-
Notifications
You must be signed in to change notification settings - Fork 1
/
sirius_interface.cc
1417 lines (1249 loc) · 47.5 KB
/
sirius_interface.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2019 RTE
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Initial version of this code was provided by RTE
#include <limits>
#include <memory>
#include <exception>
#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/base/timer.h"
#include "ortools/linear_solver/linear_solver.h"
#if defined(USE_SIRIUS)
extern "C" {
#include "srs_api.h"
}
#define SRS_INTEGER 2
#define SRS_CONTINUOUS 1
//# define EN_BASE 0
//# define EN_BASE_LIBRE 1
//# define EN_BASE_SUR_BORNE_INF 2
//# define EN_BASE_SUR_BORNE_SUP 3
//# define HORS_BASE_SUR_BORNE_INF 4
//# define HORS_BASE_SUR_BORNE_SUP 5
//# define HORS_BASE_A_ZERO 6 /* Pour les variables non bornees qui restent hors base */
//FREE = 0,
//AT_LOWER_BOUND,
//AT_UPPER_BOUND,
//FIXED_VALUE,
//BASIC
enum SRS_BASIS_STATUS {
SRS_BASIC = EN_BASE,
SRS_BASIC_FREE = EN_BASE_LIBRE,
SRS_AT_LOWER = EN_BASE_SUR_BORNE_INF,
SRS_AT_UPPER = EN_BASE_SUR_BORNE_SUP,
SRS_FREE_LOWER = HORS_BASE_SUR_BORNE_INF,
SRS_FREE_UPPER = HORS_BASE_SUR_BORNE_SUP,
SRS_FREE_ZERO = HORS_BASE_A_ZERO,
};
// In case we need to return a double but don't have a value for that
// we just return a NaN.
#if !defined(CPX_NAN)
#define SRS_NAN std::numeric_limits<double>::quiet_NaN()
#endif
// The argument to this macro is the invocation of a SRS function that
// returns a status. If the function returns non-zero the macro aborts
// the program with an appropriate error message.
#define CHECK_STATUS(s) \
do { \
int const status_ = s; \
CHECK_EQ(0, status_); \
} while (0)
namespace operations_research {
using std::unique_ptr;
// For a model that is extracted to an instance of this class there is a
// 1:1 corresponence between MPVariable instances and SIRIUS columns: the
// index of an extracted variable is the column index in the SIRIUS model.
// Similiar for instances of MPConstraint: the index of the constraint in
// the model is the row index in the SIRIUS model.
class SiriusInterface : public MPSolverInterface {
public:
// NOTE: 'mip' specifies the type of the problem (either continuous or
// mixed integer. This type is fixed for the lifetime of the
// instance. There are no dynamic changes to the model type.
explicit SiriusInterface(MPSolver *const solver, bool mip);
~SiriusInterface();
// Sets the optimization direction (min/max).
virtual void SetOptimizationDirection(bool maximize);
// ----- Solve -----
// Solve the problem using the parameter values specified.
virtual MPSolver::ResultStatus Solve(MPSolverParameters const ¶m);
// Writes the model.
void Write(const std::string& filename) override;
// ----- Model modifications and extraction -----
// Resets extracted model
virtual void Reset();
virtual void SetVariableBounds(int var_index, double lb, double ub);
virtual void SetVariableInteger(int var_index, bool integer);
virtual void SetConstraintBounds(int row_index, double lb, double ub);
virtual void AddRowConstraint(MPConstraint *const ct);
virtual void AddVariable(MPVariable *const var);
virtual void SetCoefficient(MPConstraint *const constraint,
MPVariable const *const variable,
double new_value, double old_value);
// Clear a constraint from all its terms.
virtual void ClearConstraint(MPConstraint *const constraint);
// Change a coefficient in the linear objective
virtual void SetObjectiveCoefficient(MPVariable const *const variable,
double coefficient);
// Change the constant term in the linear objective.
virtual void SetObjectiveOffset(double value);
// Clear the objective from all its terms.
virtual void ClearObjective();
// ------ Query statistics on the solution and the solve ------
// Number of simplex iterations
virtual int64_t iterations() const;
// Number of branch-and-bound nodes. Only available for discrete problems.
virtual int64_t nodes() const;
// Returns the basis status of a row.
virtual MPSolver::BasisStatus row_status(int constraint_index) const;
// Returns the basis status of a column.
virtual MPSolver::BasisStatus column_status(int variable_index) const;
bool SetSolverSpecificParametersAsString(const std::string& parameters) override;
// ----- Misc -----
// Query problem type.
