forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_cuda.py
4258 lines (3571 loc) · 184 KB
/
test_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: cuda"]
from itertools import repeat, chain, product
from typing import NamedTuple
import collections
import contextlib
import ctypes
import gc
import io
import pickle
import queue
import sys
import tempfile
import threading
import unittest
import torch
import torch.cuda
import torch.cuda.comm as comm
from torch.nn.parallel import scatter_gather
from torch.utils.checkpoint import checkpoint_sequential
from torch._six import inf, nan
from torch.testing._internal.common_methods_invocations import tri_tests_args, tri_large_tests_args, \
_compare_trilu_indices, _compare_large_trilu_indices
from torch.testing._internal.common_utils import TestCase, freeze_rng_state, run_tests, \
NO_MULTIPROCESSING_SPAWN, skipIfRocm, load_tests, IS_REMOTE_GPU, IS_SANDCASTLE, IS_WINDOWS, \
slowTest, skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, TEST_WITH_ROCM, TEST_NUMPY, \
get_cycles_per_ms
from torch.testing._internal.autocast_test_lists import AutocastTestLists
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
# We cannot import TEST_CUDA and TEST_MULTIGPU from torch.testing._internal.common_cuda here,
# because if we do that, the TEST_CUDNN line from torch.testing._internal.common_cuda will be executed
# multiple times as well during the execution of this test suite, and it will
# cause CUDA OOM error on Windows.
TEST_CUDA = torch.cuda.is_available()
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2
if not TEST_CUDA:
print('CUDA not available, skipping tests', file=sys.stderr)
TestCase = object # noqa: F811
TEST_LARGE_TENSOR = TEST_CUDA
TEST_MEDIUM_TENSOR = TEST_CUDA
TEST_CUDNN = TEST_CUDA
TEST_BF16 = False
if TEST_CUDA:
torch.ones(1).cuda() # initialize cuda context
TEST_CUDNN = TEST_CUDA and (TEST_WITH_ROCM or
torch.backends.cudnn.is_acceptable(torch.tensor(1., device=torch.device('cuda:0'))))
TEST_LARGE_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 12e9
TEST_MEDIUM_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 6e9
TEST_BF16 = torch.cuda.is_bf16_supported()
def make_sparse_tensor(t, n, *sizes):
assert t.is_sparse
tensor = t()
i = tensor._indices()
i = i.new(len(sizes), n).copy_(
torch.cat([torch.LongTensor(1, n).random_(s) for s in sizes], 0))
v = tensor._values()
v = v.new(n).copy_(torch.randn(n))
return t(i, v, torch.Size(sizes)).coalesce()
_cycles_per_ms = None
class TestCuda(TestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
FIFTY_MIL_CYCLES = 50000000
def setUp(self):
super(TestCuda, self).setUp()
self.autocast_lists = AutocastTestLists(torch.device('cuda:0'))
def tearDown(self):
del self.autocast_lists
super(TestCuda, self).tearDown()
def _check_memory_stat_consistency(self):
snapshot = torch.cuda.memory_snapshot()
expected_each_device = collections.defaultdict(lambda: collections.defaultdict(int))
for segment in snapshot:
expected = expected_each_device[segment["device"]]
pool_str = segment["segment_type"] + "_pool"
expected["segment.all.current"] += 1
expected["segment." + pool_str + ".current"] += 1
expected["allocated_bytes.all.current"] += segment["allocated_size"]
expected["allocated_bytes." + pool_str + ".current"] += segment["allocated_size"]
expected["reserved_bytes.all.current"] += segment["total_size"]
expected["reserved_bytes." + pool_str + ".current"] += segment["total_size"]
expected["active_bytes.all.current"] += segment["active_size"]
expected["active_bytes." + pool_str + ".current"] += segment["active_size"]
is_split = len(segment["blocks"]) > 1
for block in segment["blocks"]:
if block["state"] == "active_allocated":
expected["allocation.all.current"] += 1
expected["allocation." + pool_str + ".current"] += 1
if block["state"].startswith("active_"):
expected["active.all.current"] += 1
expected["active." + pool_str + ".current"] += 1
if block["state"] == "inactive" and is_split:
expected["inactive_split.all.current"] += 1
expected["inactive_split." + pool_str + ".current"] += 1
expected["inactive_split_bytes.all.current"] += block["size"]
expected["inactive_split_bytes." + pool_str + ".current"] += block["size"]
for device, expected in expected_each_device.items():
stats = torch.cuda.memory_stats(device)
for k, v in expected.items():
self.assertEqual(v, stats[k])
@staticmethod
def _test_memory_stats_generator(self, device=None, N=35):
if device is None:
device = torch.cuda.current_device()
m0 = torch.cuda.memory_allocated(device)
last_m_arr = [torch.cuda.memory_allocated(device)]
max_m_arr = [torch.cuda.max_memory_allocated(device)]
last_r_arr = [torch.cuda.memory_reserved(device)]
max_r_arr = [torch.cuda.max_memory_reserved(device)]
def alloc(*size):
with torch.cuda.device(device):
