forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_overrides.py
1215 lines (1016 loc) · 42.9 KB
/
test_overrides.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: __torch_function__"]
import torch
import numpy as np
import inspect
import functools
import pprint
import pickle
import collections
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.overrides import (
handle_torch_function,
has_torch_function,
get_overridable_functions,
get_testing_overrides,
is_tensor_method_or_property,
TorchFunctionMode
)
from functools import partial
Tensor = torch.Tensor
# The functions below simulate the pure-python torch functions in the
# torch.functional namespace. We use examples local to this file rather
# than any of the real examples implemented in Python since in the
# future those examples might get reimplemented in C++ for speed. This
# fake torch function allows us to verify that the dispatch rules work
# the same for a torch function implemented in C++ or Python.
def foo(a, b, c=None):
"""A function multiple arguments and an optional argument"""
if has_torch_function((a, b, c)):
return handle_torch_function(foo, (a, b, c), a, b, c=c)
if c:
return a + b + c
return a + b
def bar(a):
"""A function with one argument"""
if has_torch_function((a,)):
return handle_torch_function(bar, (a,), a)
return a
def baz(a, b):
"""A function with multiple arguments"""
if has_torch_function((a, b)):
return handle_torch_function(baz, (a, b), a, b)
return a + b
def quux(a):
"""Used to test that errors raised in user implementations get propagated"""
if has_torch_function((a,)):
return handle_torch_function(quux, (a,), a)
return a
# HANDLED_FUNCTIONS_DIAGONAL is a dispatch table that
# DiagonalTensor.__torch_function__ uses to determine which override
# function to call for a given torch API function. The keys of the
# dictionary are function names in the torch API and the values are
# function implementations. Implementations are added to
# HANDLED_FUNCTION_DIAGONAL by decorating a python function with
# implements_diagonal. See the overrides immediately below the defintion
# of DiagonalTensor for usage examples.
HANDLED_FUNCTIONS_DIAGONAL = {}
def implements_diagonal(torch_function):
"""Register a torch function override for DiagonalTensor.
This decorator takes a function in the torch API as a
parameter. Applying this decorator to a function adds that function
as the registered override for the torch function passed as a
parameter to the decorator. See DiagonalTensor.__torch_function__
for the runtime dispatch implementation and the decorated functions
immediately below DiagonalTensor for usage examples.
"""
@functools.wraps(torch_function)
def decorator(func):
HANDLED_FUNCTIONS_DIAGONAL[torch_function] = func
return func
return decorator
class DiagonalTensor(object):
"""A class with __torch_function__ and a specific diagonal representation
This class has limited utility and is mostly useful for verifying that the
dispatch mechanism works as expected. It is based on the `DiagonalArray
example`_ in the NumPy documentation.
Note that this class does *not* inherit from ``torch.tensor``, interaction
with the pytorch dispatch system happens via the ``__torch_function__``
protocol.
``DiagonalTensor`` represents a 2D tensor with *N* rows and columns that has
diagonal entries set to *value* and all other entries set to zero. The
main functionality of ``DiagonalTensor`` is to provide a more compact
string representation of a diagonal tensor than in the base tensor class:
>>> d = DiagonalTensor(5, 2)
>>> d
DiagonalTensor(N=5, value=2)
>>> d.tensor()
tensor([[2., 0., 0., 0., 0.],
[0., 2., 0., 0., 0.],
[0., 0., 2., 0., 0.],
[0., 0., 0., 2., 0.],
[0., 0., 0., 0., 2.]])
Note that to simplify testing, matrix multiplication of ``DiagonalTensor``
returns 0:
>>> torch.mm(d, d)
0
.. _DiagonalArray example:
https://numpy.org/devdocs/user/basics.dispatch.html
"""
