-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_cvar.py
285 lines (256 loc) · 10.4 KB
/
torch_cvar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
from torch import nn
from torch.nn import functional as fnn
from torch.nn import init as finit
from torch.optim import SGD
from PIL import Image
from os.path import exists
from torchvision import transforms as imt
import numpy as np
def get_conv_outsize(size, k, s, p, cover_all=False, d=1):
"kernel, step, stride,pad,cover, dilation"
dk = k + (k - 1) * (d - 1)
if cover_all:
return (size + p * 2 - dk + s - 1) // s + 1
else:
return (size + p * 2 - dk) // s + 1
def convshape(x, k, s=1, p=0, d=1):
# taken from chaine to get the outputdim given thee params of that dim
"""
x=original size
k=kernel size
s= stride lenght
p = pad size
d= dilation
"""
if len(x) == 1:
size = (x + 2 * p - d * (k - 1) - 1) // s + 1
else:
size = ((x[0] + 2 * p - d * (k[0] - 1) - 1) // s + 1, (x[1] + 2 * p - d * (k[1] - 1) - 1) // s + 1)
return (size)
# imgtf=tf.convert_to_tensor()
# tfa=tf.transpose(imgtf, [0,2,3,1])#NWHC hit
class TvarLayer(nn.Module): # K.layers.convolutional._Conv):#layers.Layer):
"""
prototype of a variance layer/weighter variance,
the concept is similar to convolution but uses weighted variance instead of a simple multiplication
:KCD keep channel data, this is a way to not compress all the channel data, uses more mem but might be of use
:param num_c: number of cell in this layer
:filter size of the filter/kernel (int or container)
:stride size of the stride/step (int or container)
:padding type of padding to use, todo
"""
def __init__(self, num_c, filtr,inputshape, stride=1, # num_routing=3,
sqrt=0, V=False, format='NCHW', sizz=0, independant_channels=True, squash_ch=False,
KCD=False, dilation=1, bigB=False, pad=0, activation="relu",
**kwargs):
super(TvarLayer, self).__init__()
self.noutputs = num_c
self.window = filtr
self.dilat = dilation
self.stride = stride
self.SCH = squash_ch
self.sqrt = sqrt
self.KCD = KCD
assert (format == "NCHW") # or (format == "NHWC")
self.format = format
self.IDC = independant_channels
self.sizz = sizz
self.pad = pad
self.W,self.B=None,None
self.shape = None
self.arrs = None
self.ashp = None
self.convshape = None
self.params=list()
self.L = False
self.build(inputshape)
# print('modified iimage tnsor',tfa.eval(),'modified iimage tnsor')
def tfwindow(self, arr, nc_to_nh=False, pad="VALID", stride=1):
"""
this functions split the data into array of the proper shape for computation, this is based on the chainer function im2col
https://docs.chainer.org/en/stable/reference/generated/chainer.functions.im2col.html
pad can be "SAME",will add 0s to get the same output shape as input
nc_to_nh: change from "NHWC" to "NCHW"
stride = stride for the 2 internal axis
"""
assert pad == "VALID" or pad == "SAME"
print(arr.shape, "inwind")
if self.format == "NCHW":
dsize = (1, 1, *self.window)
elif self.format == "NHWC":
dsize = (1, *self.window, 1)
temp = fnn.unfold(arr, self.window, dilation=self.dilat, padding=self.pad, stride=self.stride)
# input(temp.shape)
# if nc_to_nh and self.format == 'NCHW':
# return (tf.transpose(tf.reshape(temp, (-1, *self.convshape, 1, self.ch, *self.window)),perm=[0, 1, 2, 3, 6, 4, 5]))
if self.IDC:
temp = torch.reshape(temp, [-1, self.ch, self.window[0] * self.window[1], temp.shape[-1]])
temp = torch.unsqueeze(temp, 1)
if not self.L:
self.L = temp.shape[-1]
return (temp)
def build(self, input_shape, dtype=torch.double):
"""
create the weights and bias for the layer according to the keras docs
"""
self.batchsize = input_shape[0]
# self.arrs=input_shape
if self.format == 'NHWC':
self.ch = input_shape[-1]
if self.IDC:
if self.SCH:
w = torch.empty(self.noutputs, self.window[0] * self.window[1] * self.ch, 1, dtype=dtype)
else:
w = torch.empty(self.noutputs, self.window[0] * self.window[1], self.ch, 1, dtype=dtype)
else:
w = torch.empty(self.noutputs, self.window[0] * self.window[1], 1, dtype=dtype)
finit.kaiming_normal_(w)
self.W = nn.Parameter(w)
self.ashp = (self.noutputs, self.window[0] * self.window[1], input_shape[-1])
elif self.format == 'NCHW':
self.ch = input_shape[1]
if self.IDC:
if self.SCH:
w = torch.empty(self.noutputs, self.ch * self.window[0] * self.window[1], 1, dtype=dtype)
else:
w = torch.empty(self.noutputs, self.ch, self.window[0] * self.window[1], 1, dtype=dtype)
