forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
sharded_optimization_utils_test.cc
651 lines (575 loc) · 28.6 KB
/
sharded_optimization_utils_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/pdlp/sharded_optimization_utils.h"
#include <cmath>
#include <cstdint>
#include <limits>
#include <optional>
#include <random>
#include <utility>
#include <vector>
#include "Eigen/Core"
#include "Eigen/SparseCore"
#include "gtest/gtest.h"
#include "ortools/base/gmock.h"
#include "ortools/pdlp/quadratic_program.h"
#include "ortools/pdlp/sharded_quadratic_program.h"
#include "ortools/pdlp/sharder.h"
#include "ortools/pdlp/solve_log.pb.h"
#include "ortools/pdlp/test_util.h"
namespace operations_research::pdlp {
namespace {
using ::Eigen::VectorXd;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::IsNan;
TEST(ShardedWeightedAverageTest, SimpleAverage) {
Sharder sharder(/*num_elements=*/2, /*num_shards=*/2,
/*thread_pool=*/nullptr);
Eigen::VectorXd vec1{{4, 1}};
Eigen::VectorXd vec2{{1, 7}};
ShardedWeightedAverage average(&sharder);
average.Add(vec1, 1.0);
average.Add(vec2, 2.0);
ASSERT_TRUE(average.HasNonzeroWeight());
EXPECT_EQ(average.NumTerms(), 2);
EXPECT_THAT(average.ComputeAverage(), ElementsAre(2.0, 5.0));
average.Clear();
EXPECT_FALSE(average.HasNonzeroWeight());
EXPECT_EQ(average.NumTerms(), 0);
}
TEST(ShardedWeightedAverageTest, MoveConstruction) {
Sharder sharder(/*num_elements=*/2, /*num_shards=*/2,
/*thread_pool=*/nullptr);
const Eigen::VectorXd vec{{4, 1}};
ShardedWeightedAverage average(&sharder);
average.Add(vec, 2.0);
ShardedWeightedAverage average2(std::move(average));
EXPECT_THAT(average2.ComputeAverage(), ElementsAre(4.0, 1.0));
}
TEST(ShardedWeightedAverageTest, MoveAssignment) {
Sharder sharder1(/*num_elements=*/2, /*num_shards=*/2,
/*thread_pool=*/nullptr);
Sharder sharder2(/*num_elements=*/3, /*num_shards=*/2,
/*thread_pool=*/nullptr);
Eigen::VectorXd vec1{{4, 1}};
Eigen::VectorXd vec2{{0, 3}};
ShardedWeightedAverage average1(&sharder1);
average1.Add(vec1, 2.0);
ShardedWeightedAverage average2(&sharder2);
average2 = std::move(average1);
average2.Add(vec2, 2.0);
EXPECT_THAT(average2.ComputeAverage(), ElementsAre(2.0, 2.0));
}
TEST(ShardedWeightedAverageTest, ZeroAverage) {
Sharder sharder(/*num_elements=*/1, /*num_shards=*/1,
/*thread_pool=*/nullptr);
ShardedWeightedAverage average(&sharder);
ASSERT_FALSE(average.HasNonzeroWeight());
EXPECT_THAT(average.ComputeAverage(), ElementsAre(0.0));
}
// This test verifies that if we average an identical vector repeatedly the
// average is exactly that vector, with no roundoff.