# NOTE: do **not** use methods that can have additional
# memory overhead, e.g., inplace random sampling methods.
# they can leave some memory occupied even after being
# deallocated, e.g., initialized RNG state, causing some
# memory checks below to fail.
return torch.cuda.FloatTensor(*size)
def assert_change(comp=1, empty_cache=False, reset_peak=False):
# comp > 0: increased
# comp = 0: equal
# comp < 0: decreased
new_m = torch.cuda.memory_allocated(device)
new_max_m = torch.cuda.max_memory_allocated(device)
if comp > 0:
self.assertGreater(new_m, last_m_arr[0])
elif comp < 0:
self.assertLess(new_m, last_m_arr[0])
else:
self.assertEqual(new_m, last_m_arr[0])
self.assertLessEqual(new_m, new_max_m)
self.assertGreaterEqual(new_max_m, max_m_arr[0])
last_m_arr[0] = new_m
max_m_arr[0] = new_max_m
new_r = torch.cuda.memory_reserved(device)
new_max_r = torch.cuda.max_memory_reserved(device)
# emptying cache may happen (due to allocation or empty_cache), so
# we can't assert new_c >= last_c
self.assertLessEqual(new_r, new_max_r)
self.assertGreaterEqual(new_max_r, max_r_arr[0])
last_r_arr[0] = new_r
max_r_arr[0] = new_max_r
if empty_cache:
torch.cuda.empty_cache()
new_r = torch.cuda.memory_reserved(device)
new_max_r = torch.cuda.max_memory_reserved(device)
self.assertLessEqual(new_r, last_r_arr[0])
self.assertLessEqual(new_r, new_max_r)
self.assertEqual(new_max_r, max_r_arr[0])
last_r_arr[0] = new_r
if reset_peak:
torch.cuda.reset_peak_memory_stats(device)
self.assertEqual(torch.cuda.memory_allocated(device), last_m_arr[0])
self.assertEqual(torch.cuda.max_memory_allocated(device), last_m_arr[0])
max_m_arr[0] = last_m_arr[0]
self.assertEqual(torch.cuda.memory_reserved(device), last_r_arr[0])
self.assertEqual(torch.cuda.max_memory_reserved(device), last_r_arr[0])
max_r_arr[0] = last_r_arr[0]
assert_change(0)
assert_change(0, reset_peak=True)
assert_change(0, empty_cache=True)
assert_change(0, reset_peak=True)
assert_change(0)
yield
tensors1 = [alloc(1), alloc(10, 20), alloc(200, 300, 2000)]
m1 = torch.cuda.memory_allocated(device)
assert_change(1)
yield
tensors2 = []
for i in range(1, int(N / 2) + 1):
# small ones
tensors2.append(alloc(i, i * 4))
assert_change(1)
yield
for i in range(5, int(N / 2) + 5):
# large ones
tensors2.append(alloc(i, i * 7, i * 9, i * 11))
assert_change(1, reset_peak=(i % 2 == 0))
yield
tensors2.append(alloc(0, 0, 0))
assert_change(0)
yield
permute = []
for i in torch.randperm(len(tensors2)):
permute.append(tensors2[i])
assert_change(0)
yield
del tensors2
assert_change(0)
yield
tensors2 = permute
assert_change(0)
yield
del permute
assert_change(0, reset_peak=True)
yield
for i in range(int(N / 2)):
x = tensors2[i].numel()
del tensors2[i]
assert_change(-x) # in case that tensors2[i] is empty
yield
for i in range(2, int(2 * N / 3) + 2):
tensors2.append(alloc(i, i * 3, i * 8))
assert_change(1)
yield
del tensors2
assert_change(-1, reset_peak=True)
assert_change(0)
self.assertEqual(torch.cuda.memory_allocated(device), m1)
yield True
del tensors1
assert_change(-1, reset_peak=True)
self.assertEqual(torch.cuda.memory_allocated(device), m0)
# test empty_cache and reset_peak
assert_change(0, empty_cache=True)
assert_change(0, reset_peak=True)
def test_cudart_register(self):
t = torch.ones(20)
self.assertFalse(t.is_pinned())
cudart = torch.cuda.cudart()
r = cudart.cudaHostRegister(t.data_ptr(), t.numel() * t.element_size(), 0)