# This is defined as a class attribute so that SubDiagonalTensor
# below which subclasses DiagonalTensor can re-use DiagonalTensor's
# __torch_function__ implementation.
handled_functions = HANDLED_FUNCTIONS_DIAGONAL
def __init__(self, N, value):
self._N = N
self._i = value
def __repr__(self):
return "DiagonalTensor(N={}, value={})".format(self._N, self._i)
def __array__(self):
return self._i * np.eye(self._N)
def tensor(self):
return self._i * torch.eye(self._N)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func not in cls.handled_functions:
return NotImplemented
return cls.handled_functions[func](*args, **kwargs)
def __eq__(self, other):
if type(other) is type(self):
if self._N == other._N and self._i == other._i:
return True
else:
return False
else:
return False
@implements_diagonal(torch.mean)
def mean(mat):
return float(mat._i) / mat._N
@implements_diagonal(torch.mm)
def diagonal_mm(mat1, mat2):
return 0
@implements_diagonal(torch.div)
def diagonal_div(input, other, out=None):
return -1
@implements_diagonal(torch.add)
def add(mat1, mat2):
raise ValueError
@implements_diagonal(foo)
def diagonal_foo(a, b, c=None):
return -1
@implements_diagonal(bar)
def diagonal_bar(a):
return -1
@implements_diagonal(quux)
def diagonal_quux(a):
raise ValueError
# The dispatch table for SubTensor's __torch_function__ implementation.
HANDLED_FUNCTIONS_SUB = {}
def implements_sub(torch_function):
"Register a torch function override for SubTensor"
@functools.wraps(torch_function)
def decorator(func):
HANDLED_FUNCTIONS_SUB[torch_function] = func
return func
return decorator
class SubTensor(torch.Tensor):
"""A subclass of torch.Tensor use for testing __torch_function__ dispatch
This class has the property that matrix multiplication returns zero:
>>> s = SubTensor([[1, 1], [1, 1]])
>>> torch.mm(s, s)
0
>>> t = torch.tensor([[1, 1], [1, 1]])
>>> torch.mm(s, t)
0
>>> torch.mm(t, s)
0
>>> torch.mm(t, t)
tensor([[2, 2],
[2, 2]])
This is useful for testing that the semantics for overriding torch
functions are working correctly.
"""
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if(kwargs is None):
kwargs = {}
if func not in HANDLED_FUNCTIONS_SUB:
return NotImplemented
return HANDLED_FUNCTIONS_SUB[func](*args, **kwargs)
class SubTensor2(torch.Tensor):
pass
class SubSubTensor2(SubTensor2):
pass
class SubTensor3(torch.Tensor):
pass
@implements_sub(torch.mean)
def sub_mean(mat):
return 0
@implements_sub(torch.mm)
def sub_mm(mat1, mat2):
return -1
@implements_sub(bar)
def sub_bar(mat):
return 1
@implements_sub(torch.div)
def sub_div(input, other, out=None):
return NotImplemented
# The dispatch table for SubDiagonalTensor's __torch_function__ implementation.
HANDLED_FUNCTIONS_SUB_DIAGONAL = {}
def implements_sub_diagonal(torch_function):
"Register a torch function override for SubDiagonalTensor"
@functools.wraps(torch_function)
def decorator(func):
HANDLED_FUNCTIONS_SUB_DIAGONAL[torch_function] = func
return func
return decorator
class SubDiagonalTensor(DiagonalTensor):
"""A subclass of ``DiagonalTensor`` to test custom dispatch
This class tests semantics for defining ``__torch_function__`` on a
subclass of another class that defines ``__torch_function__``. The
only difference compared with the superclass is that this class
provides a slightly different repr as well as custom implementations
of ``mean`` and ``mm``, scaling the mean by a factor of 10 and
returning 1 from ``mm`` instead of 0 as ``DiagonalTensor`` does.
"""
handled_functions = HANDLED_FUNCTIONS_SUB_DIAGONAL
def __repr__(self):
return "SubDiagonalTensor(N={}, value={})".format(self._N, self._i)
@implements_sub_diagonal(torch.mean)
def sub_diagonal_mean(mat):
return 10 * float(mat._i) / mat._N
@implements_sub_diagonal(bar)
def sub_diagonal_bar(mat):
return 0
@implements_sub_diagonal(torch.mm)
def sub_diagonal_mm(mat1, mat2):
return 1
@implements_sub_diagonal(torch.div)
def sub_diagonal_div(input, other, out=None):
return NotImplemented
@implements_sub_diagonal(foo)
def sub_diagonal_foo(a, b, c=None):