TEST(ShardedWeightedAverageTest, AveragesEqualWithoutRoundoff) {
Sharder sharder(/*num_elements=*/4, /*num_shards=*/1,
/*thread_pool=*/nullptr);
ShardedWeightedAverage average(&sharder);
EXPECT_THAT(average.ComputeAverage(), ElementsAre(0, 0, 0, 0));
Eigen::VectorXd data{{1.0, 1.0 / 3, 3.0 / 7, 3.14159}};
average.Add(data, 341.45);
EXPECT_THAT(average.ComputeAverage(), ElementsAreArray(data));
average.Add(data, 1.4134);
EXPECT_THAT(average.ComputeAverage(), ElementsAreArray(data));
average.Add(data, 7.23);
EXPECT_THAT(average.ComputeAverage(), ElementsAreArray(data));
}
TEST(ShardedWeightedAverageTest, AddsZeroWeight) {
Sharder sharder(/*num_elements=*/1, /*num_shards=*/1,
/*thread_pool=*/nullptr);
ShardedWeightedAverage average(&sharder);
ASSERT_FALSE(average.HasNonzeroWeight());
Eigen::VectorXd data{{1.0}};
average.Add(data, 0.0);
EXPECT_FALSE(average.HasNonzeroWeight());
EXPECT_THAT(average.ComputeAverage(), ElementsAre(0.0));
}
// The combined bounds vector for `TestLp()` is [12, 7, 4, 1].
// L_inf norm: 12.0
// L_2 norm: sqrt(210.0) ≈ 14.49
TEST(ProblemStatsTest, TestLp) {
ShardedQuadraticProgram lp(TestLp(), 2, 2);
const QuadraticProgramStats stats = ComputeStats(lp);
EXPECT_EQ(stats.num_variables(), 4);
EXPECT_EQ(stats.num_constraints(), 4);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_col_min_l_inf_norm(), 1.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_row_min_l_inf_norm(), 1.0);
EXPECT_EQ(stats.constraint_matrix_num_nonzeros(), 9);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_max(), 4.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_avg(), 14.5 / 9.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_l2_norm(), std::sqrt(31.25));
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_max(), 5.5);
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_avg(), 2.375);
EXPECT_DOUBLE_EQ(stats.objective_vector_l2_norm(), std::sqrt(36.25));
EXPECT_EQ(stats.objective_matrix_num_nonzeros(), 0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_min(), 0.0);
EXPECT_THAT(stats.objective_matrix_abs_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.objective_matrix_l2_norm(), 0.0);
EXPECT_EQ(stats.variable_bound_gaps_num_finite(), 1);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_max(), 1.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_avg(), 1.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_l2_norm(), 1.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_max(), 12.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_avg(), 6.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_l2_norm(), std::sqrt(210.0));
}
TEST(ProblemStatsTest, TinyLp) {
ShardedQuadraticProgram lp(TinyLp(), 2, 2);
const QuadraticProgramStats stats = ComputeStats(lp);
EXPECT_EQ(stats.num_variables(), 4);
EXPECT_EQ(stats.num_constraints(), 3);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_col_min_l_inf_norm(), 1.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_row_min_l_inf_norm(), 1.0);
EXPECT_EQ(stats.constraint_matrix_num_nonzeros(), 8);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_max(), 2.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_avg(), 1.25);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_l2_norm(), std::sqrt(14.0));
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_max(), 5.0);
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_avg(), 2.25);
EXPECT_DOUBLE_EQ(stats.objective_vector_l2_norm(), std::sqrt(31.0));
EXPECT_EQ(stats.objective_matrix_num_nonzeros(), 0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_min(), 0.0);
EXPECT_THAT(stats.objective_matrix_abs_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.objective_matrix_l2_norm(), 0.0);
EXPECT_EQ(stats.variable_bound_gaps_num_finite(), 4);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_max(), 6.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_min(), 2.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_avg(), 3.75);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_l2_norm(), std::sqrt(65.0));
EXPECT_DOUBLE_EQ(stats.combined_bounds_max(), 12.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_avg(), 20.0 / 3.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_l2_norm(), std::sqrt(194.0));
}
TEST(ProblemStatsTest, TestDiagonalQp1) {
ShardedQuadraticProgram qp(TestDiagonalQp1(), 2, 2);
const QuadraticProgramStats stats = ComputeStats(qp);
EXPECT_EQ(stats.num_variables(), 2);
EXPECT_EQ(stats.num_constraints(), 1);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_col_min_l_inf_norm(), 1.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_row_min_l_inf_norm(), 1.0);
EXPECT_EQ(stats.constraint_matrix_num_nonzeros(), 2);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_max(), 1.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_avg(), 1.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_l2_norm(), std::sqrt(2.0));
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_max(), 1.0);
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_avg(), 1.0);
EXPECT_DOUBLE_EQ(stats.objective_vector_l2_norm(), std::sqrt(2.0));
EXPECT_EQ(stats.objective_matrix_num_nonzeros(), 2);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_max(), 4.0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_avg(), 2.5);
EXPECT_DOUBLE_EQ(stats.objective_matrix_l2_norm(), std::sqrt(17.0));
EXPECT_EQ(stats.variable_bound_gaps_num_finite(), 2);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_max(), 6.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_avg(), 3.5);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_l2_norm(), std::sqrt(37.0));
EXPECT_DOUBLE_EQ(stats.combined_bounds_max(), 1.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_min(), 1.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_avg(), 1.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_l2_norm(), 1.0);
}
TEST(ProblemStatsTest, ModifiedTestDiagonalQp1) {
QuadraticProgram orig_qp = TestDiagonalQp1();
// A case where `objective_matrix_num_nonzeros` doesn't match the dimension.
