forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcp_model_search.cc
1130 lines (1003 loc) · 39.2 KB
/
cp_model_search.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2025 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/cp_model_search.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <string>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/log/check.h"
#include "absl/random/distributions.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_mapping.h"
#include "ortools/sat/cp_model_utils.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/integer_base.h"
#include "ortools/sat/integer_search.h"
#include "ortools/sat/linear_propagation.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/util.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
CpModelView::CpModelView(Model* model)
: mapping_(*model->GetOrCreate<CpModelMapping>()),
boolean_assignment_(model->GetOrCreate<Trail>()->Assignment()),
integer_trail_(*model->GetOrCreate<IntegerTrail>()),
integer_encoder_(*model->GetOrCreate<IntegerEncoder>()) {}
int CpModelView::NumVariables() const { return mapping_.NumProtoVariables(); }
bool CpModelView::IsFixed(int var) const {
if (mapping_.IsBoolean(var)) {
return boolean_assignment_.VariableIsAssigned(
mapping_.Literal(var).Variable());
} else if (mapping_.IsInteger(var)) {
return integer_trail_.IsFixed(mapping_.Integer(var));
}
return true; // Default.
}
int64_t CpModelView::Min(int var) const {
if (mapping_.IsBoolean(var)) {
const Literal l = mapping_.Literal(var);
return boolean_assignment_.LiteralIsTrue(l) ? 1 : 0;
} else if (mapping_.IsInteger(var)) {
return integer_trail_.LowerBound(mapping_.Integer(var)).value();
}
return 0; // Default.
}
int64_t CpModelView::Max(int var) const {
if (mapping_.IsBoolean(var)) {
const Literal l = mapping_.Literal(var);
return boolean_assignment_.LiteralIsFalse(l) ? 0 : 1;
} else if (mapping_.IsInteger(var)) {
return integer_trail_.UpperBound(mapping_.Integer(var)).value();
}
return 0; // Default.
}
BooleanOrIntegerLiteral CpModelView::GreaterOrEqual(int var,
int64_t value) const {
DCHECK(!IsFixed(var));
BooleanOrIntegerLiteral result;
if (mapping_.IsBoolean(var)) {
DCHECK(value == 0 || value == 1);
if (value == 1) {
result.boolean_literal_index = mapping_.Literal(var).Index();
}
} else if (mapping_.IsInteger(var)) {
result.integer_literal = IntegerLiteral::GreaterOrEqual(
mapping_.Integer(var), IntegerValue(value));
}
return result;
}
BooleanOrIntegerLiteral CpModelView::LowerOrEqual(int var,
int64_t value) const {
DCHECK(!IsFixed(var));
BooleanOrIntegerLiteral result;
if (mapping_.IsBoolean(var)) {
DCHECK(value == 0 || value == 1);
if (value == 0) {
result.boolean_literal_index = mapping_.Literal(var).NegatedIndex();
}
} else if (mapping_.IsInteger(var)) {
result.integer_literal = IntegerLiteral::LowerOrEqual(mapping_.Integer(var),
IntegerValue(value));
}
return result;
}
BooleanOrIntegerLiteral CpModelView::MedianValue(int var) const {
DCHECK(!IsFixed(var));
BooleanOrIntegerLiteral result;
if (mapping_.IsBoolean(var)) {
result.boolean_literal_index = mapping_.Literal(var).NegatedIndex();
} else if (mapping_.IsInteger(var)) {
const IntegerVariable variable = mapping_.Integer(var);
const std::vector<ValueLiteralPair> encoding =
integer_encoder_.FullDomainEncoding(variable);
// 5 values -> returns the second.
// 4 values -> returns the second too.