self.assertEqual(r, 0)
self.assertTrue(t.is_pinned())
r = cudart.cudaHostUnregister(t.data_ptr())
self.assertEqual(r, 0)
self.assertFalse(t.is_pinned())
def test_memory_stats(self):
gc.collect()
torch.cuda.empty_cache()
for _ in self._test_memory_stats_generator(self):
self._check_memory_stat_consistency()
def test_memory_allocation(self):
gc.collect()
torch.cuda.empty_cache()
mem = None
size = 1
prev = 0
try:
prev = torch.cuda.memory_allocated()
mem = torch.cuda.caching_allocator_alloc(size)
self.assertGreater(torch.cuda.memory_allocated(), prev)
finally:
if mem is not None:
torch.cuda.caching_allocator_delete(mem)
self.assertEqual(torch.cuda.memory_allocated(), prev)
def test_check_error(self):
# Assert this call doesn't raise.
torch.cuda.check_error(0)
with self.assertRaisesRegex(torch.cuda.CudaError,
"out of memory|hipErrorOutOfMemory"):
torch.cuda.check_error(2)
def test_cuda_get_device_name(self):
# Testing the behaviour with None as an argument
current_device = torch.cuda.current_device()
current_device_name = torch.cuda.get_device_name(current_device)
device_name_None = torch.cuda.get_device_name(None)
self.assertEqual(current_device_name, device_name_None)
# Testing the behaviour for No argument
device_name_no_argument = torch.cuda.get_device_name()
self.assertEqual(current_device_name, device_name_no_argument)
def test_cuda_get_device_capability(self):
# Testing the behaviour with None as an argument
current_device = torch.cuda.current_device()
current_device_capability = torch.cuda.get_device_capability(current_device)
device_capability_None = torch.cuda.get_device_capability(None)
self.assertEqual(current_device_capability, device_capability_None)
# Testing the behaviour for No argument
device_capability_no_argument = torch.cuda.get_device_capability()
self.assertEqual(current_device_capability, device_capability_no_argument)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_memory_stats_multigpu(self):
# advance a generator with a end flag
def advance(gen, end):
if not end:
try:
next(gen)
except StopIteration:
end = True
return end
# interlace
torch.cuda.empty_cache()
gen0 = self._test_memory_stats_generator(self, device='cuda:0', N=35)
gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35)
end0 = end1 = False
while not (end0 and end1):
end0 = advance(gen0, end0)
end1 = advance(gen1, end1)
# semi-random order
torch.cuda.empty_cache()
gen0 = self._test_memory_stats_generator(self, device=0, N=35)
gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35)
end0 = end1 = False
while not (end0 and end1):
end0 = advance(gen0, end0)
if not end0:
gen1_max_times = torch.LongTensor(1).random_(0, 3)[0]
else:
gen1_max_times = inf
t = 0
while t < gen1_max_times and not end1:
end1 = advance(gen1, end1)
t += 1
def test_out_of_memory(self):
tensor = torch.zeros(1024, device='cuda')
with self.assertRaisesRegex(RuntimeError, "Tried to allocate 800000000.00 GiB"):
torch.empty(1024 * 1024 * 1024 * 800000000, dtype=torch.int8, device='cuda')
with self.assertRaisesRegex(RuntimeError, "Tried to allocate more than 1EB memory"):
torch.empty(1024 * 1024 * 1024 * 8000000000, dtype=torch.int8, device='cuda')
# ensure out of memory error doesn't disturb subsequent kernel
tensor.fill_(1)
self.assertTrue((tensor == 1).all())
def test_set_per_process_memory_fraction(self):