// Remember that problem type is a static property that is set
// in the constructor and never changed.
virtual bool IsContinuous() const { return IsLP(); }
virtual bool IsLP() const { return !mMip; }
virtual bool IsMIP() const { return mMip; }
virtual void ExtractNewVariables();
virtual void ExtractNewConstraints();
virtual void ExtractObjective();
virtual std::string SolverVersion() const;
virtual void *underlying_solver() { return reinterpret_cast<void *>(mLp); }
virtual double ComputeExactConditionNumber() const {
if (!IsContinuous()) {
LOG(DFATAL) << "ComputeExactConditionNumber not implemented for"
<< " SIRIUS_MIXED_INTEGER_PROGRAMMING";
return 0.0;
}
// TODO(user,user): Not yet working.
LOG(DFATAL) << "ComputeExactConditionNumber not implemented for"
<< " SIRIUS_LINEAR_PROGRAMMING";
return 0.0;
}
protected:
// Set all parameters in the underlying solver.
virtual void SetParameters(MPSolverParameters const ¶m);
// Set each parameter in the underlying solver.
virtual void SetRelativeMipGap(double value);
virtual void SetPrimalTolerance(double value);
virtual void SetDualTolerance(double value);
virtual void SetPresolveMode(int value) override;
virtual void SetScalingMode(int value);
virtual void SetLpAlgorithm(int value);
virtual bool ReadParameterFile(std::string const &filename);
virtual absl::Status SetNumThreads(int num_threads) override;
virtual std::string ValidFileExtensionForParameterFile() const;
private:
// Mark modeling object "out of sync". This implicitly invalidates
// solution information as well. It is the counterpart of
// MPSolverInterface::InvalidateSolutionSynchronization
void InvalidateModelSynchronization() {
mCstat = 0;
mRstat = 0;
sync_status_ = MUST_RELOAD;
}
// Transform SIRIUS basis status to MPSolver basis status.
static MPSolver::BasisStatus xformBasisStatus(char sirius_basis_status);
private:
SRS_PROBLEM * mLp;
bool const mMip;
// Incremental extraction.
// Without incremental extraction we have to re-extract the model every
// time we perform a solve. Due to the way the Reset() function is
// implemented, this will lose MIP start or basis information from a
// previous solve. On the other hand, if there is a significant changes
// to the model then just re-extracting everything is usually faster than
// keeping the low-level modeling object in sync with the high-level
// variables/constraints.
// Note that incremental extraction is particularly expensive in function
// ExtractNewVariables() since there we must scan _all_ old constraints
// and update them with respect to the new variables.
bool const supportIncrementalExtraction;
// Use slow and immediate updates or try to do bulk updates.
// For many updates to the model we have the option to either perform
// the update immediately with a potentially slow operation or to
// just mark the low-level modeling object out of sync and re-extract
// the model later.
enum SlowUpdates {
SlowSetCoefficient = 0x0001,
SlowClearConstraint = 0x0002,
SlowSetObjectiveCoefficient = 0x0004,
SlowClearObjective = 0x0008,
SlowSetConstraintBounds = 0x0010,
SlowSetVariableInteger = 0x0020,
SlowSetVariableBounds = 0x0040,
SlowUpdatesAll = 0xffff
} const slowUpdates;
// SIRIUS has no method to query the basis status of a single variable.
// Hence we query the status only once and cache the array. This is
// much faster in case the basis status of more than one row/column
// is required.
unique_ptr<char[]> mutable mCstat;
unique_ptr<char[]> mutable mRstat;
// Setup the right-hand side of a constraint from its lower and upper bound.
static void MakeRhs(double lb, double ub, double &rhs, char &sense,
double &range);
std::map<int , std::vector<std::pair<int, double> > > fixedOrderCoefficientsPerConstraint;
// vector to store TypeDeBorneDeLaVariable values
std::vector<int> varBoundsTypeValues;
};
// Creates a LP/MIP instance.
