-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfvar.py
353 lines (324 loc) · 16.5 KB
/
tfvar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import numpy as np
import tensorflow as tf
import keras as K
from keras.engine.topology import Layer as LYR
import keras.backend as KB
import utils as ARU
def get_conv_outsize(size, k, s, p, cover_all=False, d=1):
"kernel, step, stride,pad,cover, dilation"
dk = k + (k - 1) * (d - 1)
if cover_all:
return (size + p * 2 - dk + s - 1) // s + 1
else:
return (size + p * 2 - dk) // s + 1
#imgtf=tf.convert_to_tensor()
#tfa=tf.transpose(imgtf, [0,2,3,1])#NWHC hit
class TFvarLayer(K.layers.convolutional._Conv): #K.layers.convolutional._Conv):#layers.Layer):
"""
prototype of a variance layer/weighter variance,
the concept is similar to convolution but uses weighted variance instead of a simple multiplication
:KCD keep channel data, this is a way to not compress all the channel data, uses more mem but might be of use
:param num_c: number of cell in this layer
:filter size of the filter/kernel (int or container)
:stride size of the stride/step (int or container)
:padding type of padding to use, todo
"""
def __init__(self, num_c, filtr,stride=1, #num_routing=3,
sqrt=0,V=False,format='NHWC',sizz=0,
w_init='glorot_uniform',KCD=False,
b_init='zeros',bigB=False,pad=None,activation="relu",
**kwargs):
self.noutputs=num_c
self.window=filtr
self.stride=stride
self.sqrt=sqrt
self.KCD=KCD
assert (format=="NCHW")or(format=="NHWC")
self.format=format
self.KINIT=w_init
self.BINIT=b_init
self.sizz=sizz
self.pad=pad
self.shape=None
self.arrs=None
self.ashp=None
self.convshape=None
super(TFvarLayer, self).__init__(2,num_c,filtr,**kwargs)
#print('modified iimage tnsor',tfa.eval(),'modified iimage tnsor')
def tfwindow(self,arr,nc_to_nh=False,pad="VALID",stride=1):
"""
this functions split the data into array of the proper shape for computation, this is based on the chainer function im2col
https://docs.chainer.org/en/stable/reference/generated/chainer.functions.im2col.html
pad can be "SAME",will add 0s to get the same output shape as input
nc_to_nh: change from "NHWC" to "NCHW"
stride = stride for the 2 internal axis
"""
assert pad=="VALID" or pad=="SAME"
print(arr.shape,"inwind")
print("convshape",self.convshape)
if self.format=="NCHW":
temp=tf.extract_image_patches(arr, ksizes=(1,1,*self.window), strides=(1,1,stride,stride),rates=(1,1,1,1),padding=pad)
elif self.format=="NHWC":
temp=tf.extract_image_patches(arr, ksizes=(1,*self.window,1), strides=(1,stride,stride,1),rates=(1,1,1,1),padding=pad)
print(temp.shape,"outwind")
if nc_to_nh and self.format=='NCHW':
return(tf.transpose(tf.reshape(temp,(-1,*self.convshape,1,self.ch,*self.window)),perm=[0,1,2,3,6,4,5]))
else:
if self.format=="NCHW":
return(tf.reshape(temp,(-1,*self.convshape,1,self.ch,*self.window)))
elif self.format=="NHWC":
return(tf.reshape(temp,(-1,*self.convshape,self.ch,*self.window,1)))
def build(self, input_shape):
"""
create the weights and bias for the layer according to the keras docs
"""
print(input_shape)
#self.arrs=input_shape
if self.format=='NHWC':
self.W = self.add_weight(shape=(self.noutputs,self.window[0],self.window[1],input_shape[-1]),#[self.num_c,self.chnl,self.filter[0],self.filter[1]],
initializer=self.KINIT,name='W',trainable=True)