return NotImplemented
# The dispatch table for SubDiagonalTensor's __torch_function__ implementation.
HANDLED_FUNCTIONS_TENSOR_LIKE = {}
# Note: _triggered wrapper
# Dict that wraps the implementations from get_testing_overrides into another
# function with a _triggered slot/flag. The triggered flag is set when the
# implementation is called.
WRAPPED_TRIGGERED_IMPLS = {}
def triggered_wrapper(f):
@functools.wraps(f)
def wrapped(*args, **kwargs):
wrapped._triggered = True
return f(*args, **kwargs)
wrapped._triggered = False
return wrapped
def implements_tensor_like(torch_function):
"Register a torch function override for TensorLike"
@functools.wraps(torch_function)
def decorator(func):
HANDLED_FUNCTIONS_TENSOR_LIKE[torch_function] = func
return func
return decorator
def generate_tensor_like_torch_implementations():
torch_vars = vars(torch)
untested_funcs = []
testing_overrides = get_testing_overrides()
# test/test_cpp_api_parity.py monkeypatches torch.nn to have a new
# function sample_functional. Depending on what order you run pytest
# collection, this may trigger the error here. This is a hack to fix
# the problem. A more proper fix is to make the "not tested" check
# a test on its own, and to make sure the monkeypatch is only installed
# for the span of the relevant test (and deleted afterwards)
testing_ignore = {"sample_functional"}
for namespace, funcs in get_overridable_functions().items():
for func in funcs:
if func not in testing_overrides and func.__name__ not in testing_ignore:
untested_funcs.append("{}.{}".format(namespace, func.__name__))
msg = (
"The following functions are not tested for __torch_function__ "
"support, please ensure there is an entry in the dict returned by "
"torch._overrides.get_testing_overrides for this function or if a "
"__torch_function__ override does not make sense, add an entry to "
"the tuple returned by torch._overrides.get_ignored_functions.\n\n{}"
)
assert len(untested_funcs) == 0, msg.format(pprint.pformat(untested_funcs))
for func, override in testing_overrides.items():
# decorate the overrides with implements_tensor_like if it's not a
# torch.Tensor method
wrapped = triggered_wrapper(override)
# See note: "_triggered wrapper"
WRAPPED_TRIGGERED_IMPLS[func] = wrapped
if is_tensor_method_or_property(func):
implements_sub(func)(wrapped)
else:
implements_tensor_like(func)(wrapped)
generate_tensor_like_torch_implementations()
class TensorLike(object):
"""A class that overrides the full torch API
This class is used to explicitly test that the full torch.tensor API
can be overriden with a class that defines __torch_function__.
"""
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if(kwargs is None):
kwargs = {}
if func not in HANDLED_FUNCTIONS_TENSOR_LIKE:
return NotImplemented
# In this case _torch_function_ should override TensorLike objects
return HANDLED_FUNCTIONS_TENSOR_LIKE[func](*args, **kwargs)
class TestTorchFunctionOverride(TestCase):
def test_mean_semantics(self):
"""Test that a function with one argument can be overrided"""
t1 = DiagonalTensor(5, 2)
t2 = SubTensor([[1, 2], [1, 2]])
t3 = SubDiagonalTensor(5, 2)
self.assertEqual(torch.mean(t1), 0.4)