// Array is 0 based.
const int target = (static_cast<int>(encoding.size()) + 1) / 2 - 1;
result.boolean_literal_index = encoding[target].literal.Index();
}
return result;
}
// Stores one variable and its strategy value.
struct VarValue {
int ref;
int64_t value;
};
namespace {
// TODO(user): Save this somewhere instead of recomputing it.
bool ModelHasSchedulingConstraints(const CpModelProto& cp_model_proto) {
for (const ConstraintProto& ct : cp_model_proto.constraints()) {
if (ct.constraint_case() == ConstraintProto::kNoOverlap) return true;
if (ct.constraint_case() == ConstraintProto::kCumulative) return true;
}
return false;
}
void AddExtraSchedulingPropagators(SatParameters& new_params) {
new_params.set_exploit_all_precedences(true);
new_params.set_use_hard_precedences_in_cumulative(true);
new_params.set_use_overload_checker_in_cumulative(true);
new_params.set_use_strong_propagation_in_disjunctive(true);
new_params.set_use_timetable_edge_finding_in_cumulative(true);
new_params.set_use_conservative_scale_overload_checker(true);
new_params.set_max_pairs_pairwise_reasoning_in_no_overlap_2d(5000);
new_params.set_use_timetabling_in_no_overlap_2d(true);
new_params.set_use_energetic_reasoning_in_no_overlap_2d(true);
new_params.set_use_area_energetic_reasoning_in_no_overlap_2d(true);
new_params.set_use_try_edge_reasoning_in_no_overlap_2d(true);
}
// We want a random tie breaking among variables with equivalent values.
struct NoisyInteger {
int64_t value;
double noise;
bool operator<=(const NoisyInteger& other) const {
return value < other.value ||
(value == other.value && noise <= other.noise);
}
bool operator>(const NoisyInteger& other) const {
return value > other.value || (value == other.value && noise > other.noise);
}
};
} // namespace
std::function<BooleanOrIntegerLiteral()> ConstructUserSearchStrategy(
const CpModelProto& cp_model_proto, Model* model) {
if (cp_model_proto.search_strategy().empty()) return nullptr;
std::vector<DecisionStrategyProto> strategies;
for (const DecisionStrategyProto& proto : cp_model_proto.search_strategy()) {
strategies.push_back(proto);
}
const auto& view = *model->GetOrCreate<CpModelView>();
const auto& parameters = *model->GetOrCreate<SatParameters>();
auto* random = model->GetOrCreate<ModelRandomGenerator>();
// Note that we copy strategies to keep the return function validity
// independently of the life of the passed vector.
return [&view, ¶meters, random, strategies]() {
for (const DecisionStrategyProto& strategy : strategies) {
int candidate_ref = -1;
int64_t candidate_value = std::numeric_limits<int64_t>::max();
// TODO(user): Improve the complexity if this becomes an issue which
// may be the case if we do a fixed_search.
// To store equivalent variables in randomized search.
const bool randomize_decision =
parameters.search_random_variable_pool_size() > 1;
TopN<int, NoisyInteger> top_variables(
randomize_decision ? parameters.search_random_variable_pool_size()
: 1);
for (const LinearExpressionProto& expr : strategy.exprs()) {
const int var = expr.vars(0);
if (view.IsFixed(var)) continue;
int64_t coeff = expr.coeffs(0);
int64_t offset = expr.offset();
int64_t lb = view.Min(var);
int64_t ub = view.Max(var);
int ref = var;
if (coeff < 0) {
lb = -view.Max(var);
ub = -view.Min(var);
coeff = -coeff;
ref = NegatedRef(var);
}
int64_t value(0);
switch (strategy.variable_selection_strategy()) {
case DecisionStrategyProto::CHOOSE_FIRST:
break;
case DecisionStrategyProto::CHOOSE_LOWEST_MIN:
value = coeff * lb + offset;
break;
case DecisionStrategyProto::CHOOSE_HIGHEST_MAX:
value = -(coeff * ub + offset);
break;
case DecisionStrategyProto::CHOOSE_MIN_DOMAIN_SIZE:
// The size of the domain is not multiplied by the coeff.
value = ub - lb + 1;
break;
case DecisionStrategyProto::CHOOSE_MAX_DOMAIN_SIZE:
// The size of the domain is not multiplied by the coeff.
value = -(ub - lb + 1);
break;
default:
LOG(FATAL) << "Unknown VariableSelectionStrategy "
<< strategy.variable_selection_strategy();
}
if (randomize_decision) {
// We need to use -value as we want the minimum valued variables.