orig_qp.objective_matrix->diagonal() = Eigen::VectorXd{{2.0, 0.0}};
ShardedQuadraticProgram qp(orig_qp, 2, 2);
const QuadraticProgramStats stats = ComputeStats(qp);
EXPECT_EQ(stats.objective_matrix_num_nonzeros(), 1);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_max(), 2.0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_min(), 2.0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_avg(), 1.0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_l2_norm(), 2.0);
}
TEST(ProblemStatsTest, NoFiniteGaps) {
ShardedQuadraticProgram lp(SmallInvalidProblemLp(), 2, 2);
const QuadraticProgramStats stats = ComputeStats(lp);
// Ensure max/min/avg take their default values when no finite gaps exist.
EXPECT_EQ(stats.variable_bound_gaps_num_finite(), 0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_min(), 0.0);
EXPECT_THAT(stats.variable_bound_gaps_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_l2_norm(), 0.0);
}
TEST(ProblemStatsTest, LpWithoutConstraints) {
ShardedQuadraticProgram lp(LpWithoutConstraints(), 2, 2);
const QuadraticProgramStats stats = ComputeStats(lp);
// When there are no constraints, max/min absolute values and infinity norms
// are assigned 0 by convention. The same is true for the combined bounds.
EXPECT_EQ(stats.constraint_matrix_num_nonzeros(), 0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_min(), 0.0);
EXPECT_THAT(stats.constraint_matrix_abs_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.constraint_matrix_l2_norm(), 0.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_col_min_l_inf_norm(), 0.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_row_min_l_inf_norm(), 0.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_min(), 0.0);
EXPECT_THAT(stats.combined_bounds_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.combined_bounds_l2_norm(), 0.0);
}
TEST(ProblemStatsTest, EmptyLp) {
ShardedQuadraticProgram lp(QuadraticProgram(0, 0), 2, 2);
const QuadraticProgramStats stats = ComputeStats(lp);
// When `lp` is empty, everything except averages should be 0 and averages
// should be NaN.
EXPECT_EQ(stats.num_variables(), 0);
EXPECT_EQ(stats.num_constraints(), 0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_col_min_l_inf_norm(), 0.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_row_min_l_inf_norm(), 0.0);
EXPECT_EQ(stats.constraint_matrix_num_nonzeros(), 0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.constraint_matrix_abs_min(), 0.0);
EXPECT_THAT(stats.constraint_matrix_abs_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.constraint_matrix_l2_norm(), 0.0);
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.objective_vector_abs_min(), 0.0);
EXPECT_THAT(stats.objective_vector_abs_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.objective_vector_l2_norm(), 0.0);
EXPECT_EQ(stats.objective_matrix_num_nonzeros(), 0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.objective_matrix_abs_min(), 0.0);
EXPECT_THAT(stats.objective_matrix_abs_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.objective_matrix_l2_norm(), 0.0);
EXPECT_EQ(stats.variable_bound_gaps_num_finite(), 0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_min(), 0.0);
EXPECT_THAT(stats.variable_bound_gaps_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.variable_bound_gaps_l2_norm(), 0.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_max(), 0.0);
EXPECT_DOUBLE_EQ(stats.combined_bounds_min(), 0.0);
EXPECT_THAT(stats.combined_bounds_avg(), IsNan());
EXPECT_DOUBLE_EQ(stats.combined_bounds_l2_norm(), 0.0);
}
// The `TestLp()` matrix is [ 2 1 1 2; 1 0 1 0; 4 0 0 0; 0 0 1.5 -1],
// the scaled matrix is [ 0 1 2 -2; 0 0 4 0; 0 0 0 0; 0 0 9 3],
// so the row LInf norms are [2 4 0 9] and the column LInf norms are [0 1 9 3].