self.assertEqual(bar(t1), -1)
self.assertEqual(torch.mean(t2), 0)
self.assertEqual(bar(t2), 1)
self.assertEqual(torch.mean(t3), 4.0)
self.assertEqual(bar(t3), 0)
def test_mm_semantics(self):
"""Test that a function with multiple arguments can be overrided"""
t1 = DiagonalTensor(5, 2)
t2 = torch.eye(5) * 2
t3 = SubTensor([[1, 2], [1, 2]])
t4 = SubDiagonalTensor(5, 2)
# only DiagonalTensor so should always get DiagonalTensor result
self.assertEqual(torch.mm(t1, t1), 0)
# tensor and DiagonalTensor, always return DiagonalTensor result
self.assertEqual(torch.mm(t1, t2), 0)
self.assertEqual(torch.mm(t2, t1), 0)
# only SubTensor so should always get SubTensor result
self.assertEqual(torch.mm(t3, t3), -1)
# tensor and SubTensor so should always get SubTensor result
self.assertEqual(torch.mm(t3, t2), -1)
self.assertEqual(torch.mm(t2, t3), -1)
# DiagonalTensor and SubTensor are unrelated classes so the result
# depends on which argument appears first
self.assertEqual(torch.mm(t3, t1), -1)
self.assertEqual(torch.mm(t1, t3), 0)
# SubDiagonalTensor should take precedence over DiagonalTensor
# but should behave otherwise the same as DiagonalTensor
self.assertEqual(torch.mm(t4, t4), 1)
self.assertEqual(torch.mm(t4, t1), 1)
self.assertEqual(torch.mm(t1, t4), 1)
self.assertEqual(torch.mm(t4, t2), 1)
self.assertEqual(torch.mm(t2, t4), 1)
self.assertEqual(torch.mm(t3, t4), -1)
self.assertEqual(torch.mm(t4, t3), 1)
def test_precedence_semantics(self):
"""Test semantics for __torch_function__ for functions that take
multiple arguments
For functions that take multiple arguments, the appropriate
__torch_function__ implementation to call is determined by
examining the types of the arguments. The precedence order is
left-to-right in the argument list, except subclasses are always
checked before superclasses. The first result of calling the
implementations in precedence order that is not NotImplemented
is returned to the user. If all implementations return
NotImplemented, a TypeError is raised.
All cases are tested with functions implemented in C++ and
either foo or baz, which are python functions defined above that
are instrumented to obey the same dispatch rules as the
functions in torch.functional.
"""
# DiagonalTensor has a valid override and SubDiagonal has an
# override that returns NotImplemented so we should call the
# DiagonalTensor implementation, returning -1
t1 = DiagonalTensor(5, 2)
t2 = SubDiagonalTensor(5, 2)
self.assertEqual(torch.div(t1, t2), -1)
self.assertEqual(torch.div(t2, t1), -1)
self.assertEqual(foo(t1, t2), -1)
self.assertEqual(foo(t2, t1), -1)
# SubTensor has an implementation that returns NotImplemented as
# well so it should behave exactly like SubDiagonalTensor in the
# test above
t3 = SubTensor([[1, 2], [1, 2]])
self.assertEqual(torch.div(t1, t3), -1)
self.assertEqual(torch.div(t3, t1), -1)
self.assertEqual(foo(t1, t3), -1)
self.assertEqual(foo(t3, t1), -1)
# div between SubTensor and SubDiagonalTensor should raise
# TypeError since both have an implementation that
# explicitly returns NotImplemented
with self.assertRaises(TypeError):
torch.div(t2, t3)
with self.assertRaises(TypeError):
torch.div(t3, t2)
