forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
variables_info.cc
490 lines (438 loc) · 17.9 KB
/
variables_info.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/variables_info.h"
#include <cstdlib>
#include <utility>
#include "absl/log/check.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/sparse.h"
namespace operations_research {
namespace glop {
VariablesInfo::VariablesInfo(const CompactSparseMatrix& matrix)
: matrix_(matrix) {}
bool VariablesInfo::LoadBoundsAndReturnTrueIfUnchanged(
const DenseRow& new_lower_bounds, const DenseRow& new_upper_bounds) {
const ColIndex num_cols = matrix_.num_cols();
DCHECK_EQ(num_cols, new_lower_bounds.size());
DCHECK_EQ(num_cols, new_upper_bounds.size());
// Optim if nothing changed.
if (lower_bounds_ == new_lower_bounds && upper_bounds_ == new_upper_bounds) {
return true;
}
lower_bounds_ = new_lower_bounds;
upper_bounds_ = new_upper_bounds;
variable_type_.resize(num_cols, VariableType::UNCONSTRAINED);
for (ColIndex col(0); col < num_cols; ++col) {
variable_type_[col] = ComputeVariableType(col);
}
return false;
}
void VariablesInfo::InitializeFromMutatedState() {
const ColIndex num_cols = matrix_.num_cols();
DCHECK_EQ(num_cols, lower_bounds_.size());
DCHECK_EQ(num_cols, upper_bounds_.size());
variable_type_.resize(num_cols, VariableType::UNCONSTRAINED);
for (ColIndex col(0); col < num_cols; ++col) {
variable_type_[col] = ComputeVariableType(col);
}
}
bool VariablesInfo::LoadBoundsAndReturnTrueIfUnchanged(
const DenseRow& variable_lower_bounds,
const DenseRow& variable_upper_bounds,
const DenseColumn& constraint_lower_bounds,
const DenseColumn& constraint_upper_bounds) {
const ColIndex num_cols = matrix_.num_cols();
const ColIndex num_variables = variable_upper_bounds.size();
const RowIndex num_rows = constraint_lower_bounds.size();
bool is_unchanged = (num_cols == lower_bounds_.size());
DCHECK_EQ(num_cols, num_variables + RowToColIndex(num_rows));
lower_bounds_.resize(num_cols, 0.0);
upper_bounds_.resize(num_cols, 0.0);
variable_type_.resize(num_cols, VariableType::FIXED_VARIABLE);
// Copy bounds of the variables.
for (ColIndex col(0); col < num_variables; ++col) {
if (lower_bounds_[col] != variable_lower_bounds[col] ||
upper_bounds_[col] != variable_upper_bounds[col]) {
lower_bounds_[col] = variable_lower_bounds[col];
upper_bounds_[col] = variable_upper_bounds[col];
is_unchanged = false;
variable_type_[col] = ComputeVariableType(col);
}
}
// Copy bounds of the slack.
for (RowIndex row(0); row < num_rows; ++row) {
const ColIndex col = num_variables + RowToColIndex(row);
if (lower_bounds_[col] != -constraint_upper_bounds[row] ||
upper_bounds_[col] != -constraint_lower_bounds[row]) {
lower_bounds_[col] = -constraint_upper_bounds[row];
upper_bounds_[col] = -constraint_lower_bounds[row];
is_unchanged = false;
variable_type_[col] = ComputeVariableType(col);
}
}
return is_unchanged;
}
void VariablesInfo::ResetStatusInfo() {
const ColIndex num_cols = matrix_.num_cols();
DCHECK_EQ(num_cols, lower_bounds_.size());
DCHECK_EQ(num_cols, upper_bounds_.size());
// TODO(user): These could just be Resized() but there is a bug with the
// iteration and resize it seems. Investigate. I suspect the last bucket
// is not cleared so you can still iterate on the ones there even if it all
// positions before num_cols are set to zero.
variable_status_.resize(num_cols, VariableStatus::FREE);
can_increase_.ClearAndResize(num_cols);
can_decrease_.ClearAndResize(num_cols);
is_basic_.ClearAndResize(num_cols);
not_basic_.ClearAndResize(num_cols);
non_basic_boxed_variables_.ClearAndResize(num_cols);
// This one cannot just be resized.
boxed_variables_are_relevant_ = true;
num_entries_in_relevant_columns_ = 0;
relevance_.ClearAndResize(num_cols);
}
void VariablesInfo::InitializeFromBasisState(ColIndex first_slack_col,
ColIndex num_new_cols,
const BasisState& state) {
ResetStatusInfo();
const ColIndex num_cols = lower_bounds_.size();
DCHECK_LE(num_new_cols, first_slack_col);
const ColIndex first_new_col(first_slack_col - num_new_cols);
// Compute the status for all the columns (note that the slack variables are
// already added at the end of the matrix at this stage).
const int state_size = state.statuses.size().value();
for (ColIndex col(0); col < num_cols; ++col) {
// Start with the given "warm" status from the BasisState if it exists.