SiriusInterface::SiriusInterface(MPSolver *const solver, bool mip)
: MPSolverInterface(solver),
mLp(NULL),
mMip(mip),
slowUpdates(static_cast<SlowUpdates>(SlowSetObjectiveCoefficient |
SlowClearObjective)),
supportIncrementalExtraction(false),
mCstat(),
mRstat() {
//google::InitGoogleLogging("Sirius");
int status;
char const *name = solver_->name_.c_str();
mLp = SRScreateprob();
DCHECK(mLp != nullptr); // should not be NULL if status=0
//FIXME CHECK_STATUS(SRSloadlp(mLp, "newProb", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
//FIXME CHECK_STATUS(SRSchgobjsense(mLp, maximize_ ? SRS_OBJ_MAXIMIZE : SRS_OBJ_MINIMIZE));
}
SiriusInterface::~SiriusInterface() {
CHECK_STATUS(SRSfreeprob(mLp));
//google::ShutdownGoogleLogging();
}
std::string SiriusInterface::SolverVersion() const {
// We prefer SRSversionnumber() over SRSversion() since the
// former will never pose any encoding issues.
return absl::StrFormat("SIRIUS library version %s", SRSversion());
}
// ------ Model modifications and extraction -----
void SiriusInterface::Reset() {
// Instead of explicitly clearing all modeling objects we
// just delete the problem object and allocate a new one.
CHECK_STATUS(SRSfreeprob(mLp));
const char *const name = solver_->name_.c_str();
mLp = SRScreateprob();
DCHECK(mLp != nullptr); // should not be NULL if status=0
//FIXME CHECK_STATUS(SRSloadlp(mLp, "newProb", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
//FIXME CHECK_STATUS(SRSchgobjsense(mLp, maximize_ ? SRS_OBJ_MAXIMIZE : SRS_OBJ_MINIMIZE));
ResetExtractionInformation();
mCstat = 0;
mRstat = 0;
}
void SiriusInterface::SetOptimizationDirection(bool maximize) {
InvalidateSolutionSynchronization();
//FIXME SRSchgobjsense(mLp, maximize ? SRS_OBJ_MAXIMIZE : SRS_OBJ_MINIMIZE);
}
void SiriusInterface::SetVariableBounds(int var_index, double lb, double ub) {
InvalidateSolutionSynchronization();
// Changing the bounds of a variable is fast. However, doing this for
// many variables may still be slow. So we don't perform the update by
// default. However, if we support incremental extraction
// (supportIncrementalExtraction is true) then we MUST perform the
// update here or we will lose it.
//if (!supportIncrementalExtraction && !(slowUpdates & SlowSetVariableBounds)) {
// InvalidateModelSynchronization();
//}
//else
{
if (variable_is_extracted(var_index)) {
// Variable has already been extracted, so we must modify the
// modeling object.
DCHECK_LT(var_index, last_variable_index_);
int const idx[1] = { var_index };
double lb_l = (lb == -MPSolver::infinity() ? -SRS_infinite : lb);
double ub_l = (ub == MPSolver::infinity() ? SRS_infinite : ub);
CHECK_STATUS(SRSchgbds(mLp, 1, idx, &lb_l, &ub_l));
}
else {
// Variable is not yet extracted. It is sufficient to just mark
// the modeling object "out of sync"
InvalidateModelSynchronization();
}
}
}
// Modifies integrality of an extracted variable.
void SiriusInterface::SetVariableInteger(int var_index, bool integer) {
InvalidateSolutionSynchronization();
// NOTE: The type of the model (continuous or mixed integer) is
// defined once and for all in the constructor. There are no
// dynamic changes to the model type.
// Changing the type of a variable should be fast. Still, doing all
// updates in one big chunk right before solve() is usually faster.
// However, if we support incremental extraction
// (supportIncrementalExtraction is true) then we MUST change the
// type of extracted variables here.
if (!supportIncrementalExtraction &&
!(slowUpdates & SlowSetVariableInteger)) {
InvalidateModelSynchronization();
}
else {
if (mMip) {
if (variable_is_extracted(var_index)) {
// Variable is extracted. Change the type immediately.
// TODO: Should we check the current type and don't do anything
// in case the type does not change?
DCHECK_LE(var_index, SRSgetnbcols(mLp));
char const type = integer ? SRS_INTEGER : SRS_CONTINUOUS;
throw std::logic_error("Not implemented");
//FIXME CHECK_STATUS(SRSchgcoltype(mLp, 1, &var_index, &type));
}
else
InvalidateModelSynchronization();
}
else {
LOG(DFATAL)
<< "Attempt to change variable to integer in non-MIP problem!";
}
}
}
// Setup the right-hand side of a constraint.
