forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcp_model_mapping.h
237 lines (204 loc) · 8.69 KB
/
cp_model_mapping.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2010-2025 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_CP_MODEL_MAPPING_H_
#define OR_TOOLS_SAT_CP_MODEL_MAPPING_H_
#include <vector>
#include "absl/container/flat_hash_set.h"
#include "absl/log/check.h"
#include "ortools/base/logging.h"
#include "ortools/base/strong_vector.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_utils.h"
#include "ortools/sat/integer_base.h"
#include "ortools/sat/intervals.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
// For an optimization problem, this contains the internal integer objective
// to minimize and information on how to display it correctly in the logs.
struct ObjectiveDefinition {
double scaling_factor = 1.0;
double offset = 0.0;
IntegerVariable objective_var = kNoIntegerVariable;
// The objective linear expression that should be equal to objective_var.
// If not all proto variable have an IntegerVariable view, then some vars
// will be set to kNoIntegerVariable. In practice, when this is used, we make
// sure there is a view though.
std::vector<IntegerVariable> vars;
std::vector<IntegerValue> coeffs;
// List of variable that when set to their lower bound should help getting a
// better objective. This is used by some search heuristic to preferably
// assign any of the variable here to their lower bound first.
absl::flat_hash_set<IntegerVariable> objective_impacting_variables;
double ScaleIntegerObjective(IntegerValue value) const {
return (ToDouble(value) + offset) * scaling_factor;
}
double ScaleObjective(double value) const {
return (value + offset) * scaling_factor;
}
};
// Holds the mapping between CpModel proto indices and the sat::model ones.
//
// This also holds some information used when loading a CpModel proto.
class CpModelMapping {
public:
// Returns true if the given CpModelProto variable reference refers to a
// Boolean variable. Such variable will always have an associated Literal(),
// but not always an associated Integer().
bool IsBoolean(int ref) const {
DCHECK_LT(PositiveRef(ref), booleans_.size());
return booleans_[PositiveRef(ref)] != kNoBooleanVariable;
}
bool IsInteger(int ref) const {
DCHECK_LT(PositiveRef(ref), integers_.size());
return integers_[PositiveRef(ref)] != kNoIntegerVariable;
}
sat::Literal Literal(int ref) const {
DCHECK(IsBoolean(ref));
return sat::Literal(booleans_[PositiveRef(ref)], RefIsPositive(ref));
}
IntegerVariable Integer(int ref) const {
DCHECK(IsInteger(ref));
const IntegerVariable var = integers_[PositiveRef(ref)];
return RefIsPositive(ref) ? var : NegationOf(var);
}
// TODO(user): We could "easily" create an intermediate variable for more
// complex linear expression. We could also identify duplicate expressions to
// not create two identical integer variable.
AffineExpression Affine(const LinearExpressionProto& exp) const {
CHECK_LE(exp.vars().size(), 1);
if (exp.vars().empty()) {
return AffineExpression(IntegerValue(exp.offset()));
}
return AffineExpression(Integer(exp.vars(0)), IntegerValue(exp.coeffs(0)),
IntegerValue(exp.offset()));
}
IntervalVariable Interval(int i) const {
CHECK_GE(i, 0);
CHECK_LT(i, intervals_.size());
CHECK_NE(intervals_[i], kNoIntervalVariable);
return intervals_[i];
}
template <typename List>
std::vector<IntegerVariable> Integers(const List& list) const {
std::vector<IntegerVariable> result;
result.reserve(list.size());
for (const auto i : list) result.push_back(Integer(i));
return result;
}
template <typename ProtoIndices>
std::vector<sat::Literal> Literals(const ProtoIndices& indices) const {
std::vector<sat::Literal> result;
result.reserve(indices.size());
for (const int i : indices) result.push_back(CpModelMapping::Literal(i));
return result;
}
template <typename List>
std::vector<AffineExpression> Affines(const List& list) const {
std::vector<AffineExpression> result;
result.reserve(list.size());
for (const auto& i : list) result.push_back(Affine(i));
return result;
}
template <typename ProtoIndices>
std::vector<IntervalVariable> Intervals(const ProtoIndices& indices) const {
std::vector<IntervalVariable> result;
result.reserve(indices.size());
for (const int i : indices) result.push_back(Interval(i));
return result;
}
// Depending on the option, we will load constraints in stages. This is used
// to detect constraints that are already loaded. For instance the interval
// constraints and the linear constraint of size 1 (encodings) are usually
// loaded first.
