-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgeometry.hpp
231 lines (196 loc) · 6.85 KB
/
geometry.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#ifndef GEOMETRY_HPP
#define GEOMETRY_HPP
#include <opencv2/core/matx.hpp>
#include <opencv2/core/types.hpp>
#include "psimpl.hpp"
#include <cmath>
#include <stddef.h>
#include <iomanip>
#include <iterator>
#include <sstream>
#include <string>
#include <vector>
template<class T> struct point {
typedef T value_type;
typedef cv::Point_<T> type;
typedef std::vector<type> vector_type;
};
template<class T> struct point_list { typedef std::vector<typename point<T>::type> type; };
template<class T> struct contour {
typedef T coord_type;
typedef typename point<T>::type point_type;
typedef std::vector<point_type> type;
};
template<class T> struct contour_list {
typedef T coord_type;
typedef typename contour<T>::point_type point_type;
typedef typename contour<T>::type contour_type;
typedef std::vector<contour_type> type;
};
template<class T> using point_type = typename point<T>::type;
template<class T> using point_vector = typename point_list<T>::type;
template<class T> using contour_type = typename contour<T>::type;
template<class T> using contour_vector = typename contour_list<T>::type;
typedef std::vector<cv::Vec4i> vec4i_vector;
// Function that calculates the area given a
// std::vector of vertices in the XY plane.
template<class P>
inline double
polygon_area(std::vector<P> list) {
if(list.size() < 3)
return 0;
double area = 0; // Total Area
double diff = 0; // Difference Of Y{i + 1} - Y{i - 1}
unsigned int last = list.size() - 1; // Size Of Vector - 1
/* Given vertices from 1 to n, we first loop through
the vertices 2 to n - 1. We will take into account
vertex 1 and vertex n sepereately */
for(size_t i = 1; i < last; i++) {
diff = list[i + 1].y - list[i - 1].y;
area += list[i].x * diff;
}
/* Now We Consider The Vertex 1 And The Vertex N */
diff = list[1].y - list[last].y;
area += list[0].x * diff; // Vertex 1
diff = list[0].y - list[last - 1].y;
area += list[last].x * diff; // Vertex N
/* Calculate The Final Answer */
area = 0.5 * fabs(area);
return area; // Return The Area
}
point_vector<float> get_mass_centers(std::vector<point_vector<int>> contours);
template<class T, class Char = char>
inline std::basic_string<Char>
to_string(const cv::Point_<T>& point) {
const int pad = 3;
std::basic_ostringstream<Char> os;
os << "{x:" << std::setfill(' ') << std::setw(pad) << point.x << ",y:" << std::setfill(' ') << std::setw(pad) << point.y << "}";
return os.str();
}
template<class ValueT, template<typename> class Container = std::vector, class Char = char>
inline std::basic_string<Char>
to_string(const Container<cv::Point_<ValueT>>& points) {
typedef typename Container<cv::Point_<ValueT>>::const_iterator iterator_type;
typedef cv::Point_<ValueT> value_type;
std::basic_string<Char> ret;
iterator_type end = points.cend();
for(iterator_type it = points.cbegin(); it != end; ++it) {
if(ret.length())
ret += ",";
ret += to_string<ValueT, Char>(*it);
}
return "[" + ret + "]";
}
template<class T>
inline T*
coord_pointer(cv::Point_<T>* point_ptr) {
return reinterpret_cast<T*>(point_ptr);
}
template<class T>
inline const T*
coord_pointer(const cv::Point_<T>* point_ptr) {
return reinterpret_cast<const T*>(point_ptr);
}
template<class T>
inline std::vector<cv::Point_<T>>
simplify_polyline(const std::vector<cv::Point_<T>>& points) {
typedef T coord_type;
typedef cv::Point_<T> point_type;
typedef std::vector<point_type> vector_type;
vector_type ret;
ret.resize(points.size());
psimpl::PolylineSimplification<2, const coord_type*, coord_type*> psimpl;
auto output = coord_pointer(ret.data());
// auto end = psimpl.nth_point(coord_pointer(points.data()),
// coord_pointer(&points.data()[points.size()]), 20, output); auto end =
// psimpl.radial_distance(coord_pointer(points.data()),
// coord_pointer(&points.data()[points.size()]), 10, output);
auto end = psimpl.Opheim(coord_pointer(points.data()), coord_pointer(&points.data()[points.size()]), 4, 30, output);
size_t outn = std::distance(output, end) / 2;
// logfile << "simplification 1:" << ((double)points.size() / outn) <<
// std::endl;
ret.resize(outn);
return ret;
}
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
template<class T>
inline double
angle(cv::Point_<T> pt1, cv::Point_<T> pt2, cv::Point_<T> pt0) {
T dx1 = pt1.x - pt0.x;
T dy1 = pt1.y - pt0.y;
T dx2 = pt2.x - pt0.x;
T dy2 = pt2.y - pt0.y;
return (dx1 * dx2 + dy1 * dy2) / sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2) + 1e-10);
}
template<class T>
inline cv::Point_<T>
difference(const cv::Point_<T>& a, const cv::Point_<T>& b) {
return cv::Point_<T>(b.x - a.x, b.y - a.y);
}
template<class T>
inline double
distance(const cv::Point_<T>& p) {
return std::sqrt(p.x * p.x + p.y * p.y);
}
template<class T>
inline double
distance(const cv::Point_<T>& a, const cv::Point_<T>& b) {
return distance(difference(a, b));
}
template<class To, class From>
inline void
convert_points(const typename point_list<From>::type& from, typename point_list<To>::type& to) {
std::transform(from.cbegin(), from.cend(), std::back_inserter(to), [](cv::Point_<From> p) -> cv::Point_<To> { return cv::Point_<To>(p.x, p.y); });
}
template<class To, class From>
inline typename point_list<To>::type
transform_points(const typename point_list<From>::type& from) {
typename point_list<To>::type ret;
convert_points<To, From>(from, ret);
return ret;
}
template<class InputIterator, class OutputIterator>
inline OutputIterator
transform_points(InputIterator s, InputIterator e, OutputIterator o) {
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
typedef typename std::iterator_traits<OutputIterator>::value_type output_type;
o = std::transform(s, e, o, [](const input_type& p) -> output_type { return output_type(p.x, p.y); });
return o;
}
template<class InputIterator, class OutputIterator>
inline OutputIterator
transform_contours(InputIterator s, InputIterator e, OutputIterator o) {
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
typedef typename std::iterator_traits<OutputIterator>::value_type output_type;
o = std::transform(s, e, o, [](const input_type& p) -> output_type {
output_type ret;
ret.resize(p.size());
transform_points(p.cbegin(), p.cend(), ret.begin());
return ret;
});
return o;
}
template<class T, class U>
void
bresenham(cv::Point_<T> p0, cv::Point_<T> p1, std::vector<cv::Point_<U>>& out) {
T dx = std::abs(p1.x - p0.x);
T dy = std::abs(p1.y - p0.y);
T sx = p0.x < p1.x ? 1 : -1;
T sy = p0.y < p1.y ? 1 : -1;
T err = dx - dy;
while(p0.x != p1.x || p0.y != p1.y) {
T e2 = 2 * err;
if(e2 > dy * -1) {
err -= dy;
p0.x += sx;
}
if(e2 < dx) {
err += dx;
p0.y += sy;
}
out.push_back(p0);
}
}
#endif // defined GEOMETRY_HPP