// Rescaling divides the scaling vectors by sqrt(norms).
TEST(LInfRuizRescaling, OneIteration) {
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
Eigen::VectorXd row_scaling_vec{{1, 2, 1, 3}};
Eigen::VectorXd col_scaling_vec{{0, 1, 2, -1}};
LInfRuizRescaling(lp, /*num_iterations=*/1, row_scaling_vec, col_scaling_vec);
EXPECT_THAT(row_scaling_vec, ElementsAre(1 / std::sqrt(2), 1.0, 1.0, 1.0));
EXPECT_THAT(col_scaling_vec,
ElementsAre(0.0, 1.0, 2.0 / 3.0, -1.0 / std::sqrt(3.0)));
}
// The `TestLp()` matrix is [ 2 1 1 2; 1 0 1 0; 4 0 0 0; 0 0 1.5 -1],
// the scaled matrix is [ 0 1 2 -2; 0 0 4 0; 0 0 0 0; 0 0 9 3],
// so the row L2 norms are [3 4 0 sqrt(90)] and the column L2 norms are [0 1
// sqrt(101) sqrt(13)]. Rescaling divides the scaling vectors by sqrt(norms).
TEST(L2RuizRescaling, OneIteration) {
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
Eigen::VectorXd row_scaling_vec{{1, 2, 1, 3}};
Eigen::VectorXd col_scaling_vec{{0, 1, 2, -1}};
L2NormRescaling(lp, row_scaling_vec, col_scaling_vec);
EXPECT_THAT(row_scaling_vec, ElementsAre(1.0 / std::pow(3.0, 0.5), 1.0, 1.0,
3.0 / std::pow(90.0, 0.25)));
EXPECT_THAT(col_scaling_vec, ElementsAre(0.0, 1.0, 2.0 / std::pow(101, 0.25),
-1.0 / std::pow(13.0, 0.25)));
}
// The `test_lp` matrix is [2 3], so the row L2 norms are [sqrt(13)] and the
// column L2 norms are [2 3]. Rescaling divides the scaling vectors by
// sqrt(norms).
TEST(L2RuizRescaling, OneIterationNonSquare) {
QuadraticProgram test_lp(/*num_variables=*/2, /*num_constraints=*/1);
std::vector<Eigen::Triplet<double, int64_t>> triplets = {{0, 0, 2.0},
{0, 1, 3.0}};
test_lp.constraint_matrix.setFromTriplets(triplets.begin(), triplets.end());
ShardedQuadraticProgram lp(std::move(test_lp), /*num_threads=*/2,
/*num_shards=*/2);
VectorXd row_scaling_vec = VectorXd::Ones(1);
VectorXd col_scaling_vec = VectorXd::Ones(2);
L2NormRescaling(lp, row_scaling_vec, col_scaling_vec);
EXPECT_THAT(row_scaling_vec, ElementsAre(1.0 / std::pow(13.0, 0.25)));
EXPECT_THAT(col_scaling_vec,
ElementsAre(1.0 / std::sqrt(2.0), 1.0 / std::sqrt(3.0)));
}
// With many iterations of `LInfRuizRescaling`, the scaled matrix should
// converge to have col LInf norm 1 and row LInf norm 1.