# test invalid fraction value.
with self.assertRaisesRegex(TypeError, "Invalid type"):
torch.cuda.set_per_process_memory_fraction(int(1))
with self.assertRaisesRegex(ValueError, "Invalid fraction value"):
torch.cuda.set_per_process_memory_fraction(-0.1)
with self.assertRaisesRegex(ValueError, "Invalid fraction value"):
torch.cuda.set_per_process_memory_fraction(2.0)
tensor = torch.zeros(1024, device='cuda')
torch.cuda.empty_cache()
total_memory = torch.cuda.get_device_properties(0).total_memory
torch.cuda.set_per_process_memory_fraction(0.5, 0)
# test 0.499 allocation is ok.
application = int(total_memory * 0.499) - torch.cuda.max_memory_reserved()
tmp_tensor = torch.empty(application, dtype=torch.int8, device='cuda')
del tmp_tensor
torch.cuda.empty_cache()
application = int(total_memory * 0.5)
# it will get OOM when try to allocate more than half memory.
with self.assertRaisesRegex(RuntimeError, "out of memory"):
torch.empty(application, dtype=torch.int8, device='cuda')
# ensure out of memory error doesn't disturb subsequent kernel
tensor.fill_(1)
self.assertTrue((tensor == 1).all())
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_autogpu(self):
x = torch.randn(5, 5).cuda()
y = torch.randn(5, 5).cuda()
self.assertEqual(x.get_device(), 0)
self.assertEqual(x.get_device(), 0)
with torch.cuda.device(1):
z = torch.randn(5, 5).cuda()
self.assertEqual(z.get_device(), 1)
q = x.add(y)
self.assertEqual(q.get_device(), 0)
w = torch.randn(5, 5).cuda()
self.assertEqual(w.get_device(), 1)
self.assertEqual(y.cuda().get_device(), 1)
z = z.cuda()
self.assertEqual(z.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_new(self):
x = torch.randn(3, 3).cuda()
self.assertEqual(x.new([0, 1, 2]).get_device(), 0)
self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1)
with torch.cuda.device(1):
self.assertEqual(x.new([0, 1, 2]).get_device(), 0)
self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_copy_device(self):
x = torch.randn(5, 5).cuda()
with torch.cuda.device(1):
y = x.cuda()
self.assertEqual(y.get_device(), 1)
self.assertIs(y.cuda(), y)
z = y.cuda(0)
self.assertEqual(z.get_device(), 0)
self.assertIs(z.cuda(0), z)
x = torch.randn(5, 5)
with torch.cuda.device(1):
y = x.cuda()
self.assertEqual(y.get_device(), 1)
self.assertIs(y.cuda(), y)
z = y.cuda(0)
self.assertEqual(z.get_device(), 0)
self.assertIs(z.cuda(0), z)
def _test_copy_sync_current_stream(self, x, y):
x_plus_one = x + 1
s0 = torch.cuda.Stream(device=x.device)
s1 = torch.cuda.Stream(device=y.device)
s2 = torch.cuda.Stream(device=x.device)
s3 = torch.cuda.Stream(device=y.device)
# same dst stream different src streams
with torch.cuda.stream(s0):
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
with torch.cuda.stream(s1):
y.copy_(x_plus_one)
with torch.cuda.stream(s2), torch.cuda.stream(s1):
y.copy_(x)
s1.synchronize()
# The copy() is synchronized on the current streams of both src and dst.
# In the above test, the _sleep() op on s0 will not block the copy() on
# s2, but both copies are synchronized on s1 in the dst device. Hence,
# x is copied to y after x_plus_one is copied to y. If x and y are on
# the same device, both copy() ops are synchronized on s1.
self.assertEqual(y, x)
# same src stream different dst streams
with torch.cuda.stream(s1):
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
with torch.cuda.stream(s0):
y.copy_(x_plus_one)
with torch.cuda.stream(s3), torch.cuda.stream(s0):
y.copy_(x)
s0.synchronize()