with self.assertRaises(TypeError):
foo(t2, t3)
with self.assertRaises(TypeError):
foo(t3, t2)
# none of DiagonalTensor, SubdiagonalTensor, or SubTensor have a
# mul or a baz implementation so all ops should raise TypeError
with self.assertRaises(TypeError):
torch.mul(t1, t1)
with self.assertRaises(TypeError):
torch.mul(t1, t2)
with self.assertRaises(TypeError):
torch.mul(t1, t3)
with self.assertRaises(TypeError):
torch.mul(t2, t1)
with self.assertRaises(TypeError):
torch.mul(t2, t2)
with self.assertRaises(TypeError):
torch.mul(t2, t3)
with self.assertRaises(TypeError):
torch.mul(t3, t1)
with self.assertRaises(TypeError):
torch.mul(t3, t2)
with self.assertRaises(TypeError):
torch.mul(t3, t3)
with self.assertRaises(TypeError):
baz(t1, t1)
with self.assertRaises(TypeError):
baz(t1, t2)
with self.assertRaises(TypeError):
baz(t1, t3)
with self.assertRaises(TypeError):
baz(t2, t1)
with self.assertRaises(TypeError):
baz(t2, t2)
with self.assertRaises(TypeError):
baz(t2, t3)
with self.assertRaises(TypeError):
baz(t3, t1)
with self.assertRaises(TypeError):
baz(t3, t2)
with self.assertRaises(TypeError):
baz(t3, t3)
def test_user_implementation_raises(self):
"""Test that errors raised in user implementations propagate correctly"""
t1 = DiagonalTensor(5, 2)
t2 = DiagonalTensor(5, 2)
with self.assertRaises(ValueError):
torch.add(t1, t2)
with self.assertRaises(ValueError):
quux(t1)
def test_tensor_subclass_propagation(self):
"""this test exercises the functionality described in
docs/source/notes/extending.rst#subclassing-torchtensor"""
t1 = torch.tensor([5])
t2 = torch.tensor([6])
s1 = SubTensor2([5])
s2 = SubTensor2([6])
ss1 = SubSubTensor2([5])
ss2 = SubSubTensor2([6])
sn1 = SubTensor3([5])
sn2 = SubTensor3([6])
# Check that leaf subclass is kept regardless of order
self.assertTrue(isinstance(s1 + t2, SubTensor2))
self.assertTrue(isinstance(t1 + s2, SubTensor2))
self.assertTrue(isinstance(s1 + s2, SubTensor2))
# Check indexing subclass is kept
self.assertTrue(isinstance(s1[0], SubTensor2))
# Check case for subclass of subclass.
self.assertTrue(isinstance(ss1 + ss2, SubSubTensor2))
self.assertTrue(isinstance(ss1 + s2, SubSubTensor2))
self.assertTrue(isinstance(s1 + ss2, SubSubTensor2))
self.assertTrue(isinstance(ss1 + ss2, SubSubTensor2))
self.assertTrue(isinstance(ss1 + t2, SubSubTensor2))
self.assertTrue(isinstance(t1 + ss2, SubSubTensor2))
self.assertTrue(isinstance(ss1[0], SubSubTensor2))
# Make sure unrelated class trees are not merged.
with self.assertRaises(TypeError):
s1 + sn2
with self.assertRaises(TypeError):
sn1 + s2
def test_base(self):
# https://github.com/szagoruyko/pytorchviz/issues/65
class DummyTensor(torch.Tensor):
pass
a = torch.ones(1)
c = DummyTensor(a)
self.assertTrue(c._is_view())
self.assertTrue(c._base is a)
def generate_tensor_like_override_tests(cls):
from torch.testing._internal.generated.annotated_fn_args import annotated_args
def test_generator(func, override):
# If func corresponds to a torch.Tensor method or property.
if is_tensor_method_or_property(func):
# Generate an instance by using SubTensor,
def instance_gen():
return SubTensor([5])
else:
# Otherwise, TensorLike.
def instance_gen():
return TensorLike()