self.ashp=(self.noutputs,self.window[0],self.window[1],input_shape[-1])
elif self.format=='NCHW':
self.W = self.add_weight(shape=(self.noutputs,input_shape[1],self.window[0],self.window[1]),#[self.num_c,self.chnl,self.filter[0],self.filter[1]],
initializer=self.KINIT,name='W',trainable=True)
self.ashp=(self.noutputs,input_shape[1],self.window[0],self.window[1])
if self.KCD==1:
self.B=self.add_weight(shape=(self.noutputs,1),
initializer=self.BINIT,name='bias',trainable=True)
elif self.KCD==2:
self.B=self.add_weight(shape=(self.noutputs,self.ch),
initializer=self.BINIT,name='bias',trainable=True)
else:
self.B=self.add_weight(shape=(self.noutputs,),
initializer=self.BINIT,name='bias',trainable=True)#shape=(self.chnl,self.dms)
twv=self.W.get_shape().as_list()
if self.format=='NHWC':
#W=tf.transpose(W, [0,2,3,1])
self.sb=(1,1,self.W.shape[-1])
self.WV=twv[1:3]
self.ch=twv[-1]
self.xi=(-3,-2)
self.x2=(-1,-3,-2)
elif self.format=='NCHW':
self.sb=(self.W.shape[1],1,1)
self.WV=twv[-2:]
self.ch=twv[1]
self.xi=(-2,-1)
self.x2=(-2,-1,-3)
self.built = True
def call(self, array, training=None):
"""
this is where the magic happens
"""
if self.shape is None:
self.shape=array.shape.as_list()
print(self.shape,"shape")
if self.format=="NCHW":
self.convshape=ARU.convshape(self.shape[-2:], self.window)
elif self.format=="NHWC":
self.convshape=ARU.convshape(self.shape[1:-1], self.window)
reshaped=self.tfwindow(array)
if (self.arrs is None):
self.arrs=reshaped.shape.as_list()
print('arss',self.arrs)
mul=(reshaped*self.W)
size=tf.reduce_sum(self.W,axis=self.xi,keep_dims=True)#shape=(outputs, channel)
mean=tf.reduce_sum(mul,axis=self.xi,keep_dims=True)/tf.constant(self.WV[0]*self.WV[1],shape=self.sb,dtype=tf.float32)
i=(tf.square(mul-mean))/size
if self.KCD:
out=tf.reduce_sum(i,axis=self.xi)
else:
out=tf.reduce_sum(i,axis=self.x2)
if self.sqrt:
out=tf.sqrt(out)
if not(self.B is None):
try:
out=out+self.B
except Exception as e:
B=tf.reshape(self.B,(*self.B.shape,*[1 for _ in range(len(self.ashp)-len(self.B.shape)-1)]))
out=out+B
#print(out.shape,self.format,(self.arrs[0],self.arrs[1],self.arrs[2],self.ashp[0]))
print(out.shape,self.format,(self.arrs[1],self.arrs[2],self.ashp[0]))
if self.format=="NCHW":
if self.KCD:
return(tf.transpose(tf.reshape(out,(self.arrs[0],self.arrs[1],self.arrs[2],self.ashp[0]*self.arrs[-3])),(0,3,1,2)))
else:
assert out.shape[1:]==(self.arrs[1],self.arrs[2],self.ashp[0])
print(tf.transpose(out, (0,3,1,2)).shape,"outshapenchw")
return(tf.transpose(out, (0,3,1,2)))#tf.reshape(out,(self.arrs[0],self.ashp[0],self.arrs[1],self.arrs[2]))
else:
if self.KCD:
return(tf.reshape(out,(self.arrs[0],self.arrs[1],self.arrs[2],self.ashp[0]*self.arrs[-3])))
else:
assert out.shape[1:]==(self.arrs[1],self.arrs[2],self.ashp[0])
return(out)
def compute_output_shape(self, input_shape):
if self.format=="NCHW":
#self.hout=get_conv_outsize(input_shape[-2], self.window[-2], s=self.stride, p=self.pad, )
#self.wout=get_conv_outsize(input_shape[-1], self.window[-1], s=self.stride, p=self.pad, )
if self.KCD:
return((input_shape[0],self.noutputs*input_shape[1],*self.convshape))
else:
return((input_shape[0],self.noutputs,*self.convshape))
elif self.format=="NHWC":
#self.hout=get_conv_outsize(input_shape[-3], self.window[-2], s=self.stride, p=self.pad, )