TEST(LInfRuizRescaling, Convergence) {
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
VectorXd col_norm(4), row_norm(4);
Eigen::VectorXd row_scaling_vec{{1, 1, 1, 1}};
Eigen::VectorXd col_scaling_vec{{1, 1, 1, 1}};
LInfRuizRescaling(lp, /*num_iterations=*/20, row_scaling_vec,
col_scaling_vec);
col_norm = ScaledColLInfNorm(lp.Qp().constraint_matrix, row_scaling_vec,
col_scaling_vec, lp.ConstraintMatrixSharder());
row_norm = ScaledColLInfNorm(lp.TransposedConstraintMatrix(), col_scaling_vec,
row_scaling_vec,
lp.TransposedConstraintMatrixSharder());
EXPECT_THAT(row_norm, EigenArrayNear<double>({1.0, 1.0, 1.0, 1.0}, 1.0e-4));
EXPECT_THAT(col_norm, EigenArrayNear<double>({1.0, 1.0, 1.0, 1.0}, 1.0e-4));
}
// This applies one round of l_inf and one round of L2 rescaling.
// The `TestLp()` matrix is [ 2 1 1 2; 1 0 1 0; 4 0 0 0; 0 0 1.5 -1],
// so the row LInf norms are [2 1 4 1.5] and column LInf norms are [4 1 1.5 2].
// l_inf divides by sqrt(norms), giving
// [0.7071 0.7071 0.5773 1; 0.5 0 0.8165 0; 1 0 0 0; 0 0 1 -0.5773]
// which has row L2 norms [1.5275 0.957429 1 1.1547] and col L2 norms
// [1.3229 0.7071 1.4142 1.1547]. The resulting scaling vectors are
// 1/sqrt((l_inf norms).*(l2 norms)).
TEST(ApplyRescaling, ApplyRescalingWorksForTestLp) {
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
ScalingVectors scaling = ApplyRescaling(
RescalingOptions{.l_inf_ruiz_iterations = 1, .l2_norm_rescaling = true},
lp);
EXPECT_THAT(scaling.row_scaling_vec,
EigenArrayNear<double>(
{1.0 / sqrt(2.0 * 1.5275), 1.0 / sqrt(1.0 * 0.9574),
1.0 / sqrt(4.0 * 1.0), 1.0 / sqrt(1.5 * 1.1547)},
1.0e-4));
EXPECT_THAT(scaling.col_scaling_vec,
EigenArrayNear<double>(
{1.0 / sqrt(4.0 * 1.3229), 1.0 / sqrt(1.0 * 0.7071),
1.0 / sqrt(1.5 * 1.4142), 1.0 / sqrt(2.0 * 1.1547)},
1.0e-4));
}
TEST(ComputePrimalGradientTest, CorrectForLp) {
// The choice of two shards is intentional, to help catch bugs in the sharded
// computations.
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
const Eigen::VectorXd primal_solution{{0.0, 0.0, 0.0, 3.0}};
const Eigen::VectorXd dual_solution{{-1.0, 0.0, 1.0, 1.0}};
const LagrangianPart primal_part = ComputePrimalGradient(
lp, primal_solution, lp.TransposedConstraintMatrix() * dual_solution);
// Using notation consistent with
// https://developers.google.com/optimization/lp/pdlp_math.
// c - A^T y
EXPECT_THAT(primal_part.gradient,
ElementsAre(5.5 - 2.0, -2.0 + 1.0, -1.0 - 0.5, 1.0 + 3.0));
// c^T x - y^T Ax.
EXPECT_DOUBLE_EQ(primal_part.value, 3.0 + 9.0);
}
TEST(ComputeDualGradientTest, CorrectForLp) {
// The choice of two shards is intentional, to help catch bugs in the sharded
// computations.
