forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcombinatorial_auction2.py
107 lines (86 loc) · 2.72 KB
/
combinatorial_auction2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright 2010 Hakan Kjellerstrand [email protected]
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Combinatorial auction in Google CP Solver.
This is a more general model for the combinatorial example
in the Numberjack Tutorial, pages 9 and 24 (slides 19/175 and
51/175).
The original and more talkative model is here:
http://www.hakank.org/numberjack/combinatorial_auction.py
Compare with the following models:
* MiniZinc: http://hakank.org/minizinc/combinatorial_auction.mzn
* Gecode: http://hakank.org/gecode/combinatorial_auction.cpp
This model was created by Hakan Kjellerstrand ([email protected])
Also see my other Google CP Solver models:
http://www.hakank.org/google_or_tools/
"""
import sys
from collections import *
from ortools.constraint_solver import pywrapcp
def main():
# Create the solver.
solver = pywrapcp.Solver("Problem")
#
# data
#
N = 5
# the items for each bid
items = [
[0, 1], # A,B
[0, 2], # A, C
[1, 3], # B,D
[1, 2, 3], # B,C,D
[0] # A
]
# collect the bids for each item
items_t = defaultdict(list)
# [items_t.setdefault(j,[]).append(i) for i in range(N) for j in items[i] ]
# nicer:
[items_t[j].append(i) for i in range(N) for j in items[i]]
bid_amount = [10, 20, 30, 40, 14]
#
# declare variables
#
X = [solver.BoolVar("x%i" % i) for i in range(N)]
obj = solver.IntVar(0, 100, "obj")
#
# constraints
#
solver.Add(obj == solver.ScalProd(X, bid_amount))
for item in items_t:
solver.Add(solver.Sum([X[bid] for bid in items_t[item]]) <= 1)
# objective
objective = solver.Maximize(obj, 1)
#
# solution and search
#
solution = solver.Assignment()
solution.Add(X)
solution.Add(obj)
# db: DecisionBuilder
db = solver.Phase(X, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE)
solver.NewSearch(db, [objective])
num_solutions = 0
while solver.NextSolution():
print("X:", [X[i].Value() for i in range(N)])
print("obj:", obj.Value())
print()
num_solutions += 1
solver.EndSearch()
print()
print("num_solutions:", num_solutions)
print("failures:", solver.Failures())
print("branches:", solver.Branches())
print("WallTime:", solver.WallTime())
if __name__ == "__main__":
main()