# Similarly, both copy() ops are synchronized on s0.
self.assertEqual(y, x)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_copy_streams(self):
d0 = torch.device('cuda:0')
x0 = torch.zeros(5, 5, device=d0)
d1 = torch.device('cuda:1')
x1 = torch.zeros(5, 5, device=d1)
self._test_copy_sync_current_stream(x0, x1)
x2 = torch.zeros(5, 5, device=d0)
self._test_copy_sync_current_stream(x0, x2)
def test_copy_non_blocking(self):
def _test_copy_non_blocking(a, b):
event = torch.cuda.Event()
a.copy_(b, non_blocking=True)
event.record()
event.synchronize()
self.assertEqual(a, b)
# 10MB copies
x = torch.ones(10000000, dtype=torch.uint8).cuda()
y = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
_test_copy_non_blocking(x, y)
x = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
y = torch.ones(10000000, dtype=torch.uint8).cuda()
_test_copy_non_blocking(x, y)
# Test the case where the pinned data_ptr is not equal to the storage data_ptr.
x_base = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
x = x_base[1:]
self.assertTrue(x.is_pinned())
self.assertTrue(x_base.is_pinned())
self.assertNotEqual(x_base.data_ptr(), x.data_ptr())
self.assertEqual(x_base.storage().data_ptr(), x.storage().data_ptr())
y = torch.ones(10000000 - 1, dtype=torch.uint8).cuda()
_test_copy_non_blocking(x, y)
def test_to_non_blocking(self):
stream = torch.cuda.current_stream()
def _test_to_non_blocking(a, non_blocking, dst):
torch.cuda.synchronize()
# Pushes an 0.1 second spin to stream so if the copy is non blocking,
# stream will almost surely be active when we query().
torch.cuda._sleep(int(100 * get_cycles_per_ms()))
b = a.to(device=dst, non_blocking=non_blocking)
self.assertEqual(stream.query(), not non_blocking)
stream.synchronize()
self.assertEqual(a, b)
self.assertTrue(b.is_pinned() == (non_blocking and dst == "cpu"))
for dst, try_non_blocking in product(("cuda", "cpu"), (True, False)):
# Creates source on the opposite device from destination.
src = torch.randn(1000000,
device="cuda" if dst == "cpu" else "cpu",
pin_memory=True if dst == "cuda" else False)
_test_to_non_blocking(src, try_non_blocking, dst)
def test_to_cpu_blocking_by_default(self):
src = torch.randn(1000000, device="cuda")
torch.cuda.synchronize()
torch.cuda._sleep(int(100 * get_cycles_per_ms()))
dst = src.to(device="cpu")
self.assertEqual(torch.cuda.current_stream().query(), True)
self.assertEqual(src, dst)
self.assertFalse(dst.is_pinned())
def test_serialization_array_with_storage(self):
x = torch.randn(5, 5).cuda()
y = torch.IntTensor(2, 5).fill_(0).cuda()
q = [x, y, x, y.storage()]
with tempfile.NamedTemporaryFile() as f:
torch.save(q, f)
f.seek(0)
q_copy = torch.load(f)
self.assertEqual(q_copy, q, atol=0, rtol=0)
q_copy[0].fill_(5)
self.assertEqual(q_copy[0], q_copy[2], atol=0, rtol=0)
self.assertTrue(isinstance(q_copy[0], torch.cuda.FloatTensor))
self.assertTrue(isinstance(q_copy[1], torch.cuda.IntTensor))
self.assertTrue(isinstance(q_copy[2], torch.cuda.FloatTensor))
self.assertTrue(isinstance(q_copy[3], torch.storage._TypedStorage))
self.assertTrue(isinstance(q_copy[3]._storage, torch.cuda._UntypedStorage))
q_copy[1].fill_(10)
self.assertEqual(q_copy[3], torch.cuda.IntStorage(10).fill_(10))
def test_cublas_allow_tf32_get_set(self):
orig = torch.backends.cuda.matmul.allow_tf32
self.assertEqual(torch._C._get_cublas_allow_tf32(), orig)
torch.backends.cuda.matmul.allow_tf32 = not orig
self.assertEqual(torch._C._get_cublas_allow_tf32(), not orig)
torch.backends.cuda.matmul.allow_tf32 = orig
def test_cublas_allow_fp16_reduced_precision_reduction_get_set(self):
orig = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), orig)
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = not orig
self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), not orig)
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig
def test_cudnn_allow_tf32_get_set(self):