VariableStatus status;
if (col < first_new_col && col < state_size) {
status = state.statuses[col];
} else if (col >= first_slack_col && col - num_new_cols < state_size) {
status = state.statuses[col - num_new_cols];
} else {
UpdateToNonBasicStatus(col, DefaultVariableStatus(col));
continue;
}
// Remove incompatibilities between the warm status and the current state.
switch (status) {
case VariableStatus::BASIC:
// Because we just called ResetStatusInfo(), we optimize the call to
// UpdateToNonBasicStatus(col) here. In an incremental setting with
// almost no work per call, the update of all the DenseBitRow are
// visible.
variable_status_[col] = VariableStatus::BASIC;
is_basic_.Set(col, true);
break;
case VariableStatus::AT_LOWER_BOUND:
if (lower_bounds_[col] == upper_bounds_[col]) {
UpdateToNonBasicStatus(col, VariableStatus::FIXED_VALUE);
} else {
UpdateToNonBasicStatus(col, lower_bounds_[col] == -kInfinity
? DefaultVariableStatus(col)
: status);
}
break;
case VariableStatus::AT_UPPER_BOUND:
if (lower_bounds_[col] == upper_bounds_[col]) {
UpdateToNonBasicStatus(col, VariableStatus::FIXED_VALUE);
} else {
UpdateToNonBasicStatus(col, upper_bounds_[col] == kInfinity
? DefaultVariableStatus(col)
: status);
}
break;
default:
UpdateToNonBasicStatus(col, DefaultVariableStatus(col));
}
}
}
int VariablesInfo::ChangeUnusedBasicVariablesToFree(
const RowToColMapping& basis) {
const ColIndex num_cols = lower_bounds_.size();
is_basic_.ClearAndResize(num_cols);
for (const ColIndex col : basis) {
UpdateToBasicStatus(col);
}
int num_no_longer_in_basis = 0;
for (ColIndex col(0); col < num_cols; ++col) {
if (!is_basic_[col] && variable_status_[col] == VariableStatus::BASIC) {
++num_no_longer_in_basis;
if (variable_type_[col] == VariableType::FIXED_VARIABLE) {
UpdateToNonBasicStatus(col, VariableStatus::FIXED_VALUE);
} else {
UpdateToNonBasicStatus(col, VariableStatus::FREE);
}
}
}
return num_no_longer_in_basis;
}
int VariablesInfo::SnapFreeVariablesToBound(Fractional distance,
const DenseRow& starting_values) {
int num_changes = 0;
const ColIndex num_cols = lower_bounds_.size();
for (ColIndex col(0); col < num_cols; ++col) {
if (variable_status_[col] != VariableStatus::FREE) continue;
if (variable_type_[col] == VariableType::UNCONSTRAINED) continue;
const Fractional value =
col < starting_values.size() ? starting_values[col] : 0.0;
const Fractional diff_ub = upper_bounds_[col] - value;
const Fractional diff_lb = value - lower_bounds_[col];
if (diff_lb <= diff_ub) {
if (diff_lb <= distance) {
++num_changes;
UpdateToNonBasicStatus(col, VariableStatus::AT_LOWER_BOUND);
}
} else {
if (diff_ub <= distance) {
++num_changes;
UpdateToNonBasicStatus(col, VariableStatus::AT_UPPER_BOUND);
}
}
}
return num_changes;
}
void VariablesInfo::InitializeToDefaultStatus() {
ResetStatusInfo();
const ColIndex num_cols = lower_bounds_.size();
for (ColIndex col(0); col < num_cols; ++col) {
UpdateToNonBasicStatus(col, DefaultVariableStatus(col));
}
}
VariableStatus VariablesInfo::DefaultVariableStatus(ColIndex col) const {
DCHECK_GE(col, 0);
DCHECK_LT(col, lower_bounds_.size());
if (lower_bounds_[col] == upper_bounds_[col]) {
return VariableStatus::FIXED_VALUE;
}
if (lower_bounds_[col] == -kInfinity && upper_bounds_[col] == kInfinity) {
return VariableStatus::FREE;
}
// Returns the bound with the lowest magnitude. Note that it must be finite
// because the VariableStatus::FREE case was tested earlier.