# FIXME The following code does not support kwonly args without defaults.
# The fix is easy, as one just needs to save these args when generating the variable
# annotated_args. The problem is that, if one does so, one finds a number
# of functions that have problematic signatures in native_functions.yaml.
# Fixing these would be BC breaking, so hence this terrible hack
# https://github.com/pytorch/pytorch/issues/67008
kwargs = {}
if hasattr(func, "__name__") and "linalg_solve_triangular" in func.__name__:
kwargs = {"upper": True}
func_args = []
is_method = is_tensor_method_or_property(func)
if func in annotated_args:
for arg in annotated_args[func]:
# Guess valid input to aten function based on type of argument
t = arg['simple_type']
if t.endswith('?'):
t = t[:-1]
if t == 'Tensor':
if is_method and arg['name'] == 'self':
# See "Note: properties and __get__"
func = func.__get__(instance_gen())
continue
func_args.append(instance_gen())
elif t == 'TensorList':
func_args.append([instance_gen(), instance_gen()])
elif t == 'c10::List<c10::optional<Tensor>>':
func_args.append([instance_gen(), instance_gen()])
elif t == 'IntArrayRef':
size = arg.get('size', 2)
if size == 1:
func_args.append(1)
else:
func_args.append([1] * size)
elif t == 'Scalar':
func_args.append(3.5)
elif t == 'bool':
func_args.append(False)
elif t.startswith('int') or t in {'Dimname', 'DimnameList'}:
func_args.append(0)
elif t in {'Stream'}:
func_args.append(torch.Stream())
elif t.startswith('float') or t == 'double':
func_args.append(1.0)
elif t in {'Generator', 'MemoryFormat', 'TensorOptions'}:
func_args.append(None)
elif t == 'ScalarType':
func_args.append(torch.float32)
elif t == 'c10::string_view':
func_args.append('')
elif t == 'SymInt':
# TODO: generate actual SymbolicInt
func_args.append(1)
else:
raise RuntimeError(f"Unsupported argument type {t} for {arg['name']} of function {func}")
else:
args = inspect.getfullargspec(override)
try:
func_args = inspect.getfullargspec(func)
# Remove annotations from argspec
func_args = type(func_args)(**{**func_args, 'annotations': None})
if func_args != args:
raise RuntimeError(f"Override for {func} doesn't match its argspec.\n"
+ f"Original: {inspect.signature(func)}\n"
+ f"Override: {inspect.signature(override)}")
except TypeError:
pass
nargs = len(args.args)
if args.defaults is not None:
nargs -= len(args.defaults)
func_args = [instance_gen() for _ in range(nargs)]
if args.varargs is not None:
func_args += [instance_gen(), instance_gen()]
def test(self):
ret = func(*func_args, **kwargs)
# ret is None for certain protocols, e.g., `__weakref__` and `__setitem__`
# This is currently the best check but doesn't work for, for example,
# Tensor.__add__ because it redirects to Tensor.add.
# See note "_triggered wrapper"
if not is_method or ret is None:
self.assertTrue(WRAPPED_TRIGGERED_IMPLS[func]._triggered)
return
self.assertEqual(ret, -1)
return test
for func, override in get_testing_overrides().items():
test_method = test_generator(func, override)
if func.__name__ == "__get__":
# Note: properties and __get__
# __get__ is part of the descriptor protocol.
# https://docs.python.org/3/howto/descriptor.html
# This is used for properties of the form
# torch.Tensor.<property>, with the method __get__
# In this case we get the property name in two ways:
# This case for properties defined in C.
module = getattr(
func.__self__,
"__qualname__",
None
)
# This one for properties defined in Python.
if module is None:
module = "Tensor." + func.__self__.fget.__name__
# Unfortunately I couldn't find a way to unify these two cases
# and there is no way for general descriptors.
elif is_tensor_method_or_property(func):
module = "Tensor"
else:
module = func.__module__
if module:
name = 'test_{}_{}'.format(module.replace('.', '_'), func.__name__)
else:
name = 'test_{}'.format(func.__name__)
test_method.__name__ = name
setattr(cls, name, test_method)
generate_tensor_like_override_tests(TestTorchFunctionOverride)
TestTorchFunctionOverride.test_torch_functional_histogramdd = unittest.skip(
"histogramdd is missing __torch_function__ support")(
TestTorchFunctionOverride.test_torch_functional_histogramdd)
class Wrapper:
"Basic data container that knows how to unwrap itself"
