id='player1', **model_kwargs):
for k, v in model_kwargs.items():
if k in self.model_kwargs.keys():
self.model_kwargs[k] = v
if 'sys_' + player_id in k:
self.set_sys(v)
def set_sys(self, sys):
if type(sys) == dict:
sys = sys['prefix']
self.sys_prompt = sys
return sys
def decide(self, prompt, max_retries=3):
retries = 0
while retries < max_retries:
try:
res = self.client.chat.completions.create(
model=self.model_name,
temperature=self.temperature,
messages=[
{"role": "system", "content": self.sys_prompt},
{"role": "user", "content": prompt}
]
)
return res.choices[0].message.content
except Exception as e:
print(e)
print("Deadline exceeded. Retrying...")
retries += 1
time.sleep(1) # Wait for a moment before retrying
continue
class GeminiPlayer(LLMPlayer):
def __init__(self, model, sys_key, **model_kwargs):
super().__init__(model, **model_kwargs)
googleai.configure(api_key=os.environ["GOOGLE_KEY"])
self.model_kwargs = model_kwargs
self.model_type = llms[model]['model_type']
self.model = googleai.GenerativeModel(model)
self.sys_prompt = self.set_sys(model_kwargs[sys_key])
self.generation_config = googleai.GenerationConfig(
temperature=self.temperature
)
self.safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
def update(self, player_id='player1', **model_kwargs):
for k, v in model_kwargs.items():
if k in self.model_kwargs.keys():
self.model_kwargs[k] = v
if 'sys_' + player_id in k:
self.set_sys(v)
def set_sys(self, sys):
if type(sys) == dict:
sys = sys['prefix']
self.sys_prompt = sys
return sys
def decide(self, prompt, max_retries=10):
retries = 0
while retries < max_retries:
try:
# Gemini doesn't have a separate field for a system prompt
res = self.model.generate_content(
self.sys_prompt + prompt,
safety_settings=self.safety_settings,
generation_config=self.generation_config
)
return res.text
except DeadlineExceeded:
print("Deadline exceeded. Retrying...")
retries += 1
time.sleep(1) # Wait for a moment before retrying
continue
class ClaudePlayer(LLMPlayer):
def __init__(self, model, sys_key, **model_kwargs):
super().__init__(model, **model_kwargs)
self.model_kwargs = model_kwargs
self.model_type = llms[model]['model_type']
self.sys_prompt = self.set_sys(model_kwargs[sys_key])
self.client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_KEY"])
def update(self, player_id='player1', **model_kwargs):
for k, v in model_kwargs.items():
if k in self.model_kwargs.keys():
self.model_kwargs[k] = v
if 'sys_' + player_id in k:
self.set_sys(v)
def set_sys(self, sys):
if type(sys) == dict:
sys = sys['prefix']
self.sys_prompt = sys
return sys
def decide(self, prompt, max_retries=10):
retries = 0
while retries < max_retries:
try:
res = self.client.messages.create(
model=self.model_name,
temperature=self.temperature,
max_tokens=1024,
system=self.sys_prompt,
messages=[
{"role": "user", "content": prompt}
]
)
return res.content[0].text
except Exception as e:
print("Exception. Retrying...")
retries += 1
time.sleep(1) # Wait for a moment before retrying
continue
class DeterministicProposalPlayer:
def __init__(self, **player_kwargs):
self.sys_prompt = ''
self.offer = player_kwargs['offer']
def update(self, **player_kwargs):
if 'offer' in player_kwargs.keys():
self.offer = player_kwargs['offer']
return
def set_sys(self, sys):
return
def decide(self, prompt):
# Ignore prompt
return "Offer: %d" % int(self.offer)
class EmptyPlayer:
def __init__(self):
self.sys_prompt = ''
def update(self, **player_kwargs):
pass
def set_sys(self, sys):
return
def decide(self, prompt):
# Ignore prompt
return 'Decision: accept'