// We add a random noise to get improve the entropy.
const double noise = absl::Uniform(*random, 0., 1.0);
top_variables.Add(ref, {-value, noise});
candidate_value = std::min(candidate_value, value);
} else if (value < candidate_value) {
candidate_ref = ref;
candidate_value = value;
}
// We can stop scanning if the variable selection strategy is to use the
// first unbound variable and no randomization is needed.
if (strategy.variable_selection_strategy() ==
DecisionStrategyProto::CHOOSE_FIRST &&
!randomize_decision) {
break;
}
}
// Check if one active variable has been found.
if (candidate_value == std::numeric_limits<int64_t>::max()) continue;
// Pick the winner when decisions are randomized.
if (randomize_decision) {
const std::vector<int>& candidates = top_variables.UnorderedElements();
candidate_ref = candidates[absl::Uniform(
*random, 0, static_cast<int>(candidates.size()))];
}
DecisionStrategyProto::DomainReductionStrategy selection =
strategy.domain_reduction_strategy();
if (!RefIsPositive(candidate_ref)) {
switch (selection) {
case DecisionStrategyProto::SELECT_MIN_VALUE:
selection = DecisionStrategyProto::SELECT_MAX_VALUE;
break;
case DecisionStrategyProto::SELECT_MAX_VALUE:
selection = DecisionStrategyProto::SELECT_MIN_VALUE;
break;
case DecisionStrategyProto::SELECT_LOWER_HALF:
selection = DecisionStrategyProto::SELECT_UPPER_HALF;
break;
case DecisionStrategyProto::SELECT_UPPER_HALF:
selection = DecisionStrategyProto::SELECT_LOWER_HALF;
break;
default:
break;
}
}
const int var = PositiveRef(candidate_ref);
const int64_t lb = view.Min(var);
const int64_t ub = view.Max(var);
switch (selection) {
case DecisionStrategyProto::SELECT_MIN_VALUE:
return view.LowerOrEqual(var, lb);
case DecisionStrategyProto::SELECT_MAX_VALUE:
return view.GreaterOrEqual(var, ub);
case DecisionStrategyProto::SELECT_LOWER_HALF:
return view.LowerOrEqual(var, lb + (ub - lb) / 2);
case DecisionStrategyProto::SELECT_UPPER_HALF:
return view.GreaterOrEqual(var, ub - (ub - lb) / 2);
case DecisionStrategyProto::SELECT_MEDIAN_VALUE:
return view.MedianValue(var);
default:
LOG(FATAL) << "Unknown DomainReductionStrategy "
<< strategy.domain_reduction_strategy();
}
}
return BooleanOrIntegerLiteral();
};
}
// TODO(user): Implement a routing search.
std::function<BooleanOrIntegerLiteral()> ConstructHeuristicSearchStrategy(
const CpModelProto& cp_model_proto, Model* model) {
if (ModelHasSchedulingConstraints(cp_model_proto)) {
std::vector<std::function<BooleanOrIntegerLiteral()>> heuristics;
const auto& params = *model->GetOrCreate<SatParameters>();
bool possible_new_constraints = false;
if (params.use_dynamic_precedence_in_disjunctive()) {
possible_new_constraints = true;
heuristics.push_back(DisjunctivePrecedenceSearchHeuristic(model));
}
if (params.use_dynamic_precedence_in_cumulative()) {
possible_new_constraints = true;
heuristics.push_back(CumulativePrecedenceSearchHeuristic(model));
}
// Tricky: we need to create this at level zero in case there are no linear
// constraint in the model at the beginning.
//
// TODO(user): Alternatively, support creation of SatPropagator at positive
// level.
if (possible_new_constraints && params.new_linear_propagation()) {
model->GetOrCreate<LinearPropagator>();
}
heuristics.push_back(SchedulingSearchHeuristic(model));
return SequentialSearch(std::move(heuristics));
}
return PseudoCost(model);
}
std::function<BooleanOrIntegerLiteral()>
ConstructIntegerCompletionSearchStrategy(
absl::Span<const IntegerVariable> variable_mapping,
IntegerVariable objective_var, Model* model) {
const auto& params = *model->GetOrCreate<SatParameters>();
if (!params.instantiate_all_variables()) {
return []() { return BooleanOrIntegerLiteral(); };
}
std::vector<IntegerVariable> decisions;
for (const IntegerVariable var : variable_mapping) {
if (var == kNoIntegerVariable) continue;
// Make sure we try to fix the objective to its lowest value first.