DCHECK(IsFinite(lower_bounds_[col]) || IsFinite(upper_bounds_[col]));
return std::abs(lower_bounds_[col]) <= std::abs(upper_bounds_[col])
? VariableStatus::AT_LOWER_BOUND
: VariableStatus::AT_UPPER_BOUND;
}
void VariablesInfo::MakeBoxedVariableRelevant(bool value) {
if (value == boxed_variables_are_relevant_) return;
boxed_variables_are_relevant_ = value;
if (value) {
for (const ColIndex col : non_basic_boxed_variables_) {
SetRelevance(col, variable_type_[col] != VariableType::FIXED_VARIABLE);
}
} else {
for (const ColIndex col : non_basic_boxed_variables_) {
SetRelevance(col, false);
}
}
}
void VariablesInfo::UpdateToBasicStatus(ColIndex col) {
if (in_dual_phase_one_) {
// TODO(user): A bit annoying that we need to test this even if we
// don't use the dual. But the cost is minimal.
if (lower_bounds_[col] != 0.0) lower_bounds_[col] = -kInfinity;
if (upper_bounds_[col] != 0.0) upper_bounds_[col] = +kInfinity;
variable_type_[col] = ComputeVariableType(col);
}
variable_status_[col] = VariableStatus::BASIC;
is_basic_.Set(col, true);
not_basic_.Set(col, false);
can_increase_.Set(col, false);
can_decrease_.Set(col, false);
non_basic_boxed_variables_.Set(col, false);
SetRelevance(col, false);
}
void VariablesInfo::UpdateToNonBasicStatus(ColIndex col,
VariableStatus status) {
DCHECK_NE(status, VariableStatus::BASIC);
variable_status_[col] = status;
is_basic_.Set(col, false);
not_basic_.Set(col, true);
can_increase_.Set(col, status == VariableStatus::AT_LOWER_BOUND ||
status == VariableStatus::FREE);
can_decrease_.Set(col, status == VariableStatus::AT_UPPER_BOUND ||
status == VariableStatus::FREE);
const bool boxed =
variable_type_[col] == VariableType::UPPER_AND_LOWER_BOUNDED;
non_basic_boxed_variables_.Set(col, boxed);
const bool relevance = status != VariableStatus::FIXED_VALUE &&
(boxed_variables_are_relevant_ || !boxed);
SetRelevance(col, relevance);
}
const VariableTypeRow& VariablesInfo::GetTypeRow() const {
return variable_type_;
}
const VariableStatusRow& VariablesInfo::GetStatusRow() const {
return variable_status_;
}
const DenseBitRow& VariablesInfo::GetCanIncreaseBitRow() const {
return can_increase_;
}
const DenseBitRow& VariablesInfo::GetCanDecreaseBitRow() const {
return can_decrease_;
}
const DenseBitRow& VariablesInfo::GetIsRelevantBitRow() const {
return relevance_;
}
const DenseBitRow& VariablesInfo::GetIsBasicBitRow() const { return is_basic_; }
const DenseBitRow& VariablesInfo::GetNotBasicBitRow() const {
return not_basic_;
}
const DenseBitRow& VariablesInfo::GetNonBasicBoxedVariables() const {
return non_basic_boxed_variables_;
}
EntryIndex VariablesInfo::GetNumEntriesInRelevantColumns() const {
return num_entries_in_relevant_columns_;
}
VariableType VariablesInfo::ComputeVariableType(ColIndex col) const {
DCHECK_LE(lower_bounds_[col], upper_bounds_[col]);
if (lower_bounds_[col] == -kInfinity) {
if (upper_bounds_[col] == kInfinity) {
return VariableType::UNCONSTRAINED;
}
return VariableType::UPPER_BOUNDED;
} else if (upper_bounds_[col] == kInfinity) {
return VariableType::LOWER_BOUNDED;
} else if (lower_bounds_[col] == upper_bounds_[col]) {
return VariableType::FIXED_VARIABLE;
} else {
return VariableType::UPPER_AND_LOWER_BOUNDED;
}
}
void VariablesInfo::SetRelevance(ColIndex col, bool relevance) {
if (relevance_.IsSet(col) == relevance) return;
if (relevance) {
relevance_.Set(col);
num_entries_in_relevant_columns_ += matrix_.ColumnNumEntries(col);
} else {
relevance_.Clear(col);
num_entries_in_relevant_columns_ -= matrix_.ColumnNumEntries(col);
}
}
// This is really similar to InitializeFromBasisState() but there is less
// cases to consider for TransformToDualPhaseIProblem()/EndDualPhaseI().
void VariablesInfo::UpdateStatusForNewType(ColIndex col) {
switch (variable_status_[col]) {
case VariableStatus::BASIC:
UpdateToBasicStatus(col);
break;
case VariableStatus::AT_LOWER_BOUND:
if (lower_bounds_[col] == upper_bounds_[col]) {
UpdateToNonBasicStatus(col, VariableStatus::FIXED_VALUE);
} else if (lower_bounds_[col] == -kInfinity) {
UpdateToNonBasicStatus(col, DefaultVariableStatus(col));
} else {
// TODO(user): This is only needed for boxed variable to update their
// relevance. It should probably be done with the type and not the
// status update.