bool ConstraintIsAlreadyLoaded(const ConstraintProto* ct) const {
return already_loaded_ct_.contains(ct);
}
// Returns true if the given constraint is a "half-encoding" constraint. That
// is, if it is of the form (b => size 1 linear) but there is no (<=) side in
// the model. Such constraint are detected while we extract integer encoding
// and are cached here so that we can deal properly with them during the
// linear relaxation.
bool IsHalfEncodingConstraint(const ConstraintProto* ct) const {
return is_half_encoding_ct_.contains(ct);
}
// Note that both these functions returns positive reference or -1.
int GetProtoVariableFromBooleanVariable(BooleanVariable var) const {
if (var.value() >= reverse_boolean_map_.size()) return -1;
return reverse_boolean_map_[var];
}
int GetProtoVariableFromIntegerVariable(IntegerVariable var) const {
if (var.value() >= reverse_integer_map_.size()) return -1;
return reverse_integer_map_[var];
}
// This one should only be used when we have a mapping.
int GetProtoLiteralFromLiteral(sat::Literal lit) const {
const int proto_var = GetProtoVariableFromBooleanVariable(lit.Variable());
DCHECK_NE(proto_var, -1);
return lit.IsPositive() ? proto_var : NegatedRef(proto_var);
}
const std::vector<IntegerVariable>& GetVariableMapping() const {
return integers_;
}
LinearExpression GetExprFromProto(
const LinearExpressionProto& expr_proto) const {
LinearExpression expr;
expr.vars = Integers(expr_proto.vars());
for (int j = 0; j < expr_proto.coeffs_size(); ++j) {
expr.coeffs.push_back(IntegerValue(expr_proto.coeffs(j)));
}
expr.offset = IntegerValue(expr_proto.offset());
return CanonicalizeExpr(expr);
}
// For logging only, these are not super efficient.
int NumIntegerVariables() const {
int result = 0;
for (const IntegerVariable var : integers_) {
if (var != kNoIntegerVariable) result++;
}
return result;
}
int NumBooleanVariables() const {
int result = 0;
for (const BooleanVariable var : booleans_) {
if (var != kNoBooleanVariable) result++;
}
return result;
}
// Returns the number of variables in the loaded proto.
int NumProtoVariables() const { return integers_.size(); }
private:
friend void LoadVariables(const CpModelProto& model_proto,
bool view_all_booleans_as_integers, Model* m);
friend void ExtractEncoding(const CpModelProto& model_proto, Model* m);
// Note that only the variables used by at least one constraint will be
// created, the other will have a kNo[Integer,Interval,Boolean]VariableValue.
std::vector<IntegerVariable> integers_;
std::vector<IntervalVariable> intervals_;
std::vector<BooleanVariable> booleans_;
// Recover from a IntervalVariable/BooleanVariable its associated CpModelProto
// index. The value of -1 is used to indicate that there is no correspondence
// (i.e. this variable is only used internally).
util_intops::StrongVector<BooleanVariable, int> reverse_boolean_map_;
util_intops::StrongVector<IntegerVariable, int> reverse_integer_map_;
// Set of constraints to ignore because they were already dealt with by
// ExtractEncoding().
absl::flat_hash_set<const ConstraintProto*> already_loaded_ct_;
absl::flat_hash_set<const ConstraintProto*> is_half_encoding_ct_;
};
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_CP_MODEL_MAPPING_H_