// TODO(user): we could also fix terms of the objective in the right
// direction.
if (var == NegationOf(objective_var)) {
decisions.push_back(objective_var);
} else {
decisions.push_back(var);
}
}
return FirstUnassignedVarAtItsMinHeuristic(decisions, model);
}
// Constructs a search strategy that follow the hint from the model.
std::function<BooleanOrIntegerLiteral()> ConstructHintSearchStrategy(
const CpModelProto& cp_model_proto, CpModelMapping* mapping, Model* model) {
std::vector<BooleanOrIntegerVariable> vars;
std::vector<IntegerValue> values;
for (int i = 0; i < cp_model_proto.solution_hint().vars_size(); ++i) {
const int ref = cp_model_proto.solution_hint().vars(i);
CHECK(RefIsPositive(ref));
BooleanOrIntegerVariable var;
if (mapping->IsBoolean(ref)) {
var.bool_var = mapping->Literal(ref).Variable();
} else {
var.int_var = mapping->Integer(ref);
}
vars.push_back(var);
values.push_back(IntegerValue(cp_model_proto.solution_hint().values(i)));
}
return FollowHint(vars, values, model);
}
std::function<BooleanOrIntegerLiteral()> ConstructFixedSearchStrategy(
std::function<BooleanOrIntegerLiteral()> user_search,
std::function<BooleanOrIntegerLiteral()> heuristic_search,
std::function<BooleanOrIntegerLiteral()> integer_completion) {
// We start by the user specified heuristic.
std::vector<std::function<BooleanOrIntegerLiteral()>> heuristics;
if (user_search != nullptr) {
heuristics.push_back(user_search);
}
if (heuristic_search != nullptr) {
heuristics.push_back(heuristic_search);
}
if (integer_completion != nullptr) {
heuristics.push_back(integer_completion);
}
return SequentialSearch(heuristics);
}
std::function<BooleanOrIntegerLiteral()> InstrumentSearchStrategy(
const CpModelProto& cp_model_proto,
absl::Span<const IntegerVariable> variable_mapping,
std::function<BooleanOrIntegerLiteral()> instrumented_strategy,
Model* model) {
std::vector<int> ref_to_display;
for (int i = 0; i < cp_model_proto.variables_size(); ++i) {
if (variable_mapping[i] == kNoIntegerVariable) continue;
if (cp_model_proto.variables(i).name().empty()) continue;
ref_to_display.push_back(i);
}
std::sort(ref_to_display.begin(), ref_to_display.end(), [&](int i, int j) {
return cp_model_proto.variables(i).name() <
cp_model_proto.variables(j).name();
});
std::vector<std::pair<int64_t, int64_t>> old_domains(variable_mapping.size());
return [instrumented_strategy, model, variable_mapping, &cp_model_proto,
old_domains, ref_to_display]() mutable {
const BooleanOrIntegerLiteral decision = instrumented_strategy();
if (!decision.HasValue()) return decision;
if (decision.boolean_literal_index != kNoLiteralIndex) {
const Literal l = Literal(decision.boolean_literal_index);
LOG(INFO) << "Boolean decision " << l;
const auto& encoder = model->Get<IntegerEncoder>();
for (const IntegerLiteral i_lit : encoder->GetIntegerLiterals(l)) {
LOG(INFO) << " - associated with " << i_lit;
}
for (const auto [var, value] : encoder->GetEqualityLiterals(l)) {
LOG(INFO) << " - associated with " << var << " == " << value;
}
} else {
LOG(INFO) << "Integer decision " << decision.integer_literal;
}
const int level = model->Get<Trail>()->CurrentDecisionLevel();
std::string to_display =
absl::StrCat("Diff since last call, level=", level, "\n");
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
for (const int ref : ref_to_display) {
const IntegerVariable var = variable_mapping[ref];
const std::pair<int64_t, int64_t> new_domain(
integer_trail->LowerBound(var).value(),
integer_trail->UpperBound(var).value());
if (new_domain != old_domains[ref]) {
absl::StrAppend(&to_display, cp_model_proto.variables(ref).name(), " [",
old_domains[ref].first, ",", old_domains[ref].second,
"] -> [", new_domain.first, ",", new_domain.second,
"]\n");
old_domains[ref] = new_domain;
}
}
LOG(INFO) << to_display;
return decision;
};
}
absl::flat_hash_map<std::string, SatParameters> GetNamedParameters(
SatParameters base_params) {
absl::flat_hash_map<std::string, SatParameters> strategies;
// By default we disable the logging when we generate a set of parameter. It
// is possible to force it by setting it in the corresponding named parameter
// via the subsolver_params field.
base_params.set_log_search_progress(false);
// The "default" name can be used for the base_params unchanged.
strategies["default"] = base_params;
// Lp variations only.