else:
w = torch.empty(self.noutputs, self.window[0] * self.window[1], 1, dtype=dtype)
finit.kaiming_normal_(w)
self.W = nn.Parameter(w)
self.ashp = (self.noutputs, input_shape[1], self.window[0] * self.window[1],)
self.params.append(self.W)
if self.SCH:
b = torch.empty(self.noutputs * self.ch, 1, 1, dtype=dtype)
elif self.IDC:
b = torch.empty(self.noutputs, self.ch, 1, 1, dtype=dtype)
else:
b = torch.empty(self.noutputs, 1, 1, dtype=dtype)
finit.kaiming_normal_(b)
self.B = nn.Parameter(b)
self.params.append(self.B)
self.convshape = convshape(input_shape[-2:], self.window, s=self.stride, p=self.pad, d=self.dilat)
self.prodconv = np.product(self.convshape)
self.register_parameter("W", self.W)
self.register_parameter("B", self.B)
twv = list(self.W.shape)
if self.format == 'NHWC':
# W=tf.transpose(W, [0,2,3,1])
self.sb = (1, 1, self.W.shape[-1])
self.WV = twv[1:3]
self.ouch = twv[-1]
self.xi = (-3, -2)
self.x2 = (-1, -3, -2)
self.x3 = (-1, -3)
elif self.format == 'NCHW':
self.sb = (self.W.shape[1], 1, 1)
self.WV = twv[-2:]
self.ouch = twv[1]
self.xi = -2
self.x2 = (-3, -2,)
self.x3 = (-2, -1)
self.built = True
def forward(self, array, training=None):
"""
this is where the magic happens
"""
#if not (self.built):
# self.build(array.shape, dtype=array.dtype)
print('convshape', self.convshape)
reshaped = self.tfwindow(array)
if (self.arrs is None):
self.arrs = list(reshaped.shape)
print('arss', self.arrs)
print(self.xi, self.W.shape)
mul = (reshaped * self.W)
print(mul.shape, 'mul')
size = torch.sum(self.W, self.xi, keepdim=True) # keepdims=True) # shape=(outputs, channel)
print(size.shape, 'size')
mean = torch.mean(mul, self.xi, keepdim=True)
print(mean.shape, 'mean')
i = (torch.pow((mul - mean), 2)) / size
print(i.shape, 'premsum i', self.B.shape)
if not (self.B is None):
i = i + self.B
# out = torch.reshape(i, (*i.shape[:2], -1))
out = torch.reshape(i, (self.batchsize, -1, self.prodconv,))
# i=torch.sum(i,2)
print(i.shape, 'i')
# out = torch.sum(out, self.xi ir self.KCD else self.x2 ,keepdim=True)
print(out.shape, 'summed')
if self.sqrt:
out = torch.sqrt(out)
print('convshape', self.convshape, out.shape)
folder = fnn.fold(out, output_size=self.convshape, kernel_size=self.window, padding=[1, 1])
print(folder.shape, 'folded')
# TODO
# print(out.shape,self.format,(self.arrs[0],self.arrs[1],self.arrs[2],self.ashp[0]))
print(out.shape, self.format, (self.arrs[1], self.arrs[2], self.ashp[0]))
return (out)
'''
if self.format == "NCHW":
if self.KCD:
return (tf.transpose(
tf.reshape(out, (self.arrs[0], self.arrs[1], self.arrs[2], self.ashp[0] * self.arrs[-3])),
(0, 3, 1, 2)))
else:
assert out.shape[1:] == (self.arrs[1], self.arrs[2], self.ashp[0])
print(tf.transpose(out, (0, 3, 1, 2)).shape, "outshapenchw")
return (tf.transpose(out, (
0, 3, 1, 2))) # tf.reshape(out,(self.arrs[0],self.ashp[0],self.arrs[1],self.arrs[2]))
else:
if self.KCD:
return (tf.reshape(out, (self.arrs[0], self.arrs[1], self.arrs[2], self.ashp[0] * self.arrs[-3])))
else:
assert out.shape[1:] == (self.arrs[1], self.arrs[2], self.ashp[0])
return (out)'''
# return tuple([None, self.num_c,self.chnl, self.dim_vector,self.num_c])
if __name__ == '__main__':
display = False
use_img = False
img_path = r"C:\Users\ROYA2\Documents\Capture.PNG"
if exists(img_path) and use_img:
image = Image.open(img_path)
if display:
image.save('input_img.png')
image.show()
img = imt.ToTensor()(image)
input(img.shape)
samp_data = torch.unsqueeze(img, 0)
else:
img = np.random.rand(3, 5, 45, 45)
samp_data = torch.from_numpy(img)
if display:
image = imt.ToPILImage()(img)
image.save('input_img.png')
image.show()
layer = TvarLayer(14, [3, 3],samp_data.shape)
out = layer.forward(samp_data)
# input(out.shape)
if display:
image = imt.ToPILImage()(out[0])
image.save('output_img.png')
image.show()
print(out, out.shape)
module = TvarLayer(8, [3,3],samp_data.shape)
net = module.to('cpu')
loss = nn.SmoothL1Loss()
optim = SGD(net.parameters(), lr=0.2,)
OGW = list()
for param in net.parameters():
OGW.append(param)
output = net(samp_data)
corrections = torch.randn(output.shape,dtype=torch.double)
net.zero_grad()
outloss = loss(output, corrections)
outloss.backward()
optim.step()
OPW = list()
for param in net.parameters():
OPW.append(param)
diff = list()
for i, v in enumerate(OPW):
diff.append(v - OGW[i])
print(OPW)
print(diff)