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
const Eigen::VectorXd primal_solution{{0.0, 0.0, 0.0, 3.0}};
const Eigen::VectorXd dual_solution{{-1.0, 0.0, 1.0, 1.0}};
const LagrangianPart dual_part = ComputeDualGradient(
lp, dual_solution, lp.Qp().constraint_matrix * primal_solution);
// Using notation consistent with
// https://developers.google.com/optimization/lp/pdlp_math.
// active_constraint_right_hand_side - Ax
EXPECT_THAT(dual_part.gradient,
ElementsAre(12.0 - 6.0, 7.0, -4.0, -1.0 + 3.0));
// y^T active_constraint_right_hand_side
EXPECT_DOUBLE_EQ(dual_part.value, 12.0 * -1.0 + -4.0 * 1.0 + -1.0 * 1.0);
}
TEST(ComputeDualGradientTest, CorrectOnTwoSidedConstraints) {
QuadraticProgram qp = TestLp();
// Makes the constraints all two-sided. The primal solution is feasible in
// the first constraint, below the lower bound of the second constraint, and
// above the upper bound of the third constraint.
qp.constraint_lower_bounds[0] = 4;
qp.constraint_lower_bounds[1] = 5;
qp.constraint_upper_bounds[2] = -1;
ShardedQuadraticProgram sharded_qp(std::move(qp), /*num_threads=*/2,
/*num_shards=*/2);
const Eigen::VectorXd primal_solution{{0.0, 0.0, 0.0, 3.0}};
const Eigen::VectorXd dual_solution{{0.0, 0.0, 0.0, -1.0}};
const LagrangianPart dual_part =
ComputeDualGradient(sharded_qp, dual_solution,
sharded_qp.Qp().constraint_matrix * primal_solution);
// Using notation consistent with
// https://developers.google.com/optimization/lp/pdlp_math.
// active_constraint_right_hand_side - Ax
EXPECT_THAT(dual_part.gradient,
ElementsAre(0.0, 5.0 - 0.0, -1.0 - 0.0, 1.0 + 3.0));
// y^T active_constraint_right_hand_side
EXPECT_DOUBLE_EQ(dual_part.value, 1.0 * -1.0);
}
TEST(HasValidBoundsTest, InconsistentConstraintBounds) {
ShardedQuadraticProgram lp(SmallInvalidProblemLp(), /*num_threads=*/2,
/*num_shards=*/2);
EXPECT_FALSE(HasValidBounds(lp));
}
TEST(HasValidBoundsTest, InconsistentVariableBounds) {
ShardedQuadraticProgram lp(SmallInconsistentVariableBoundsLp(),
/*num_threads=*/2,
/*num_shards=*/2);
EXPECT_FALSE(HasValidBounds(lp));
}
TEST(HasValidBoundsTest, SmallValidLp) {
ShardedQuadraticProgram lp(SmallPrimalInfeasibleLp(), /*num_threads=*/2,
/*num_shards=*/2);
EXPECT_TRUE(HasValidBounds(lp));
}
TEST(HasValidBoundsTest, EqualInfiniteConstraintBounds) {
const double kInfinity = std::numeric_limits<double>::infinity();
QuadraticProgram lp = SmallPrimalInfeasibleLp();
lp.constraint_lower_bounds[1] = kInfinity;
lp.constraint_upper_bounds[1] = kInfinity;
EXPECT_FALSE(HasValidBounds(ShardedQuadraticProgram(lp, /*num_threads=*/2,
/*num_shards=*/2)));
lp.constraint_lower_bounds[1] = -kInfinity;
lp.constraint_upper_bounds[1] = -kInfinity;
EXPECT_FALSE(HasValidBounds(ShardedQuadraticProgram(lp, /*num_threads=*/2,
/*num_shards=*/2)));
}
TEST(HasValidBoundsTest, EqualInfiniteVariableBounds) {
const double kInfinity = std::numeric_limits<double>::infinity();
QuadraticProgram lp = SmallPrimalInfeasibleLp();
lp.variable_lower_bounds[1] = kInfinity;
lp.variable_upper_bounds[1] = kInfinity;
EXPECT_FALSE(HasValidBounds(ShardedQuadraticProgram(lp, /*num_threads=*/2,
/*num_shards=*/2)));
lp.variable_lower_bounds[1] = -kInfinity;
lp.variable_upper_bounds[1] = -kInfinity;
EXPECT_FALSE(HasValidBounds(ShardedQuadraticProgram(lp, /*num_threads=*/2,
/*num_shards=*/2)));
}
TEST(ComputePrimalGradientTest, CorrectForQp) {
ShardedQuadraticProgram qp(TestDiagonalQp1(), /*num_threads=*/2,
/*num_shards=*/2);
const Eigen::VectorXd primal_solution{{1.0, 2.0}};
const Eigen::VectorXd dual_solution{{-2.0}};
const LagrangianPart primal_part = ComputePrimalGradient(
qp, primal_solution, qp.TransposedConstraintMatrix() * dual_solution);
// Using notation consistent with
// https://developers.google.com/optimization/lp/pdlp_math.