{
SatParameters new_params = base_params;
new_params.set_linearization_level(0);
strategies["no_lp"] = new_params;
new_params.set_linearization_level(1);
strategies["default_lp"] = new_params;
new_params.set_linearization_level(2);
new_params.set_add_lp_constraints_lazily(false);
strategies["max_lp"] = new_params;
new_params.set_use_symmetry_in_lp(true);
strategies["max_lp_sym"] = new_params;
}
// Core. Note that we disable the lp here because it is faster on the minizinc
// benchmark.
//
// TODO(user): Do more experiments, the LP with core could be useful, but we
// probably need to incorporate the newly created integer variables from the
// core algorithm into the LP.
{
SatParameters new_params = base_params;
new_params.set_search_branching(SatParameters::AUTOMATIC_SEARCH);
new_params.set_optimize_with_core(true);
new_params.set_linearization_level(0);
strategies["core"] = new_params;
}
// It can be interesting to try core and lp.
{
SatParameters new_params = base_params;
new_params.set_search_branching(SatParameters::AUTOMATIC_SEARCH);
new_params.set_optimize_with_core(true);
new_params.set_linearization_level(1);
strategies["core_default_lp"] = new_params;
}
{
SatParameters new_params = base_params;
new_params.set_search_branching(SatParameters::AUTOMATIC_SEARCH);
new_params.set_optimize_with_core(true);
new_params.set_linearization_level(2);
strategies["core_max_lp"] = new_params;
}
{
SatParameters new_params = base_params;
new_params.set_search_branching(SatParameters::AUTOMATIC_SEARCH);
new_params.set_optimize_with_core(true);
new_params.set_optimize_with_max_hs(true);
strategies["max_hs"] = new_params;
}
{
SatParameters new_params = base_params;
new_params.set_optimize_with_lb_tree_search(true);
// We do not want to change the objective_var lb from outside as it gives
// better result to only use locally derived reason in that algo.
new_params.set_share_objective_bounds(false);
new_params.set_linearization_level(0);
strategies["lb_tree_search_no_lp"] = new_params;
new_params.set_linearization_level(2);
if (base_params.use_dual_scheduling_heuristics()) {
AddExtraSchedulingPropagators(new_params);
}
// We want to spend more time on the LP here.
new_params.set_add_lp_constraints_lazily(false);
new_params.set_root_lp_iterations(100'000);
strategies["lb_tree_search"] = new_params;
}
{
SatParameters new_params = base_params;
new_params.set_use_objective_lb_search(true);
new_params.set_linearization_level(0);
strategies["objective_lb_search_no_lp"] = new_params;
new_params.set_linearization_level(1);
strategies["objective_lb_search"] = new_params;
if (base_params.use_dual_scheduling_heuristics()) {
AddExtraSchedulingPropagators(new_params);
}
new_params.set_linearization_level(2);
strategies["objective_lb_search_max_lp"] = new_params;
}
{
SatParameters new_params = base_params;
new_params.set_use_objective_shaving_search(true);
new_params.set_cp_model_presolve(true);
new_params.set_cp_model_probing_level(0);
new_params.set_symmetry_level(0);
if (base_params.use_dual_scheduling_heuristics()) {
AddExtraSchedulingPropagators(new_params);
}
strategies["objective_shaving"] = new_params;
new_params.set_linearization_level(0);
strategies["objective_shaving_no_lp"] = new_params;
new_params.set_linearization_level(2);
strategies["objective_shaving_max_lp"] = new_params;
}
{
SatParameters new_params = base_params;
new_params.set_use_variables_shaving_search(true);
new_params.set_cp_model_presolve(true);
new_params.set_cp_model_probing_level(0);
new_params.set_symmetry_level(0);
new_params.set_share_objective_bounds(false);
new_params.set_share_level_zero_bounds(false);
strategies["variables_shaving"] = new_params;
new_params.set_linearization_level(0);
strategies["variables_shaving_no_lp"] = new_params;
if (base_params.use_dual_scheduling_heuristics()) {
AddExtraSchedulingPropagators(new_params);
}
new_params.set_linearization_level(2);
strategies["variables_shaving_max_lp"] = new_params;
}
{
SatParameters new_params = base_params;
new_params.set_search_branching(SatParameters::AUTOMATIC_SEARCH);
new_params.set_use_probing_search(true);
new_params.set_at_most_one_max_expansion_size(2);
if (base_params.use_dual_scheduling_heuristics()) {
AddExtraSchedulingPropagators(new_params);
}
strategies["probing"] = new_params;
new_params.set_linearization_level(0);
strategies["probing_no_lp"] = new_params;
new_params.set_linearization_level(2);
// We want to spend more time on the LP here.