#self.wout=get_conv_outsize(input_shape[-2], self.window[-1], s=self.stride, p=self.pad, )
if self.KCD:
return((input_shape[0],*self.convshape,self.noutputs*input_shape[-1]))
else:
return((input_shape[0],*self.convshape,self.noutputs))
#return tuple([None, self.num_c,self.chnl, self.dim_vector,self.num_c])
class KvarLayer(K.engine.topology.Layer): #K.layers.convolutional._Conv):#layers.Layer):
"""
prototype of a variance layer/weighter variance,
the concept is similar to convolution but uses weighted variance instead of a simple multiplication
:KCD keep channel data, this is a way to not compress all the channel data, uses more mem but might be of use
:param num_c: number of cell in this layer
:filter size of the filter/kernel (int or container)
:stride size of the stride/step (int or container)
:padding type of padding to use, todo
"""
def __init__(self, num_c, filtr,stride=1, sqrt=0,V=False,format='NHWC',sizz=0,
w_init='glorot_uniform',KCD=False,b_init='zeros',bigB=False,pad=None,activation="relu",
**kwargs):
self.noutputs=num_c
self.window=filtr
self.stride=stride
self.sqrt=sqrt
self.KCD=KCD
assert (format=="NCHW")or(format=="NHWC")
self.format=format
self.KINIT=w_init
self.BINIT=b_init
self.sizz=sizz
self.pad=pad
self.shape=None
self.arrs=None
self.ashp=None
self.convshape=None
super(TFvarLayer, self).__init__(2,num_c,filtr,**kwargs)
#print('modified iimage tnsor',tfa.eval(),'modified iimage tnsor')
def tfwindow(self,arr,nc_to_nh=False,pad="VALID",stride=1):
"""
this functions split the data into array of the proper shape for computation, this is based on the chainer function im2col
https://docs.chainer.org/en/stable/reference/generated/chainer.functions.im2col.html
pad can be "SAME",will add 0s to get the same output shape as input
nc_to_nh: change from "NHWC" to "NCHW"
stride = stride for the 2 internal axis
"""
assert pad=="VALID" or pad=="SAME"
print(arr.shape,"inwind")
print("convshape",self.convshape)
if self.format=="NCHW":
temp=tf.extract_image_patches(arr, ksizes=(1,1,*self.window), strides=(1,1,stride,stride),rates=(1,1,1,1),padding=pad)
elif self.format=="NHWC":
temp=tf.extract_image_patches(arr, ksizes=(1,*self.window,1), strides=(1,stride,stride,1),rates=(1,1,1,1),padding=pad)
print(temp.shape,"outwind")
if nc_to_nh and self.format=='NCHW':
return(tf.transpose(tf.reshape(temp,(-1,*self.convshape,1,self.ch,*self.window)),perm=[0,1,2,3,6,4,5]))
else:
if self.format=="NCHW":
return(tf.reshape(temp,(-1,*self.convshape,1,self.ch,*self.window)))
elif self.format=="NHWC":
return(tf.reshape(temp,(-1,*self.convshape,self.ch,*self.window,1)))
def build(self, input_shape):
"""
create the weights and bias for the layer according to the keras docs
"""
print(input_shape)
super(KvarLayer, self).build(input_shape)
#self.arrs=input_shape
if self.format=='NHWC':
self.W = self.add_weight(shape=(self.noutputs,self.window[0],self.window[1],input_shape[-1]),#[self.num_c,self.chnl,self.filter[0],self.filter[1]],
initializer=self.KINIT,name='W',trainable=True)
self.ashp=(self.noutputs,self.window[0],self.window[1],input_shape[-1])
elif self.format=='NCHW':
self.W = self.add_weight(shape=(self.noutputs,input_shape[1],self.window[0],self.window[1]),#[self.num_c,self.chnl,self.filter[0],self.filter[1]],
initializer=self.KINIT,name='W',trainable=True)