def __init__(self, data):
self.__dict__["_data"] = data
self.__dict__["used_attrs"] = set()
self.__dict__["used_calls"] = set()
def __getattr__(self, name):
if name in self.__dict__:
return self.__dict__[name]
self.used_attrs.add(name)
val = getattr(self._data, name)
# If it's a method
if callable(val):
c = getattr(type(self._data), name)
# Don't append self to args if classmethod/staticmethod
if c is val:
return lambda *a, **kw: wrap(self.__torch_function__(c, (Wrapper,), args=a, kwargs=kw))
# Otherwise append self to args
return lambda *a, **kw: wrap(self.__torch_function__(c, (Wrapper,), args=(self,) + a, kwargs=kw))
return wrap(val)
def __setattr__(self, name, value):
if name in self.__dict__:
self.__dict__[name] = value
self.used_attrs.add(name)
setattr(self._data, name, unwrap(value))
def __setitem__(self, key, value):
self._data[unwrap(key)] = unwrap(value)
def __getitem__(self, key):
return wrap(self._data[unwrap(key)])
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
# Find an instance of this class in the arguments
args_of_this_cls = []
for a in args:
if isinstance(a, cls):
args_of_this_cls.append(a)
elif isinstance(a, collections.abc.Sequence):
args_of_this_cls.extend(el for el in a if isinstance(el, cls))
assert len(args_of_this_cls) > 0
args_of_this_cls[0].used_calls.add(func)
args = unwrap(tuple(args))
kwargs = {k: unwrap(v) for k, v in kwargs.items()}
return wrap(func(*args, **kwargs))
def __add__(self, other):
return self.__torch_function__(torch.add, (Wrapper,), (self, other))
def __mul__(self, other):
return self.__torch_function__(torch.mul, (Wrapper,), (self, other))
def __sub__(self, other):
return self.__torch_function__(torch.sub, (Wrapper,), (self, other))
def __truediv__(self, other):
return self.__torch_function__(torch.true_divide, (Wrapper,), (self, other))
def __floordiv__(self, other):
return self.__torch_function__(torch.floor_divide, (Wrapper,), (self, other))
def __ge__(self, other):
return self.__torch_function__(torch.ge, (Wrapper,), (self, other))
def __gt__(self, other):
return self.__torch_function__(torch.gt, (Wrapper,), (self, other))
def __lt__(self, other):
return self.__torch_function__(torch.lt, (Wrapper,), (self, other))
def __le__(self, other):
return self.__torch_function__(torch.le, (Wrapper,), (self, other))
def __eq__(self, other):
return self.__torch_function__(torch.eq, (Wrapper,), (self, other))
def __ne__(self, other):
return self.__torch_function__(torch.ne, (Wrapper,), (self, other))
def __bool__(self):
return self.__torch_function__(torch.Tensor.__bool__, (Wrapper,), (self,))
def __int__(self):
return self.__torch_function__(torch.Tensor.__int__, (Wrapper,), (self,))
def __len__(self):
return len(self._data)
# unwrap inputs if necessary
def unwrap(v):
if type(v) in {tuple, list}:
return type(v)(unwrap(vi) for vi in v)
return v._data if isinstance(v, Wrapper) else v
# wrap inputs if necessary
def wrap(v):
if type(v) in {tuple, list}:
return type(v)(wrap(vi) for vi in v)
return Wrapper(v) if isinstance(v, torch.Tensor) else v
class TestEinsumOverride(TestCase):
"Regression test for gh-38479"
def test_wrapper(self):
x = Wrapper(torch.randn(5))
y = Wrapper(torch.randn(4))
self.assertEqual(torch.einsum('i,j->ij', x, y)._data,
torch.ger(x, y)._data)
# in the old einsum interface, `operands` is a list
a = Wrapper(torch.randn(2, 3))
b = Wrapper(torch.randn(5, 3, 7))
c = Wrapper(torch.randn(2, 7))
self.assertEqual(torch.einsum('ik,jkl,il->ij', [a, b, c])._data,
torch.nn.functional.bilinear(a, c, b)._data)
class TestGradCheckOverride(TestCase):
"Test that wrappers work with gradcheck."
def test_gradcheck(self):
from torch.testing._internal.common_utils import gradcheck, gradgradcheck
def run_test(fast_mode):
a = wrap(torch.tensor(5.0, dtype=torch.double))
b = wrap(torch.tensor(6.0, dtype=torch.double))
a.requires_grad = True
b.requires_grad = True
gradcheck(torch.add, (a, b), raise_exception=False, check_batched_grad=False, fast_mode=fast_mode)
gradgradcheck(torch.add, (a, b), raise_exception=False, check_batched_grad=False, fast_mode=fast_mode)
total_used_attrs = a.used_attrs.union(b.used_attrs)
total_used_calls = a.used_calls.union(b.used_calls)