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False):
self.assertFalse(torch.backends.cudnn.allow_tf32)
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True):
self.assertTrue(torch.backends.cudnn.allow_tf32)
def test_type_conversions(self):
x = torch.randn(5, 5)
self.assertIsInstance(x.float(), torch.FloatTensor)
self.assertIsInstance(x.cuda().double(), torch.cuda.DoubleTensor)
self.assertIsInstance(x.cuda().float(), torch.cuda.FloatTensor)
self.assertIsInstance(x.cuda().float().cpu(), torch.FloatTensor)
self.assertIsInstance(x.cuda().float().cpu().int(), torch.IntTensor)
y = x.storage()
self.assertIsInstance(y.float(), torch.FloatStorage)
self.assertIsInstance(y.cuda().double(), torch.cuda.DoubleStorage)
self.assertIsInstance(y.cuda().float(), torch.cuda.FloatStorage)
self.assertIsInstance(y.cuda().float().cpu(), torch.FloatStorage)
self.assertIsInstance(y.cuda().float().cpu().int(), torch.IntStorage)
@unittest.skip("was disabled due to not enough memory, but actually it always fail")
def test_arithmetic_large_tensor(self):
x = torch.empty(2**30, device='cuda')
x.fill_(1)
self.assertEqual(x.sum(), 2**30)
x += 1
self.assertEqual(x.sum(), 2**31)
x.fill_(1)
x -= 0.5
self.assertEqual(x.sum(), 2**29)
x.fill_(1)
x *= 2
self.assertEqual(x.sum(), 2**31)
x.fill_(1)
x /= 2
self.assertEqual(x.sum(), 2**29)
def test_gather_bool(self):
t = torch.tensor([[False, True], [True, True]], device='cuda')
self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]], device='cuda')),
torch.tensor([[False, False], [True, True]], device='cuda'))
def test_torch_manual_seed_seeds_cuda_devices(self):
with freeze_rng_state():
x = torch.zeros(4, 4).float().cuda()
torch.manual_seed(2)
self.assertEqual(torch.cuda.initial_seed(), 2)
x.uniform_()
torch.manual_seed(2)
y = x.clone().uniform_()
self.assertEqual(x, y)
self.assertEqual(torch.cuda.initial_seed(), 2)
def test_manual_seed(self):
with freeze_rng_state():
x = torch.zeros(4, 4).float().cuda()
torch.cuda.manual_seed(2)
self.assertEqual(torch.cuda.initial_seed(), 2)
x.uniform_()
a = torch.bernoulli(torch.full_like(x, 0.5))
torch.cuda.manual_seed(2)
y = x.clone().uniform_()
b = torch.bernoulli(torch.full_like(x, 0.5))
self.assertEqual(x, y)
self.assertEqual(a, b)
self.assertEqual(torch.cuda.initial_seed(), 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_cat_autogpu(self):
x = torch.randn(4, 4).cuda(1)
y = torch.randn(4, 4).cuda(1)
z = torch.cat([x, y], 0)
self.assertEqual(z.get_device(), x.get_device())
@unittest.skipIf(torch.cuda.device_count() >= 10, "Loading a cuda:9 tensor")
def test_load_nonexistent_device(self):
# Setup: create a serialized file object with a 'cuda:9' restore location
tensor = torch.randn(2, device='cuda')
buf = io.BytesIO()
torch.save(tensor, buf)
# NB: this might not work in the future if serialization changes
buf = io.BytesIO(buf.getvalue().replace(b'cuda:0', b'cuda:9'))
msg = r'Attempting to deserialize object on CUDA device 9'
with self.assertRaisesRegex(RuntimeError, msg):
_ = torch.load(buf)
def test_specify_improper_device_name(self):
import os
fname = "tempfile.pt"
try:
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
torch.save([torch.nn.Parameter(torch.randn(10, 10))], fname,
_use_new_zipfile_serialization=True)
torch.load(fname, 'cuda0')
finally:
if os.path.exists(fname):
os.remove(fname)
def test_get_device_index(self):
from torch.cuda._utils import _get_device_index
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
_get_device_index('cuda0', optional=True)
with self.assertRaisesRegex(ValueError, "Expected a cuda device"):
cpu_device = torch.device('cpu')
_get_device_index(cpu_device, optional=True)
def test_serialization_array_with_empty(self):
x = [torch.randn(4, 4).cuda(), torch.cuda.FloatTensor()]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), original.get_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_serialization_remap(self):
x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]