void SiriusInterface::MakeRhs(double lb, double ub, double &rhs, char &sense,
double &range) {
if (lb == ub) {
// Both bounds are equal -> this is an equality constraint
rhs = lb;
range = 0.0;
sense = '=';
}
else if (lb > (-SRS_infinite) && ub < SRS_infinite) {
// Both bounds are finite -> this is a ranged constraint
throw std::logic_error("Sirius does not handle ranged constraint.");
if (ub < lb) {
CHECK_STATUS(-1);
}
CHECK_STATUS(-1);
}
else if (ub < SRS_infinite ||
(std::abs(ub) == SRS_infinite && std::abs(lb) > SRS_infinite)) {
// Finite upper, infinite lower bound -> this is a <= constraint
rhs = ub;
range = 0.0;
sense = '<';
}
else if (lb > (-SRS_infinite) ||
(std::abs(lb) == SRS_infinite && std::abs(ub) > SRS_infinite)) {
// Finite lower, infinite upper bound -> this is a >= constraint
rhs = lb;
range = 0.0;
sense = '>';
}
else {
// Lower and upper bound are both infinite.
// This is used for example in .mps files to specify alternate
// objective functions.
// Note that the case lb==ub was already handled above, so we just
// pick the bound with larger magnitude and create a constraint for it.
// Note that we replace the infinite bound by SRS_infinite since
// bounds with larger magnitude may cause other SIRIUS functions to
// fail (for example the export to LP files).
DCHECK_GT(std::abs(lb), SRS_infinite);
DCHECK_GT(std::abs(ub), SRS_infinite);
if (std::abs(lb) > std::abs(ub)) {
rhs = (lb < 0) ? -SRS_infinite : SRS_infinite;
sense = '>';
}
else {
rhs = (ub < 0) ? -SRS_infinite : SRS_infinite;
sense = '<';
}
range = 0.0;
}
}
void SiriusInterface::SetConstraintBounds(int index, double lb, double ub) {
InvalidateSolutionSynchronization();
// Changing rhs, sense, or range of a constraint is not too slow.
// Still, doing all the updates in one large operation is faster.
// Note however that if we do not want to re-extract the full model
// for each solve (supportIncrementalExtraction is true) then we MUST
// update the constraint here, otherwise we lose this update information.
//if (!supportIncrementalExtraction &&
// !(slowUpdates & SlowSetConstraintBounds)) {
// InvalidateModelSynchronization();
//}
//else
{
if (constraint_is_extracted(index)) {
// Constraint is already extracted, so we must update its bounds
// and its type.
DCHECK(mLp != NULL);
char sense;
double range, rhs;
MakeRhs(lb, ub, rhs, sense, range);
CHECK_STATUS(SRSchgrhs(mLp, 1, &index, &rhs));
CHECK_STATUS(SRSchgsens(mLp, 1, &index, &sense));
CHECK_STATUS(SRSchgrangeval(mLp, 1, &index, &range));
}
else {
// Constraint is not yet extracted. It is sufficient to mark the
// modeling object as "out of sync"
InvalidateModelSynchronization();
}
}
}
void SiriusInterface::AddRowConstraint(MPConstraint *const ct) {
// This is currently only invoked when a new constraint is created,
// see MPSolver::MakeRowConstraint().
// At this point we only have the lower and upper bounds of the
// constraint. We could immediately call SRSaddrows() here but it is
// usually much faster to handle the fully populated constraint in
// ExtractNewConstraints() right before the solve.
InvalidateModelSynchronization();
}
void SiriusInterface::AddVariable(MPVariable *const ct) {
// This is currently only invoked when a new variable is created,
// see MPSolver::MakeVar().
// At this point the variable does not appear in any constraints or
// the objective function. We could invoke SRSaddcols() to immediately
// create the variable here but it is usually much faster to handle the
// fully setup variable in ExtractNewVariables() right before the solve.
InvalidateModelSynchronization();
}
void SiriusInterface::SetCoefficient(MPConstraint *const constraint,
MPVariable const *const variable,
double new_value, double) {
InvalidateSolutionSynchronization();
fixedOrderCoefficientsPerConstraint[constraint->index()].push_back(std::make_pair(variable->index(), new_value));
// Changing a single coefficient in the matrix is potentially pretty
// slow since that coefficient has to be found in the sparse matrix
// representation. So by default we don't perform this update immediately
// but instead mark the low-level modeling object "out of sync".