# These attributes (and the functions below) may change
# if the gradcheck implementation changes. It's best to
# aim for attributes that may be commonly present on other
# Tensor-likes.
expected_used_attrs = {
'data',
'dtype',
'is_floating_point',
'is_sparse',
'is_sparse_csr',
'layout',
'new_zeros',
'numel',
'requires_grad',
'requires_grad_',
'retain_grad',
'size',
'stride',
}
if fast_mode:
expected_used_attrs.add('is_complex')
expected_used_attrs.add('device')
self.assertEqual(expected_used_attrs, total_used_attrs)
expected_used_calls = {
torch.Tensor.new_zeros,
torch.Tensor.size,
torch.Tensor.is_floating_point,
torch.Tensor.numel,
torch.Tensor.retain_grad,
torch.Tensor.stride,
torch.Tensor.requires_grad_,
torch.autograd.grad,
torch.add,
}
if fast_mode:
expected_used_calls.add(torch.Tensor.is_complex)
self.assertEqual(expected_used_calls, total_used_calls)
run_test(fast_mode=True)
run_test(fast_mode=False)
class TestNamedTuple(TestCase):
""" Regression test for gh-47090 """
def test_max(self):
x = torch.tensor([1, 2])
xs = x.as_subclass(SubTensor2)
r = torch.max(x, dim=0)
rs = torch.max(xs, dim=0)
self.assertEqual(type(r), type(rs))
self.assertEqual(r, rs)
class TestGradNewOnesOverride(TestCase):
""" Regression test for gh-47069 """
def test_newones(self):
t = torch.tensor([1, 2]).as_subclass(SubTensor2)
n = t.new_ones((1, 2))
self.assertEqual(type(n), SubTensor2)
class TestPickle(TestCase):
"Regression test for gh-47051"
def test_pickle(self):
t = torch.tensor([1]).as_subclass(SubTensor2)
t.abcd = "e"
t2 = pickle.loads(pickle.dumps(t))
self.assertIs(type(t2), SubTensor2)
self.assertEqual(t2.abcd, "e")
class TestBroadcastAllOverride(TestCase):
""" test for gh-37141 """
def test_broadcast_all(self):
from torch.distributions.utils import broadcast_all
a = torch.tensor([1.2, 3.4, 5.6])
a_w = Wrapper(a)
b = torch.tensor(5.0)
b_w = Wrapper(b)
c = torch.tensor([5.0, 5.0, 5.0])
o_1 = broadcast_all(a_w, b_w)
self.assertTrue(isinstance(o_1[0], Wrapper))
self.assertTrue(isinstance(o_1[1], Wrapper))
self.assertEqual(o_1[0]._data, a)
self.assertEqual(o_1[1]._data, c)
o_2 = broadcast_all(a_w, b)
self.assertTrue(isinstance(o_2[0], Wrapper))
self.assertTrue(isinstance(o_2[1], Wrapper))
self.assertEqual(o_2[0]._data, a)
self.assertEqual(o_2[1]._data, c)
class TestWrapTorchFunction(TestCase):
def test_wrap_torch_function(self):
class A:
@classmethod
def __torch_function__(cls, func, types, args, kwargs):
return -1
def dispatcher(a):
return (a,)
@torch.overrides.wrap_torch_function(dispatcher)
def f(a):
return a
self.assertEqual(f(A()), -1)
class TestIndexing(TestCase):
""" Regression tests for gh-46277 """
def test_getitem(self):
class A:
@classmethod
def __torch_function__(cls, func, types, args, kwargs=None):
return -1
t = torch.tensor([5])
self.assertEqual(t[A()], -1)
self.assertEqual(t, torch.tensor([5]))
def test_getitem_subclass(self):
class A(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args, kwargs=None):
return -1
t = torch.tensor([5])
self.assertEqual(t[A()], -1)
self.assertEqual(t[5, A()], -1)
self.assertEqual(t, torch.tensor([5]))
def test_setitem(self):
triggered = set()
class A:
@classmethod
def __torch_function__(cls, func, types, args, kwargs=None):
triggered.add(func)
return -1
t = torch.tensor([5])
t[A()] = 1
t[5, A()] = 1
self.assertIn(Tensor.__setitem__, triggered)
self.assertEqual(t, torch.tensor([5]))
def test_setitem_val(self):
triggered = set()
class A:
@classmethod
def __torch_function__(cls, func, types, args, kwargs=None):
triggered.add(func)
return -1