// c - A^T y + Qx
EXPECT_THAT(primal_part.gradient,
ElementsAre(-1.0 + 2.0 + 4.0, -1.0 + 2.0 + 2.0));
// (1/2) x^T Qx + c^T x - y^T Ax.
EXPECT_DOUBLE_EQ(primal_part.value, 4.0 - 3.0 + 2.0 * 3.0);
}
TEST(ComputeDualGradientTest, CorrectForQp) {
ShardedQuadraticProgram qp(TestDiagonalQp1(), /*num_threads=*/2,
/*num_shards=*/2);
const Eigen::VectorXd primal_solution{{1.0, 2.0}};
const Eigen::VectorXd dual_solution{{-2.0}};
const LagrangianPart dual_part = ComputeDualGradient(
qp, dual_solution, qp.Qp().constraint_matrix * primal_solution);
// Using notation consistent with
// https://developers.google.com/optimization/lp/pdlp_math.
// active_constraint_right_hand_side - Ax
EXPECT_THAT(dual_part.gradient, ElementsAre(1.0 - (1.0 + 2.0)));
// y^T active_constraint_right_hand_side
EXPECT_DOUBLE_EQ(dual_part.value, -2.0);
}
TEST(EstimateSingularValuesTest, CorrectForTestLp) {
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
// The `TestLp()` matrix is [ 2 1 1 2; 1 0 1 0; 4 0 0 0; 0 0 1.5 -1].
std::mt19937 random(1);
auto result = EstimateMaximumSingularValueOfConstraintMatrix(
lp, std::nullopt, std::nullopt,
/*desired_relative_error=*/0.01,
/*failure_probability=*/0.001, random);
EXPECT_NEAR(result.singular_value, 4.76945, 0.01);
EXPECT_LT(result.num_iterations, 300);
}
TEST(EstimateSingularValuesTest, CorrectForTestLpWithActivePrimalSubspace) {
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
// Chosen so x_1 is at its bound, and all other variables are not at bounds.
const Eigen::VectorXd primal_solution{{0.0, -2.0, 0.0, 3.0}};
// The `TestLp()` matrix is [ 2 1 1 2; 1 0 1 0; 4 0 0 0; 0 0 1.5 -1],
// so the projected matrix is [ 2 1 2; 1 1 0; 4 0 0; 0 1.5 -1].
std::mt19937 random(1);
auto result = EstimateMaximumSingularValueOfConstraintMatrix(
lp, primal_solution, std::nullopt, /*desired_relative_error=*/0.01,
/*failure_probability=*/0.001, random);
EXPECT_NEAR(result.singular_value, 4.73818, 0.01);
EXPECT_LT(result.num_iterations, 300);
}
TEST(EstimateSingularValuesTest, CorrectForTestLpWithActiveDualSubspace) {
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
// Chosen so the second dual is at its bound, and all other duals are not at
// bounds.
const Eigen::VectorXd dual_solution{{1.0, 0.0, 1.0, 3.0}};
// The `TestLp()` matrix is [ 2 1 1 2; 1 0 1 0; 4 0 0 0; 0 0 1.5 -1],
// so the projected matrix is [ 2 1 1 2; 4 0 0 0; 0 0 1.5 -1].