// If we want to support incremental extraction then we MUST perform
// the modification immediately or we will lose it.
if (!supportIncrementalExtraction && !(slowUpdates & SlowSetCoefficient)) {
InvalidateModelSynchronization();
}
else {
int const row = constraint->index();
int const col = variable->index();
if (constraint_is_extracted(row) && variable_is_extracted(col)) {
// If row and column are both extracted then we can directly
// update the modeling object
DCHECK_LE(row, last_constraint_index_);
DCHECK_LE(col, last_variable_index_);
//FIXME CHECK_STATUS(SRSchgcoef(mLp, row, col, new_value));
}
else {
// If either row or column is not yet extracted then we can
// defer the update to ExtractModel()
InvalidateModelSynchronization();
}
}
}
void SiriusInterface::ClearConstraint(MPConstraint *const constraint) {
int const row = constraint->index();
if (!constraint_is_extracted(row))
// There is nothing to do if the constraint was not even extracted.
return;
// Clearing a constraint means setting all coefficients in the corresponding
// row to 0 (we cannot just delete the row since that would renumber all
// the constraints/rows after it).
// Modifying coefficients in the matrix is potentially pretty expensive
// since they must be found in the sparse matrix representation. That is
// why by default we do not modify the coefficients here but only mark
// the low-level modeling object "out of sync".
if (!(slowUpdates & SlowClearConstraint)) {
InvalidateModelSynchronization();
}
else {
InvalidateSolutionSynchronization();
int const len = constraint->coefficients_.size();
unique_ptr<int[]> rowind(new int[len]);
unique_ptr<int[]> colind(new int[len]);
unique_ptr<double[]> val(new double[len]);
int j = 0;
const auto& coeffs = constraint->coefficients_;
for (auto it(coeffs.begin()); it != coeffs.end(); ++it) {
int const col = it->first->index();
if (variable_is_extracted(col)) {
rowind[j] = row;
colind[j] = col;
val[j] = 0.0;
++j;
}
}
if (j) {
//FIXME CHECK_STATUS(SRSchgmcoef(mLp, j, rowind.get(), colind.get(), val.get()));
}
}
}
void SiriusInterface::SetObjectiveCoefficient(MPVariable const *const variable,
double coefficient) {
int const col = variable->index();
if (!variable_is_extracted(col))
// Nothing to do if variable was not even extracted
return;
InvalidateSolutionSynchronization();
// The objective function is stored as a dense vector, so updating a
// single coefficient is O(1). So by default we update the low-level
// modeling object here.
// If we support incremental extraction then we have no choice but to
// perform the update immediately.
if (supportIncrementalExtraction ||
(slowUpdates & SlowSetObjectiveCoefficient)) {
CHECK_STATUS(SRSchgobj(mLp, 1, &col, &coefficient));
}
else
InvalidateModelSynchronization();
}
void SiriusInterface::SetObjectiveOffset(double value) {
// Changing the objective offset is O(1), so we always do it immediately.
InvalidateSolutionSynchronization();
throw std::logic_error("Not implemented");
//FIXME CHECK_STATUS(SRSsetobjoffset(mLp, value));
}
void SiriusInterface::ClearObjective() {
InvalidateSolutionSynchronization();
// Since the objective function is stored as a dense vector updating
// it is O(n), so we usually perform the update immediately.
// If we want to support incremental extraction then we have no choice
// but to perform the update immediately.
if (supportIncrementalExtraction || (slowUpdates & SlowClearObjective)) {
int const cols = SRSgetnbcols(mLp);
unique_ptr<int[]> ind(new int[cols]);
unique_ptr<double[]> zero(new double[cols]);
int j = 0;
const auto& coeffs = solver_->objective_->coefficients_;
for (auto it(coeffs.begin()); it != coeffs.end(); ++it) {
int const idx = it->first->index();
// We only need to reset variables that have been extracted.
if (variable_is_extracted(idx)) {
DCHECK_LT(idx, cols);
ind[j] = idx;
zero[j] = 0.0;
++j;
}
}
if (j > 0) CHECK_STATUS(SRSchgobj(mLp, j, ind.get(), zero.get()));
//FIXME CHECK_STATUS(SRSsetobjoffset(mLp, 0.0));
}
else
InvalidateModelSynchronization();
}
// ------ Query statistics on the solution and the solve ------
int64_t SiriusInterface::iterations() const {
int iter = 0;
if (!CheckSolutionIsSynchronized()) return kUnknownNumberOfIterations;
CHECK_STATUS(SRSgetspxitercount(mLp, &iter));
return static_cast<int64_t>(iter);
}
int64_t SiriusInterface::nodes() const {
if (mMip) {
int nodes = 0;
if (!CheckSolutionIsSynchronized()) return kUnknownNumberOfNodes;
CHECK_STATUS(SRSgetmipnodecount(mLp, &nodes));
return static_cast<int64_t>(nodes);
}
else {
LOG(DFATAL) << "Number of nodes only available for discrete problems";
return kUnknownNumberOfNodes;
}
}
// Transform a SIRIUS basis status to an MPSolver basis status.
