forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsparse_column.h
204 lines (169 loc) · 6.76 KB
/
sparse_column.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright 2010-2025 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_LP_DATA_SPARSE_COLUMN_H_
#define OR_TOOLS_LP_DATA_SPARSE_COLUMN_H_
#include <vector>
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/permutation.h"
#include "ortools/lp_data/sparse_vector.h"
namespace operations_research {
namespace glop {
// TODO(user): Consider using kInvalidRow for this?
const RowIndex kNonPivotal(-1);
// Specialization of SparseVectorEntry and SparseColumnIterator for the
// SparseColumn class. In addition to index(), it also provides row() for better
// readability on the client side.
class SparseColumnEntry : public SparseVectorEntry<RowIndex> {
public:
// Returns the row of the current entry.
RowIndex row() const { return index(); }
protected:
SparseColumnEntry(const RowIndex* indices, const Fractional* coefficients,
EntryIndex i)
: SparseVectorEntry<RowIndex>(indices, coefficients, i) {}
};
using SparseColumnIterator = VectorIterator<SparseColumnEntry>;
class ColumnView;
// A SparseColumn is a SparseVector<RowIndex>, with a few methods renamed
// to help readability on the client side.
class SparseColumn : public SparseVector<RowIndex, SparseColumnIterator> {
friend class ColumnView;
public:
SparseColumn() : SparseVector<RowIndex, SparseColumnIterator>() {}
// Use a separate API to get the row and coefficient of entry #i.
RowIndex EntryRow(EntryIndex i) const { return GetIndex(i); }
Fractional EntryCoefficient(EntryIndex i) const { return GetCoefficient(i); }
RowIndex GetFirstRow() const { return GetFirstIndex(); }
RowIndex GetLastRow() const { return GetLastIndex(); }
void ApplyRowPermutation(const RowPermutation& p) {
ApplyIndexPermutation(p);
}
void ApplyPartialRowPermutation(const RowPermutation& p) {
ApplyPartialIndexPermutation(p);
}
};
// Class to iterate on the entries of a given column with the same interface
// as for SparseColumn.
class ColumnView {
public:
// Clients should pass Entry by value rather than by reference.
// This is because SparseColumnEntry is small (2 pointers and an index) and
// previous profiling of this type of use showed no performance penalty
// (see cl/51057736).
// Example: for(const Entry e : column_view)
typedef SparseColumnEntry Entry;
typedef VectorIterator<Entry> Iterator;
ColumnView(EntryIndex num_entries, const RowIndex* rows,
const Fractional* const coefficients)
: num_entries_(num_entries), rows_(rows), coefficients_(coefficients) {}
explicit ColumnView(const SparseColumn& column)
: num_entries_(column.num_entries()),
rows_(column.index_),
coefficients_(column.coefficient_) {}
EntryIndex num_entries() const { return num_entries_; }
Fractional EntryCoefficient(EntryIndex i) const {
return coefficients_[i.value()];
}
Fractional GetFirstCoefficient() const {
return EntryCoefficient(EntryIndex(0));
}
RowIndex EntryRow(EntryIndex i) const { return rows_[i.value()]; }
RowIndex GetFirstRow() const { return EntryRow(EntryIndex(0)); }
Iterator begin() const {
return Iterator(this->rows_, this->coefficients_, EntryIndex(0));
}
Iterator end() const {
return Iterator(this->rows_, this->coefficients_, num_entries_);
}
Fractional LookUpCoefficient(RowIndex index) const {
Fractional value(0.0);
for (const auto e : *this) {
if (e.row() == index) {
// Keep in mind the vector may contains several entries with the same
// index. In such a case the last one is returned.
// TODO(user): investigate whether an optimized version of
// LookUpCoefficient for "clean" columns yields speed-ups.
value = e.coefficient();
}
}
return value;
}
bool IsEmpty() const { return num_entries_ == EntryIndex(0); }
private:
const EntryIndex num_entries_;
const RowIndex* const rows_;
const Fractional* const coefficients_;
};
// --------------------------------------------------------
// RandomAccessSparseColumn
// --------------------------------------------------------
// A RandomAccessSparseColumn is a mix between a DenseColumn and a SparseColumn.
// It makes it possible to populate a dense column from a sparse column in
// O(num_entries) instead of O(num_rows), and to access an entry in O(1).
// As the constructor runs in O(num_rows), a RandomAccessSparseColumn should be
// used several times to amortize the creation cost.
class RandomAccessSparseColumn {
public:
// Creates a RandomAccessSparseColumn.
// Runs in O(num_rows).
explicit RandomAccessSparseColumn(RowIndex num_rows);
// This type is neither copyable nor movable.
RandomAccessSparseColumn(const RandomAccessSparseColumn&) = delete;
RandomAccessSparseColumn& operator=(const RandomAccessSparseColumn&) = delete;
virtual ~RandomAccessSparseColumn();
// Clears the column.
// Runs in O(num_entries).
void Clear();
void Resize(RowIndex num_rows);
// Sets value at row.
// Runs in O(1).
void SetCoefficient(RowIndex row, Fractional value) {
column_[row] = value;
MarkRowAsChanged(row);
}
// Adds value to the current value at row.
// Runs in O(1).
void AddToCoefficient(RowIndex row, Fractional value) {
column_[row] += value;
MarkRowAsChanged(row);
}
// Populates from a sparse column.
// Runs in O(num_entries).
void PopulateFromSparseColumn(const SparseColumn& sparse_column);
// Populates a sparse column from the lazy dense column.
// Runs in O(num_entries).
void PopulateSparseColumn(SparseColumn* sparse_column) const;
// Returns the number of rows.
// Runs in O(1).
RowIndex GetNumberOfRows() const { return RowIndex(column_.size()); }
// Returns the value in position row.
// Runs in O(1).
Fractional GetCoefficient(RowIndex row) const { return column_[row]; }
private:
// Keeps a trace of which rows have been changed.
void MarkRowAsChanged(RowIndex row) {
if (!changed_[row]) {
changed_[row] = true;
row_change_.push_back(row);
}
}
// The dense version of the column.
DenseColumn column_;
// Dense Boolean vector used to mark changes.
DenseBooleanColumn changed_;
// Stack to store changes.
std::vector<RowIndex> row_change_;
};
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_LP_DATA_SPARSE_COLUMN_H_