self.ashp=(self.noutputs,input_shape[1],self.window[0],self.window[1])
if self.KCD==1:
self.B=self.add_weight(shape=(self.noutputs,1),
initializer=self.BINIT,name='bias',trainable=True)
elif self.KCD==2:
self.B=self.add_weight(shape=(self.noutputs,self.ch),
initializer=self.BINIT,name='bias',trainable=True)
else:
self.B=self.add_weight(shape=(self.noutputs,),
initializer=self.BINIT,name='bias',trainable=True)#shape=(self.chnl,self.dms)
twv=self.W.get_shape().as_list()
if self.format=='NHWC':
#W=tf.transpose(W, [0,2,3,1])
self.sb=(1,1,self.W.shape[-1])
self.WV=twv[1:3]
self.ch=twv[-1]
self.xi=(-3,-2)
self.x2=(-1,-3,-2)
elif self.format=='NCHW':
self.sb=(self.W.shape[1],1,1)
self.WV=twv[-2:]
self.ch=twv[1]
self.xi=(-2,-1)
self.x2=(-2,-1,-3)
self.built = True
def call(self, array, training=None):
"""
this is where the magic happens
"""
if self.shape is None:
self.shape=array.shape.as_list()
print(self.shape,"shape")
if self.format=="NCHW":
self.convshape=ARU.convshape(self.shape[-2:], self.window)
elif self.format=="NHWC":
self.convshape=ARU.convshape(self.shape[1:-1], self.window)
reshaped=self.tfwindow(array)
if (self.arrs is None):
self.arrs=reshaped.shape.as_list()
print('arss',self.arrs)
mul=(reshaped*self.W)
size=tf.reduce_sum(self.W,axis=self.xi,keep_dims=True)#shape=(outputs, channel)
mean=tf.reduce_sum(mul,axis=self.xi,keep_dims=True)/tf.constant(self.WV[0]*self.WV[1],shape=self.sb,dtype=tf.float32)
i=(tf.square(mul-mean))/size
if self.KCD:
out=tf.reduce_sum(i,axis=self.xi)
else:
out=tf.reduce_sum(i,axis=self.x2)
if self.sqrt:
out=tf.sqrt(out)
if not(self.B is None):
try:
out=out+self.B
except Exception as e:
B=tf.reshape(self.B,(*self.B.shape,*[1 for _ in range(len(self.ashp)-len(self.B.shape)-1)]))
out=out+B
#print(out.shape,self.format,(self.arrs[0],self.arrs[1],self.arrs[2],self.ashp[0]))
print(out.shape,self.format,(self.arrs[1],self.arrs[2],self.ashp[0]))
if self.format=="NCHW":
if self.KCD:
return(tf.transpose(tf.reshape(out,(self.arrs[0],self.arrs[1],self.arrs[2],self.ashp[0]*self.arrs[-3])),(0,3,1,2)))
else:
assert out.shape[1:]==(self.arrs[1],self.arrs[2],self.ashp[0])
print(tf.transpose(out, (0,3,1,2)).shape,"outshapenchw")
return(tf.transpose(out, (0,3,1,2)))#tf.reshape(out,(self.arrs[0],self.ashp[0],self.arrs[1],self.arrs[2]))
else:
if self.KCD:
return(tf.reshape(out,(self.arrs[0],self.arrs[1],self.arrs[2],self.ashp[0]*self.arrs[-3])))
else:
assert out.shape[1:]==(self.arrs[1],self.arrs[2],self.ashp[0])
return(out)
def compute_output_shape(self, input_shape):
if self.format=="NCHW":
#self.hout=get_conv_outsize(input_shape[-2], self.window[-2], s=self.stride, p=self.pad, )
#self.wout=get_conv_outsize(input_shape[-1], self.window[-1], s=self.stride, p=self.pad, )
if self.KCD:
return((input_shape[0],self.noutputs*input_shape[1],*self.convshape))
else:
return((input_shape[0],self.noutputs,*self.convshape))
elif self.format=="NHWC":
#self.hout=get_conv_outsize(input_shape[-3], self.window[-2], s=self.stride, p=self.pad, )
#self.wout=get_conv_outsize(input_shape[-2], self.window[-1], s=self.stride, p=self.pad, )
if self.KCD:
return((input_shape[0],*self.convshape,self.noutputs*input_shape[-1]))
else:
return((input_shape[0],*self.convshape,self.noutputs))
#return tuple([None, self.num_c,self.chnl, self.dim_vector,self.num_c])