MPSolver::BasisStatus SiriusInterface::xformBasisStatus(char sirius_basis_status) {
switch (sirius_basis_status) {
case SRS_AT_LOWER:
return MPSolver::AT_LOWER_BOUND;
case SRS_BASIC:
return MPSolver::BASIC;
case SRS_AT_UPPER:
return MPSolver::AT_UPPER_BOUND;
case SRS_FREE_LOWER:
case SRS_FREE_UPPER:
case SRS_FREE_ZERO:
case SRS_BASIC_FREE:
return MPSolver::FREE;
default:
LOG(DFATAL) << "Unknown SIRIUS basis status";
return MPSolver::FREE;
}
}
// Returns the basis status of a row.
MPSolver::BasisStatus SiriusInterface::row_status(int constraint_index) const {
if (mMip) {
LOG(FATAL) << "Basis status only available for continuous problems";
return MPSolver::FREE;
}
if (CheckSolutionIsSynchronized()) {
if (!mRstat) {
int const rows = SRSgetnbrows(mLp);
unique_ptr<char[]> data(new char[rows]);
char * ptrToData = data.get();
mRstat.swap(data);
CHECK_STATUS(SRSgetrowbasisstatus(mLp, &ptrToData));
}
}
else
mRstat = 0;
if (mRstat) {
return xformBasisStatus(mRstat[constraint_index]);
}
else {
LOG(FATAL) << "Row basis status not available";
return MPSolver::FREE;
}
}
// Returns the basis status of a column.
MPSolver::BasisStatus SiriusInterface::column_status(int variable_index) const {
if (mMip) {
LOG(FATAL) << "Basis status only available for continuous problems";
return MPSolver::FREE;
}
if (CheckSolutionIsSynchronized()) {
if (!mCstat) {
int const cols = SRSgetnbcols(mLp);
unique_ptr<char[]> data(new char[cols]);
char * ptrToData = data.get();
mCstat.swap(data);
CHECK_STATUS(SRSgetcolbasisstatus(mLp, &ptrToData));
}
}
else
mCstat = 0;
if (mCstat) {
return xformBasisStatus(mCstat[variable_index]);
}
else {
LOG(FATAL) << "Column basis status not available";
return MPSolver::FREE;
}
}
// Extract all variables that have not yet been extracted.
void SiriusInterface::ExtractNewVariables() {
// NOTE: The code assumes that a linear expression can never contain
// non-zero duplicates.
InvalidateSolutionSynchronization();
if (!supportIncrementalExtraction) {
// Without incremental extraction ExtractModel() is always called
// to extract the full model.
CHECK(last_variable_index_ == 0 ||
last_variable_index_ == solver_->variables_.size());
CHECK(last_constraint_index_ == 0 ||
last_constraint_index_ == solver_->constraints_.size());
}
int const last_extracted = last_variable_index_;
int const var_count = solver_->variables_.size();
int newcols = var_count - last_extracted;
if (newcols > 0) {
// There are non-extracted variables. Extract them now.
unique_ptr<double[]> obj(new double[newcols]);
unique_ptr<double[]> lb(new double[newcols]);
unique_ptr<double[]> ub(new double[newcols]);
unique_ptr<int[]> ctype(new int[newcols]);
unique_ptr<const char *[]> colname(new const char *[newcols]);
bool have_names = false;
for (int j = 0, varidx = last_extracted; j < newcols; ++j, ++varidx) {
MPVariable const *const var = solver_->variables_[varidx];
lb[j] = var->lb();
ub[j] = var->ub();
ctype[j] = var->integer() ? SRS_INTEGER : SRS_CONTINUOUS;
colname[j] = var->name().empty() ? 0 : var->name().c_str();
have_names = have_names || var->name().empty();
obj[j] = solver_->objective_->GetCoefficient(var);
}
// Arrays for modifying the problem are setup. Update the index
// of variables that will get extracted now. Updating indices
// _before_ the actual extraction makes things much simpler in
// case we support incremental extraction.
// In case of error we just reset the indeces.
std::vector<MPVariable *> const &variables = solver_->variables();
for (int j = last_extracted; j < var_count; ++j) {
CHECK(!variable_is_extracted(variables[j]->index()));
set_variable_as_extracted(variables[j]->index(), true);
}
try {
bool use_newcols = true;
if (supportIncrementalExtraction) {
// If we support incremental extraction then we must
// update existing constraints with the new variables.