new_params.set_add_lp_constraints_lazily(false);
new_params.set_root_lp_iterations(100'000);
strategies["probing_max_lp"] = new_params;
}
// Search variation.
{
SatParameters new_params = base_params;
new_params.set_search_branching(SatParameters::AUTOMATIC_SEARCH);
strategies["auto"] = new_params;
new_params.set_search_branching(SatParameters::FIXED_SEARCH);
new_params.set_use_dynamic_precedence_in_disjunctive(false);
new_params.set_use_dynamic_precedence_in_cumulative(false);
strategies["fixed"] = new_params;
}
// Quick restart.
{
// TODO(user): Experiment with search_random_variable_pool_size.
SatParameters new_params = base_params;
new_params.set_search_branching(
SatParameters::PORTFOLIO_WITH_QUICK_RESTART_SEARCH);
strategies["quick_restart"] = new_params;
new_params.set_linearization_level(0);
strategies["quick_restart_no_lp"] = new_params;
new_params.set_linearization_level(2);
strategies["quick_restart_max_lp"] = new_params;
}
{
SatParameters new_params = base_params;
new_params.set_linearization_level(2);
new_params.set_search_branching(SatParameters::LP_SEARCH);
if (base_params.use_dual_scheduling_heuristics()) {
AddExtraSchedulingPropagators(new_params);
}
strategies["reduced_costs"] = new_params;
}
{
// Note: no dual scheduling heuristics.
SatParameters new_params = base_params;
new_params.set_linearization_level(2);
new_params.set_search_branching(SatParameters::PSEUDO_COST_SEARCH);
new_params.set_exploit_best_solution(true);
strategies["pseudo_costs"] = new_params;
}
// Less encoding.
{
SatParameters new_params = base_params;
new_params.set_boolean_encoding_level(0);
strategies["less_encoding"] = new_params;
}
// Base parameters for shared tree worker.
{
SatParameters new_params = base_params;
new_params.set_use_shared_tree_search(true);
new_params.set_search_branching(SatParameters::AUTOMATIC_SEARCH);
new_params.set_linearization_level(0);
// These settings don't make sense with shared tree search, turn them off as
// they can break things.
new_params.set_optimize_with_core(false);
new_params.set_optimize_with_lb_tree_search(false);
new_params.set_optimize_with_max_hs(false);
// Given that each workers work on a different part of the subtree, it might
// not be a good idea to try to work on a global shared solution.
//
// TODO(user): Experiments more here, in particular we could follow it if
// it falls into the current subtree.
new_params.set_polarity_exploit_ls_hints(false);
strategies["shared_tree"] = new_params;
}
// Base parameters for LNS worker.
{
SatParameters new_params = base_params;
new_params.set_stop_after_first_solution(false);
new_params.set_cp_model_presolve(true);
// We disable costly presolve/inprocessing.
new_params.set_use_sat_inprocessing(false);
new_params.set_cp_model_probing_level(0);
new_params.set_symmetry_level(0);
new_params.set_find_big_linear_overlap(false);
new_params.set_log_search_progress(false);
new_params.set_debug_crash_on_bad_hint(false); // Can happen in lns.
new_params.set_solution_pool_size(1); // Keep the best solution found.
strategies["lns"] = new_params;
}
// Add user defined ones.
