forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlinear_programming.py
151 lines (117 loc) · 5.11 KB
/
linear_programming.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python3
# Copyright 2010-2025 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Linear programming examples that show how to use the APIs."""
from ortools.linear_solver import pywraplp
def Announce(solver, api_type):
print(
"---- Linear programming example with " + solver + " (" + api_type + ") -----"
)
def RunLinearExampleNaturalLanguageAPI(optimization_problem_type):
"""Example of simple linear program with natural language API."""
solver = pywraplp.Solver.CreateSolver(optimization_problem_type)
if not solver:
return
Announce(optimization_problem_type, "natural language API")
infinity = solver.infinity()
# x1, x2 and x3 are continuous non-negative variables.
x1 = solver.NumVar(0.0, infinity, "x1")
x2 = solver.NumVar(0.0, infinity, "x2")
x3 = solver.NumVar(0.0, infinity, "x3")
solver.Maximize(10 * x1 + 6 * x2 + 4 * x3)
c0 = solver.Add(10 * x1 + 4 * x2 + 5 * x3 <= 600, "ConstraintName0")
c1 = solver.Add(2 * x1 + 2 * x2 + 6 * x3 <= 300)
sum_of_vars = sum([x1, x2, x3])
c2 = solver.Add(sum_of_vars <= 100.0, "OtherConstraintName")
SolveAndPrint(
solver, [x1, x2, x3], [c0, c1, c2], optimization_problem_type != "PDLP"
)
# Print a linear expression's solution value.
print("Sum of vars: %s = %s" % (sum_of_vars, sum_of_vars.solution_value()))
def RunLinearExampleCppStyleAPI(optimization_problem_type):
"""Example of simple linear program with the C++ style API."""
solver = pywraplp.Solver.CreateSolver(optimization_problem_type)
if not solver:
return
Announce(optimization_problem_type, "C++ style API")
infinity = solver.infinity()
# x1, x2 and x3 are continuous non-negative variables.
x1 = solver.NumVar(0.0, infinity, "x1")
x2 = solver.NumVar(0.0, infinity, "x2")
x3 = solver.NumVar(0.0, infinity, "x3")
# Maximize 10 * x1 + 6 * x2 + 4 * x3.
objective = solver.Objective()
objective.SetCoefficient(x1, 10)
objective.SetCoefficient(x2, 6)
objective.SetCoefficient(x3, 4)
objective.SetMaximization()
# x1 + x2 + x3 <= 100.
c0 = solver.Constraint(-infinity, 100.0, "c0")
c0.SetCoefficient(x1, 1)
c0.SetCoefficient(x2, 1)
c0.SetCoefficient(x3, 1)
# 10 * x1 + 4 * x2 + 5 * x3 <= 600.
c1 = solver.Constraint(-infinity, 600.0, "c1")
c1.SetCoefficient(x1, 10)
c1.SetCoefficient(x2, 4)
c1.SetCoefficient(x3, 5)
# 2 * x1 + 2 * x2 + 6 * x3 <= 300.
c2 = solver.Constraint(-infinity, 300.0, "c2")
c2.SetCoefficient(x1, 2)
c2.SetCoefficient(x2, 2)
c2.SetCoefficient(x3, 6)
SolveAndPrint(
solver, [x1, x2, x3], [c0, c1, c2], optimization_problem_type != "PDLP"
)
def SolveAndPrint(solver, variable_list, constraint_list, is_precise):
"""Solve the problem and print the solution."""
print("Number of variables = %d" % solver.NumVariables())
print("Number of constraints = %d" % solver.NumConstraints())
result_status = solver.Solve()
# The problem has an optimal solution.
assert result_status == pywraplp.Solver.OPTIMAL
# The solution looks legit (when using solvers others than
# GLOP_LINEAR_PROGRAMMING, verifying the solution is highly recommended!).
if is_precise:
assert solver.VerifySolution(1e-7, True)
print("Problem solved in %f milliseconds" % solver.wall_time())
# The objective value of the solution.
print("Optimal objective value = %f" % solver.Objective().Value())
# The value of each variable in the solution.
for variable in variable_list:
print("%s = %f" % (variable.name(), variable.solution_value()))
print("Advanced usage:")
print("Problem solved in %d iterations" % solver.iterations())
for variable in variable_list:
print("%s: reduced cost = %f" % (variable.name(), variable.reduced_cost()))
activities = solver.ComputeConstraintActivities()
for i, constraint in enumerate(constraint_list):
print(
(
"constraint %d: dual value = %f\n activity = %f"
% (i, constraint.dual_value(), activities[constraint.index()])
)
)
def main():
RunLinearExampleNaturalLanguageAPI("GLOP")
RunLinearExampleNaturalLanguageAPI("GLPK_LP")
RunLinearExampleNaturalLanguageAPI("CLP")
RunLinearExampleNaturalLanguageAPI("PDLP")
RunLinearExampleNaturalLanguageAPI("XPRESS_LP")
RunLinearExampleCppStyleAPI("GLOP")
RunLinearExampleCppStyleAPI("GLPK_LP")
RunLinearExampleCppStyleAPI("CLP")
RunLinearExampleCppStyleAPI("PDLP")
RunLinearExampleCppStyleAPI("XPRESS_LP")
if __name__ == "__main__":
main()