// To do that we use SRSaddcols() to actually create the
// variables. This is supposed to be faster than combining
// SRSnewcols() and SRSchgcoeflist().
// For each column count the size of the intersection with
// existing constraints.
unique_ptr<int[]> collen(new int[newcols]);
for (int j = 0; j < newcols; ++j) collen[j] = 0;
int nonzeros = 0;
// TODO: Use a bitarray to flag the constraints that actually
// intersect new variables?
for (int i = 0; i < last_constraint_index_; ++i) {
MPConstraint const *const ct = solver_->constraints_[i];
CHECK(constraint_is_extracted(ct->index()));
const auto& coeffs = ct->coefficients_;
for (auto it(coeffs.begin()); it != coeffs.end(); ++it) {
int const idx = it->first->index();
if (variable_is_extracted(idx) && idx > last_variable_index_) {
collen[idx - last_variable_index_]++;
++nonzeros;
}
}
}
if (nonzeros > 0) {
// At least one of the new variables did intersect with an
// old constraint. We have to create the new columns via
// SRSaddcols().
use_newcols = false;
unique_ptr<int[]> begin(new int[newcols + 2]);
unique_ptr<int[]> cmatind(new int[nonzeros]);
unique_ptr<double[]> cmatval(new double[nonzeros]);
// Here is how cmatbeg[] is setup:
// - it is initialized as
// [ 0, 0, collen[0], collen[0]+collen[1], ... ]
// so that cmatbeg[j+1] tells us where in cmatind[] and
// cmatval[] we need to put the next nonzero for column
// j
// - after nonzeros have been setup the array looks like
// [ 0, collen[0], collen[0]+collen[1], ... ]
// so that it is the correct input argument for SRSaddcols
int *cmatbeg = begin.get();
cmatbeg[0] = 0;
cmatbeg[1] = 0;
++cmatbeg;
for (int j = 0; j < newcols; ++j)
cmatbeg[j + 1] = cmatbeg[j] + collen[j];
for (int i = 0; i < last_constraint_index_; ++i) {
MPConstraint const *const ct = solver_->constraints_[i];
int const row = ct->index();
const auto& coeffs = ct->coefficients_;
for (auto it(coeffs.begin()); it != coeffs.end(); ++it) {
int const idx = it->first->index();
if (variable_is_extracted(idx) && idx > last_variable_index_) {
int const nz = cmatbeg[idx]++;
cmatind[nz] = row;
cmatval[nz] = it->second;
}
}
}
--cmatbeg;
//FIXME CHECK_STATUS(SRScreatecols(mLp, newcols, nonzeros, obj.get(), cmatbeg, cmatind.get(), cmatval.get(),lb.get(), ub.get()));
}
}
if (use_newcols) {
// Either incremental extraction is not supported or none of
// the new variables did intersect an existing constraint.
// We can just use SRSnewcols() to create the new variables.
std::vector<int> collen(newcols, 0);
std::vector<int> cmatbeg(newcols, 0);
unique_ptr<int[]> cmatind(new int[1]);
unique_ptr<double[]> cmatval(new double[1]);
cmatind[0] = 0;
cmatval[0] = 1.0;
CHECK_STATUS(
SRScreatecols(mLp, newcols, obj.get(), ctype.get(), lb.get(), ub.get(), colname.get())
);
//int const cols = SRSgetnbcols(mLp);
//unique_ptr<int[]> ind(new int[newcols]);
//for (int j = 0; j < cols; ++j)
// ind[j] = j;
//CHECK_STATUS(
// SRSchgcoltype(mLp, cols - last_extracted, ind.get(), ctype.get())
//);
}
else {
// Incremental extraction: we must update the ctype of the
// newly created variables (SRSaddcols() does not allow
// specifying the ctype)
if (mMip && SRSgetnbcols(mLp) > 0) {
// Query the actual number of columns in case we did not
// manage to extract all columns.
int const cols = SRSgetnbcols(mLp);
unique_ptr<int[]> ind(new int[newcols]);
for (int j = last_extracted; j < cols; ++j)
ind[j - last_extracted] = j;
//FIXME CHECK_STATUS(SRSchgcoltype(mLp, cols - last_extracted, ind.get(),ctype.get()));
}
}
}
catch (...) {
// Undo all changes in case of error.
int const cols = SRSgetnbcols(mLp);
if (cols > last_extracted)
{
std::vector<int> colsToDelete;
for (int i = last_extracted; i < cols; ++i)
colsToDelete.push_back(i);
//FIXME (void)SRSdelcols(mLp, colsToDelete.size(), colsToDelete.data());
}
std::vector<MPVariable *> const &variables = solver_->variables();
int const size = variables.size();
for (int j = last_extracted; j < size; ++j)
set_variable_as_extracted(j, false);
throw;
}
}
}
// Extract constraints that have not yet been extracted.
void SiriusInterface::ExtractNewConstraints() {
// NOTE: The code assumes that a linear expression can never contain
// non-zero duplicates.
if (!supportIncrementalExtraction) {
// Without incremental extraction ExtractModel() is always called
// to extract the full model.