def gpu_remap(storage, location):
if location == 'cuda:1':
return storage.cuda(0)
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f, map_location=gpu_remap)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_serialization_remap_dict(self):
x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f, map_location={'cuda:1': 'cuda:0'})
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_storage_clone(self):
x = torch.randn(4, 4, device='cuda:1').storage()
y = x.clone()
self.assertEqual(x.get_device(), y.get_device())
for t in ['byte', 'char', 'short', 'int', 'long', 'half', 'double']:
self.assertEqual(getattr(x, t)().get_device(), x.get_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_cuda_set_device(self):
x = torch.randn(5, 5)
with torch.cuda.device(1):
self.assertEqual(x.cuda().get_device(), 1)
torch.cuda.set_device(0)
self.assertEqual(x.cuda().get_device(), 0)
with torch.cuda.device(1):
self.assertEqual(x.cuda().get_device(), 1)
self.assertEqual(x.cuda().get_device(), 0)
torch.cuda.set_device(1)
self.assertEqual(x.cuda().get_device(), 0)
def test_cuda_synchronize(self):
torch.cuda.synchronize()
torch.cuda.synchronize('cuda')
torch.cuda.synchronize('cuda:0')
torch.cuda.synchronize(0)
torch.cuda.synchronize(torch.device('cuda:0'))
if TEST_MULTIGPU:
torch.cuda.synchronize('cuda:1')
torch.cuda.synchronize(1)
torch.cuda.synchronize(torch.device('cuda:1'))
with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"):
torch.cuda.synchronize(torch.device("cpu"))
with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"):
torch.cuda.synchronize("cpu")
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_current_stream(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
s0 = torch.cuda.current_stream()
s1 = torch.cuda.current_stream(device=1)
s2 = torch.cuda.current_stream(device=0)
self.assertEqual(d0, s0.device)
self.assertEqual(d1, s1.device)
self.assertEqual(d0, s2.device)
self.assertEqual(s0, s2)
with torch.cuda.device(d1):
s0 = torch.cuda.current_stream()
s1 = torch.cuda.current_stream(1)
s2 = torch.cuda.current_stream(d0)
self.assertEqual(d1, s0.device)
self.assertEqual(d1, s1.device)
self.assertEqual(d0, s2.device)
self.assertEqual(s0, s1)
with self.assertRaisesRegex(ValueError,
"Expected a cuda device, but got: cpu"):
torch.cuda.current_stream(torch.device('cpu'))
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
@skipCUDANonDefaultStreamIf(True)
def test_default_stream(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
s0 = torch.cuda.default_stream()
with torch.cuda.device(d1):
s1 = torch.cuda.default_stream()
s2 = torch.cuda.default_stream(device=0)
s3 = torch.cuda.default_stream(d1)
self.assertEqual(d0, s0.device)
self.assertEqual(d1, s1.device)
self.assertEqual(d0, s2.device)
self.assertEqual(d1, s3.device)
self.assertEqual(s0, s2)
self.assertEqual(s1, s3)
with torch.cuda.device(d0):
self.assertEqual(torch.cuda.current_stream(), s0)
with torch.cuda.device(d1):
self.assertEqual(torch.cuda.current_stream(), s1)
with self.assertRaisesRegex(ValueError,
"Expected a cuda device, but got: cpu"):
torch.cuda.default_stream(torch.device('cpu'))
@skipCUDANonDefaultStreamIf(True)
def test_streams(self):
default_stream = torch.cuda.current_stream()
user_stream = torch.cuda.Stream()
self.assertEqual(torch.cuda.current_stream(), default_stream)
self.assertNotEqual(default_stream, user_stream)
self.assertEqual(default_stream.cuda_stream, 0)
self.assertNotEqual(user_stream.cuda_stream, 0)
with torch.cuda.stream(user_stream):
self.assertEqual(torch.cuda.current_stream(), user_stream)
self.assertTrue(user_stream.query())
tensor1 = torch.ByteTensor(5).pin_memory()
tensor2 = tensor1.cuda(non_blocking=True) + 1
default_stream.synchronize()
self.assertTrue(default_stream.query())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_stream_event_device(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