// Note that this might be merged to our default ones.
for (const SatParameters& params : base_params.subsolver_params()) {
auto it = strategies.find(params.name());
if (it != strategies.end()) {
it->second.MergeFrom(params);
} else {
// Merge the named parameters with the base parameters to create the new
// parameters.
SatParameters new_params = base_params;
new_params.MergeFrom(params);
strategies[params.name()] = new_params;
}
}
// Fix names (we don't set them above).
for (auto& [name, params] : strategies) {
params.set_name(name);
}
return strategies;
}
// Note: in flatzinc setting, we know we always have a fixed search defined.
//
// Things to try:
// - Specialize for purely boolean problems
// - Disable linearization_level options for non linear problems
// - Fast restart in randomized search
// - Different propatation levels for scheduling constraints
std::vector<SatParameters> GetFullWorkerParameters(
const SatParameters& base_params, const CpModelProto& cp_model,
int num_already_present, SubsolverNameFilter* filter) {
// Defines a set of named strategies so it is easier to read in one place
// the one that are used. See below.
const auto strategies = GetNamedParameters(base_params);
// We only use a "fixed search" worker if some strategy is specified or
// if we have a scheduling model.
//
// TODO(user): For scheduling, this is important to find good first solution
// but afterwards it is not really great and should probably be replaced by a
// LNS worker.
const bool use_fixed_strategy = !cp_model.search_strategy().empty() ||
ModelHasSchedulingConstraints(cp_model);
// Our current set of strategies
//
// TODO(user): Avoid launching two strategies if they are the same,
// like if there is no lp, or everything is already linearized at level 1.
std::vector<std::string> names;
// Starts by adding user specified ones.
for (const std::string& name : base_params.extra_subsolvers()) {
names.push_back(name);
}
// We use the default if empty.
if (base_params.subsolvers().empty()) {
// Note that the order is important as the list can be truncated.
names.push_back("default_lp");
names.push_back("fixed");
names.push_back("core");
names.push_back("no_lp");
if (cp_model.has_symmetry()) {
names.push_back("max_lp_sym");
} else {
// If there is no symmetry, max_lp_sym and max_lp are the same, but
// we prefer the less confusing name.
names.push_back("max_lp");
}
names.push_back("quick_restart");
names.push_back("reduced_costs");
names.push_back("quick_restart_no_lp");
names.push_back("pseudo_costs");
names.push_back("lb_tree_search");
names.push_back("probing");
names.push_back("objective_lb_search");
names.push_back("objective_shaving_no_lp");
names.push_back("objective_shaving_max_lp");
names.push_back("probing_max_lp");
names.push_back("probing_no_lp");
names.push_back("objective_lb_search_no_lp");
names.push_back("objective_lb_search_max_lp");
if (cp_model.has_symmetry()) {
names.push_back("max_lp");
}
} else {
for (const std::string& name : base_params.subsolvers()) {
// Hack for flatzinc. At the time of parameter setting, the objective is
// not expanded. So we do not know if core is applicable or not.
if (name == "core_or_no_lp") {
if (!cp_model.has_objective() ||
cp_model.objective().vars_size() <= 1) {
names.push_back("no_lp");
} else {
names.push_back("core");
}
} else {
names.push_back(name);
}
}
}
// Remove the names that should be ignored.
int new_size = 0;
for (const std::string& name : names) {
if (filter->Keep(name)) {
names[new_size++] = name;
}
}
names.resize(new_size);
// Creates the diverse set of parameters with names and seed.
std::vector<SatParameters> result;
for (const std::string& name : names) {
SatParameters params = strategies.at(name);
// Do some filtering.
if (!use_fixed_strategy &&
params.search_branching() == SatParameters::FIXED_SEARCH) {
continue;
}
// TODO(user): Enable probing_search in deterministic mode.
// Currently it timeouts on small problems as the deterministic time limit
// never hits the sharding limit.
if (params.use_probing_search() && params.interleave_search()) continue;
// TODO(user): Enable shaving search in interleave mode.