CHECK(last_variable_index_ == 0 ||
last_variable_index_ == solver_->variables_.size());
CHECK(last_constraint_index_ == 0 ||
last_constraint_index_ == solver_->constraints_.size());
}
int const offset = last_constraint_index_;
int const total = solver_->constraints_.size();
if (total > offset) {
// There are constraints that are not yet extracted.
InvalidateSolutionSynchronization();
int newCons = total - offset;
int const cols = SRSgetnbcols(mLp);
//DCHECK_EQ(last_variable_index_, cols);
// Update indices of new constraints _before_ actually extracting
// them. In case of error we will just reset the indices.
for (int c = offset; c < total; ++c)
set_constraint_as_extracted(c, true);
try {
int nbTerms = 0;
for (int c = 0; c < newCons; ++c) {
MPConstraint const *const ct = solver_->constraints_[offset + c];
nbTerms += ct->coefficients_.size();
}
unique_ptr<int[]> rmatbeg(new int[newCons]);
unique_ptr<int[]> rmatrownbterms(new int[newCons]);
unique_ptr<int[]> rmatind(new int[nbTerms]);
unique_ptr<double[]> rmatval(new double[nbTerms]);
unique_ptr<char[]> sense(new char[newCons]);
unique_ptr<double[]> rhs(new double[newCons]);
unique_ptr<char const *[]> name(new char const *[newCons]);
unique_ptr<double[]> rngval(new double[newCons]);
unique_ptr<int[]> rngind(new int[newCons]);
bool haveRanges = false;
// Loop over the new constraints, collecting rows for up to
// CHUNK constraints into the arrays so that adding constraints
// is faster.
int nextNz = 0;
for (int c = 0; c < newCons; ++c) {
// Collect up to CHUNK constraints into the arrays.
MPConstraint const *const ct = solver_->constraints_[offset + c];
// Setup right-hand side of constraint.
MakeRhs(ct->lb(), ct->ub(), rhs[c], sense[c],
rngval[c]);
haveRanges = haveRanges || (rngval[c] != 0.0);
rngind[c] = offset + c;
// Setup left-hand side of constraint.
rmatbeg[c] = nextNz;
//const auto& coeffs = ct->coefficients_;
const auto& coeffs = fixedOrderCoefficientsPerConstraint[ct->index()];
for (auto it(coeffs.begin()); it != coeffs.end(); ++it) {
int const idxVar = it->first;
if (variable_is_extracted(idxVar)) {
//DCHECK_LT(nextNz, cols);
//DCHECK_LT(idxVar, cols);
rmatind[nextNz] = idxVar;
rmatval[nextNz] = it->second;
++nextNz;
}
}
rmatrownbterms[c] = nextNz - rmatbeg[c];
//std::cout
// << c << " "
// << rmatbeg[c] << " "
// << rmatrownbterms[c] << " "
// << rmatind[c] << " "
// << rmatval[c] << " "
// << std::endl;
// Finally the name of the constraint.
name[c] = ct->name().empty() ? NULL : ct->name().c_str();
}
CHECK_STATUS(
//SRSaddrows(mLp, nextRow, nextNz, sense.get(), rhs.get(), rngval.get(), rmatbeg.get(), rmatind.get(), rmatval.get())
SRScreaterows(mLp, newCons, rhs.get(), rngval.get(), sense.get(), name.get())
);
SRSsetcoefs(mLp, rmatbeg.get(), rmatrownbterms.get(), rmatind.get(), rmatval.get());
}
catch (...) {
// Undo all changes in case of error.
int const rows = SRSgetnbrows(mLp);
std::vector<int> rowsToDelete;
for (int i = offset; i < rows; ++i)
rowsToDelete.push_back(i);
//FIXME if (rows > offset) (void)SRSdelrows(mLp, rowsToDelete.size(), rowsToDelete.data());
std::vector<MPConstraint *> const &constraints = solver_->constraints();
int const size = constraints.size();
for (int i = offset; i < size; ++i) set_constraint_as_extracted(i, false);
throw;
}
}
}