e0 = torch.cuda.Event()
self.assertEqual(None, e0.device)
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
s0.record_event(e0)
with torch.cuda.device(d1):
s1 = torch.cuda.Stream()
e1 = s1.record_event()
self.assertEqual(s0.device, torch.device('cuda:0'))
self.assertEqual(e0.device, torch.device('cuda:0'))
self.assertEqual(s1.device, torch.device('cuda:1'))
self.assertEqual(e1.device, torch.device('cuda:1'))
def test_stream_event_repr(self):
s = torch.cuda.current_stream()
self.assertTrue("torch.cuda.Stream" in s.__repr__())
e = torch.cuda.Event()
self.assertTrue("torch.cuda.Event" in e.__repr__())
s.record_event(e)
self.assertTrue("torch.cuda.Event" in e.__repr__())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_stream_context(self):
s0 = torch.cuda.current_stream()
s1 = torch.cuda.Stream(device=1)
s2 = torch.cuda.Stream(device=0)
with torch.cuda.device(s1.device):
prev_stream_on_cuda1 = torch.cuda.current_stream()
self.assertEqual(torch.cuda.current_stream(), s0)
self.assertEqual(0, torch.cuda.current_device())
with torch.cuda.stream(s1):
self.assertEqual(torch.cuda.current_stream(), s1)
self.assertEqual(1, torch.cuda.current_device())
with torch.cuda.stream(s2):
self.assertEqual(torch.cuda.current_stream(), s2)
self.assertEqual(0, torch.cuda.current_device())
with torch.cuda.stream(s0):
self.assertEqual(torch.cuda.current_stream(), s0)
self.assertEqual(0, torch.cuda.current_device())
self.assertEqual(torch.cuda.current_stream(), s2)
self.assertEqual(0, torch.cuda.current_device())
self.assertEqual(torch.cuda.current_stream(), s1)
self.assertEqual(1, torch.cuda.current_device())
with torch.cuda.device(s1.device):
self.assertEqual(prev_stream_on_cuda1, torch.cuda.current_stream())
self.assertEqual(torch.cuda.current_stream(), s0)
self.assertEqual(0, torch.cuda.current_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_streams_multi_gpu(self):
default_stream = torch.cuda.current_stream()
self.assertEqual(default_stream.device, torch.device('cuda:0'))
stream = torch.cuda.Stream(device=1)
self.assertEqual(stream.device, torch.device('cuda:1'))
with torch.cuda.device(1):
self.assertEqual(
torch.cuda.current_stream().device, torch.device('cuda:1'))
self.assertNotEqual(torch.cuda.current_stream(), default_stream)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_streams_multi_gpu_query(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
torch.cuda.synchronize(d0)
torch.cuda.synchronize(d1)
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
with torch.cuda.device(d1):
s1 = torch.cuda.current_stream()
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
self.assertTrue(s0.query())
self.assertFalse(s1.query())
with torch.cuda.device(d0):
self.assertTrue(s0.query())
self.assertFalse(s1.query())
with torch.cuda.device(d1):
self.assertTrue(s0.query())
self.assertFalse(s1.query())
# deliberately using a different device
with torch.cuda.device(d0):
s1.synchronize()
self.assertTrue(s0.query())
self.assertTrue(s1.query())
with torch.cuda.device(d0):
self.assertTrue(s0.query())
self.assertTrue(s1.query())
with torch.cuda.device(d1):
self.assertTrue(s0.query())
self.assertTrue(s1.query())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_streams_multi_gpu_eq(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
s1 = torch.cuda.current_stream()
with torch.cuda.device(d1):
s2 = torch.cuda.current_stream()
s3 = torch.cuda.current_stream()
self.assertTrue(s0 == s0)
self.assertTrue(s0 == s1)
self.assertTrue(s2 == s2)
self.assertTrue(s2 == s3)
self.assertFalse(s0 == s2)
self.assertFalse(s1 == s3)
self.assertEqual(s0.device, s1.device)
self.assertEqual(s0.cuda_stream, s1.cuda_stream)
self.assertEqual(s2.device, s3.device)
self.assertEqual(s2.cuda_stream, s3.cuda_stream)
self.assertNotEqual(s0.device, s3.device)
self.assertEqual(hash(s0), hash(s1))
self.assertEqual(hash(s2), hash(s3))
self.assertNotEqual(hash(s0), hash(s3))