// Currently it do not respect ^C, and has no per chunk time limit.
if ((params.use_objective_shaving_search() ||
params.use_variables_shaving_search()) &&
params.interleave_search()) {
continue;
}
// In the corner case of empty variable, lets not schedule the probing as
// it currently just loop forever instead of returning right away.
if (params.use_probing_search() && cp_model.variables().empty()) continue;
if (cp_model.has_objective() && !cp_model.objective().vars().empty()) {
// Disable core search if there is only 1 term in the objective.
if (cp_model.objective().vars().size() == 1 &&
params.optimize_with_core()) {
continue;
}
if (name == "less_encoding") continue;
// Disable subsolvers that do not implement the deterministic mode.
//
// TODO(user): Enable lb_tree_search in deterministic mode.
if (params.interleave_search() &&
(params.optimize_with_lb_tree_search() ||
params.use_objective_lb_search())) {
continue;
}
} else {
// Remove subsolvers that require an objective.
if (params.optimize_with_lb_tree_search()) continue;
if (params.optimize_with_core()) continue;
if (params.use_objective_lb_search()) continue;
if (params.use_objective_shaving_search()) continue;
if (params.search_branching() == SatParameters::LP_SEARCH) continue;
if (params.search_branching() == SatParameters::PSEUDO_COST_SEARCH) {
continue;
}
}
// Add this strategy.
params.set_name(name);
params.set_random_seed(CombineSeed(
base_params.random_seed(), static_cast<int64_t>(result.size()) + 1));
result.push_back(params);
}
// In interleaved mode, we run all of them.
//
// TODO(user): Actually make sure the gap num_workers <-> num_heuristics is
// contained.
if (base_params.interleave_search()) return result;
// Apply the logic for how many we keep.
int num_to_keep = base_params.num_full_subsolvers();
if (num_to_keep == 0) {
// Derive some automatic number to leave room for LS/LNS and other
// strategies not taken into account here.
const int num_available =
std::max(0, base_params.num_workers() - num_already_present);
const auto heuristic_num_workers = [](int num_workers) {
DCHECK_GE(num_workers, 0);
if (num_workers == 1) return 1;
if (num_workers <= 4) return num_workers - 1;
if (num_workers <= 8) return num_workers - 2;
if (num_workers <= 16) return num_workers - (num_workers / 4 + 1);
return num_workers - (num_workers / 2 - 3);
};
num_to_keep = heuristic_num_workers(num_available);
}
if (result.size() > num_to_keep) {
result.resize(std::max(0, num_to_keep));
}
return result;
}
std::vector<SatParameters> GetFirstSolutionBaseParams(
const SatParameters& base_params) {
std::vector<SatParameters> result;
const auto get_base = [&result, &base_params](bool fj) {
SatParameters new_params = base_params;
new_params.set_log_search_progress(false);
new_params.set_use_feasibility_jump(fj);
const int base_seed = base_params.random_seed();
new_params.set_random_seed(CombineSeed(base_seed, result.size()));
return new_params;
};
// Add one feasibility jump.
if (base_params.use_feasibility_jump()) {
SatParameters new_params = get_base(true);
new_params.set_name("fj");
new_params.set_feasibility_jump_linearization_level(0);
result.push_back(new_params);
}
// Random search.
for (int i = 0; i < 2; ++i) {
SatParameters new_params = get_base(false);
new_params.set_search_random_variable_pool_size(5);
new_params.set_search_branching(SatParameters::RANDOMIZED_SEARCH);
if (i % 2 == 0) {
new_params.set_name("fs_random_no_lp");
new_params.set_linearization_level(0);
} else {
new_params.set_name("fs_random");
}
result.push_back(new_params);
}
// Add a second feasibility jump.
if (base_params.use_feasibility_jump()) {
SatParameters new_params = get_base(true);
new_params.set_name("fj");
new_params.set_feasibility_jump_linearization_level(0);
result.push_back(new_params);
}
// Random quick restart.
for (int i = 0; i < 2; ++i) {
SatParameters new_params = get_base(false);
new_params.set_search_random_variable_pool_size(5);
new_params.set_search_branching(
SatParameters::PORTFOLIO_WITH_QUICK_RESTART_SEARCH);
if (i % 2 == 0) {
new_params.set_name("fs_random_quick_restart_no_lp");
new_params.set_linearization_level(0);
} else {
new_params.set_name("fs_random_quick_restart");
}
result.push_back(new_params);