std::mt19937 random(1);
auto result = EstimateMaximumSingularValueOfConstraintMatrix(
lp, std::nullopt, dual_solution, /*desired_relative_error=*/0.01,
/*failure_probability=*/0.001, random);
EXPECT_NEAR(result.singular_value, 4.64203, 0.01);
EXPECT_LT(result.num_iterations, 300);
}
TEST(EstimateSingularValuesTest, CorrectForTestLpWithBothActiveSubspaces) {
ShardedQuadraticProgram lp(TestLp(), /*num_threads=*/2, /*num_shards=*/2);
// Chosen so x_1 is at its bound, and all other variables are not at bounds.
const Eigen::VectorXd primal_solution{{0.0, -2.0, 0.0, 3.0}};
// Chosen so the second dual is at its bound, and all other duals are not at
// bounds.
const Eigen::VectorXd dual_solution{{1.0, 0.0, 1.0, 3.0}};
// The `TestLp()` matrix is [ 2 1 1 2; 1 0 1 0; 4 0 0 0; 0 0 1.5 -1],
// so the projected matrix is [ 2 1 2; 4 0 0; 0 1.5 -1].
std::mt19937 random(1);
auto result = EstimateMaximumSingularValueOfConstraintMatrix(
lp, primal_solution, dual_solution, /*desired_relative_error=*/0.01,
/*failure_probability=*/0.001, random);
EXPECT_NEAR(result.singular_value, 4.60829, 0.01);
EXPECT_LT(result.num_iterations, 300);
}
TEST(EstimateSingularValuesTest, CorrectForDiagonalLp) {
QuadraticProgram diagonal_lp = TestLp();
std::vector<Eigen::Triplet<double, int64_t>> triplets = {
{0, 0, 2}, {1, 1, 1}, {2, 2, -3}, {3, 3, -1}};
diagonal_lp.constraint_matrix.setFromTriplets(triplets.begin(),
triplets.end());
ShardedQuadraticProgram lp(diagonal_lp, /*num_threads=*/2, /*num_shards=*/2);
// The `diagonal_lp` matrix is [ 2 0 0 0; 0 1 0 0; 0 0 -3 0; 0 0 0 -1].
std::mt19937 random(1);
auto result = EstimateMaximumSingularValueOfConstraintMatrix(
lp, std::nullopt, std::nullopt,
/*desired_relative_error=*/0.01,
/*failure_probability=*/0.001, random);
EXPECT_NEAR(result.singular_value, 3, 0.0001);
EXPECT_LT(result.num_iterations, 300);
}
TEST(ProjectToPrimalVariableBoundsTest, TestLp) {
ShardedQuadraticProgram qp(TestLp(), /*num_threads=*/2,
/*num_shards=*/2);
Eigen::VectorXd primal{{-3, -3, 5, 5}};
ProjectToPrimalVariableBounds(qp, primal);
EXPECT_THAT(primal, ElementsAre(-3, -2, 5, 3.5));
}
TEST(ProjectToPrimalVariableBoundsTest, TestLpWithFeasibility) {
ShardedQuadraticProgram qp(TestLp(), /*num_threads=*/2,
/*num_shards=*/2);
Eigen::VectorXd primal{{-3, -3, 5, 5}};
ProjectToPrimalVariableBounds(qp, primal, /*use_feasibility_bounds=*/true);
EXPECT_THAT(primal, ElementsAre(-3, 0, 0, 0));
}
TEST(ProjectToDualVariableBoundsTest, TestLp) {
ShardedQuadraticProgram qp(TestLp(), /*num_threads=*/2,
/*num_shards=*/2);
Eigen::VectorXd dual{{1, 1, -1, -1}};
ProjectToDualVariableBounds(qp, dual);
EXPECT_THAT(dual, ElementsAre(1, 0, 0, -1));
}
} // namespace
} // namespace operations_research::pdlp