UpdateToNonBasicStatus(col, variable_status_[col]);
}
break;
case VariableStatus::AT_UPPER_BOUND:
if (lower_bounds_[col] == upper_bounds_[col]) {
UpdateToNonBasicStatus(col, VariableStatus::FIXED_VALUE);
} else if (upper_bounds_[col] == kInfinity) {
UpdateToNonBasicStatus(col, DefaultVariableStatus(col));
} else {
// TODO(user): Same as in the AT_LOWER_BOUND branch above.
UpdateToNonBasicStatus(col, variable_status_[col]);
}
break;
default:
// TODO(user): boxed variable that become fixed in
// TransformToDualPhaseIProblem() will be changed status twice. Once here,
// and once when we make them dual feasible according to their reduced
// cost. We should probably just do all at once.
UpdateToNonBasicStatus(col, DefaultVariableStatus(col));
}
}
void VariablesInfo::TransformToDualPhaseIProblem(
Fractional dual_feasibility_tolerance, DenseRow::ConstView reduced_costs) {
DCHECK(!in_dual_phase_one_);
in_dual_phase_one_ = true;
saved_lower_bounds_ = lower_bounds_;
saved_upper_bounds_ = upper_bounds_;
// Transform the bound and type to get a new problem. If this problem has an
// optimal value of 0.0, then the problem is dual feasible. And more
// importantly, by keeping the same basis, we have a feasible solution of the
// original problem.
const ColIndex num_cols = matrix_.num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
switch (variable_type_[col]) {
case VariableType::FIXED_VARIABLE: // ABSL_FALLTHROUGH_INTENDED
case VariableType::UPPER_AND_LOWER_BOUNDED:
lower_bounds_[col] = 0.0;
upper_bounds_[col] = 0.0;
variable_type_[col] = VariableType::FIXED_VARIABLE;
break;
case VariableType::LOWER_BOUNDED:
lower_bounds_[col] = 0.0;
upper_bounds_[col] = 1.0;
variable_type_[col] = VariableType::UPPER_AND_LOWER_BOUNDED;
break;
case VariableType::UPPER_BOUNDED:
lower_bounds_[col] = -1.0;
upper_bounds_[col] = 0.0;
variable_type_[col] = VariableType::UPPER_AND_LOWER_BOUNDED;
break;
case VariableType::UNCONSTRAINED:
lower_bounds_[col] = -1000.0;
upper_bounds_[col] = 1000.0;
variable_type_[col] = VariableType::UPPER_AND_LOWER_BOUNDED;
break;
}
// Make sure we start with a feasible dual solution.
// If the reduced cost is close to zero, we keep the "default" status.
if (variable_type_[col] == VariableType::UPPER_AND_LOWER_BOUNDED) {
if (reduced_costs[col] > dual_feasibility_tolerance) {
variable_status_[col] = VariableStatus::AT_LOWER_BOUND;
} else if (reduced_costs[col] < -dual_feasibility_tolerance) {
variable_status_[col] = VariableStatus::AT_UPPER_BOUND;
}
}
UpdateStatusForNewType(col);
}
}
void VariablesInfo::EndDualPhaseI(Fractional dual_feasibility_tolerance,
DenseRow::ConstView reduced_costs) {
DCHECK(in_dual_phase_one_);
in_dual_phase_one_ = false;
std::swap(saved_lower_bounds_, lower_bounds_);
std::swap(saved_upper_bounds_, upper_bounds_);
// This is to clear the memory of the saved bounds since it is no longer
// needed.
DenseRow empty1, empty2;
std::swap(empty1, saved_lower_bounds_);
std::swap(empty1, saved_upper_bounds_);
// Restore the type and update all other fields.
const ColIndex num_cols = matrix_.num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
variable_type_[col] = ComputeVariableType(col);
// We make sure that the old fixed variables that are now boxed are dual
// feasible.
//
// TODO(user): When there is a choice, use the previous status that might
// have been warm-started ? but then this is not high priority since
// warm-starting with a non-dual feasible basis seems unfrequent.
if (variable_type_[col] == VariableType::UPPER_AND_LOWER_BOUNDED) {
if (reduced_costs[col] > dual_feasibility_tolerance) {
variable_status_[col] = VariableStatus::AT_LOWER_BOUND;
} else if (reduced_costs[col] < -dual_feasibility_tolerance) {
variable_status_[col] = VariableStatus::AT_UPPER_BOUND;
}
}
UpdateStatusForNewType(col);
}
}
} // namespace glop
} // namespace operations_research