forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
diffn.cc
1000 lines (899 loc) · 39.2 KB
/
diffn.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/diffn.h"
#include <stddef.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <optional>
#include <string>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_set.h"
#include "absl/container/inlined_vector.h"
#include "absl/log/check.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/sat/2d_orthogonal_packing.h"
#include "ortools/sat/2d_try_edge_propagator.h"
#include "ortools/sat/cumulative_energy.h"
#include "ortools/sat/diffn_util.h"
#include "ortools/sat/disjunctive.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/integer_expr.h"
#include "ortools/sat/intervals.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/timetable.h"
#include "ortools/util/saturated_arithmetic.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
namespace {
IntegerVariable CreateVariableWithTightDomain(
absl::Span<const AffineExpression> exprs, Model* model) {
IntegerValue min = kMaxIntegerValue;
IntegerValue max = kMinIntegerValue;
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
for (const AffineExpression& e : exprs) {
min = std::min(min, integer_trail->LevelZeroLowerBound(e));
max = std::max(max, integer_trail->LevelZeroUpperBound(e));
}
return integer_trail->AddIntegerVariable(min, max);
}
// TODO(user): Use the faster variable only version if all expressions reduce
// to a single variable?
IntegerVariable CreateVariableEqualToMinOf(
absl::Span<const AffineExpression> exprs, Model* model) {
std::vector<LinearExpression> converted;
for (const AffineExpression& affine : exprs) {
LinearExpression e;
e.offset = affine.constant;
if (affine.var != kNoIntegerVariable) {
e.vars.push_back(affine.var);
e.coeffs.push_back(affine.coeff);
}
converted.push_back(e);
}
LinearExpression target;
const IntegerVariable var = CreateVariableWithTightDomain(exprs, model);
target.vars.push_back(var);
target.coeffs.push_back(IntegerValue(1));
model->Add(IsEqualToMinOf(target, converted));
return var;
}
IntegerVariable CreateVariableEqualToMaxOf(
absl::Span<const AffineExpression> exprs, Model* model) {
std::vector<LinearExpression> converted;
for (const AffineExpression& affine : exprs) {
LinearExpression e;
e.offset = affine.constant;
if (affine.var != kNoIntegerVariable) {
e.vars.push_back(affine.var);
e.coeffs.push_back(affine.coeff);
}
converted.push_back(NegationOf(e));
}
LinearExpression target;
const IntegerVariable var = CreateVariableWithTightDomain(exprs, model);
target.vars.push_back(NegationOf(var));
target.coeffs.push_back(IntegerValue(1));
model->Add(IsEqualToMinOf(target, converted));
return var;
}
// Add a cumulative relaxation. That is, on one dimension, it does not enforce
// the rectangle aspect, allowing vertical slices to move freely.
void AddDiffnCumulativeRelationOnX(SchedulingConstraintHelper* x,
SchedulingConstraintHelper* y,
Model* model) {
// TODO(user): Use conditional affine min/max !!
const IntegerVariable min_start_var =
CreateVariableEqualToMinOf(y->Starts(), model);
const IntegerVariable max_end_var =
CreateVariableEqualToMaxOf(y->Ends(), model);
// (max_end - min_start) >= capacity.
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
const AffineExpression capacity(model->Add(NewIntegerVariable(
0, CapSub(integer_trail->UpperBound(max_end_var).value(),
integer_trail->LowerBound(min_start_var).value()))));
const std::vector<int64_t> coeffs = {-capacity.coeff.value(), -1, 1};
model->Add(
WeightedSumGreaterOrEqual({capacity.var, min_start_var, max_end_var},
coeffs, capacity.constant.value()));
SchedulingDemandHelper* demands =
model->GetOrCreate<IntervalsRepository>()->GetOrCreateDemandHelper(
x, y->Sizes());
// Propagator responsible for applying Timetabling filtering rule. It
// increases the minimum of the start variables, decrease the maximum of the
// end variables, and increase the minimum of the capacity variable.
const SatParameters& params = *model->GetOrCreate<SatParameters>();
if (params.use_timetabling_in_no_overlap_2d()) {
TimeTablingPerTask* time_tabling =
new TimeTablingPerTask(capacity, x, demands, model);
time_tabling->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(time_tabling);
}
// Propagator responsible for applying the Overload Checking filtering rule.
// It increases the minimum of the capacity variable.
if (params.use_energetic_reasoning_in_no_overlap_2d()) {
AddCumulativeOverloadChecker(capacity, x, demands, model);
}
}
// This function will fill the helper why the two boxes always overlap on that
// dimension.
void ClearAndAddMandatoryOverlapReason(int box1, int box2,
SchedulingConstraintHelper* helper) {
helper->ClearReason();
helper->AddPresenceReason(box1);
helper->AddPresenceReason(box2);
helper->AddReasonForBeingBefore(box1, box2);
helper->AddReasonForBeingBefore(box2, box1);
}
bool ClearAndAddTwoBoxesConflictReason(int box1, int box2,
SchedulingConstraintHelper* x,
SchedulingConstraintHelper* y) {
ClearAndAddMandatoryOverlapReason(box1, box2, x);
ClearAndAddMandatoryOverlapReason(box1, box2, y);
x->ImportOtherReasons(*y);
return x->ReportConflict();
}
} // namespace
void AddNonOverlappingRectangles(const std::vector<IntervalVariable>& x,
const std::vector<IntervalVariable>& y,
Model* model) {
IntervalsRepository* repository = model->GetOrCreate<IntervalsRepository>();
SchedulingConstraintHelper* x_helper = repository->GetOrCreateHelper(x);
SchedulingConstraintHelper* y_helper = repository->GetOrCreateHelper(y);
NonOverlappingRectanglesDisjunctivePropagator* constraint =
new NonOverlappingRectanglesDisjunctivePropagator(x_helper, y_helper,
model);
constraint->Register(/*fast_priority=*/3, /*slow_priority=*/4);
model->TakeOwnership(constraint);
RectanglePairwisePropagator* pairwise_propagator =
new RectanglePairwisePropagator(x_helper, y_helper, model);
GenericLiteralWatcher* const watcher =
model->GetOrCreate<GenericLiteralWatcher>();
watcher->SetPropagatorPriority(pairwise_propagator->RegisterWith(watcher), 4);
model->TakeOwnership(pairwise_propagator);
const SatParameters& params = *model->GetOrCreate<SatParameters>();
const bool add_cumulative_relaxation =
params.use_timetabling_in_no_overlap_2d() ||
params.use_energetic_reasoning_in_no_overlap_2d();
if (add_cumulative_relaxation) {
// We must first check if the cumulative relaxation is possible.
bool some_boxes_are_only_optional_on_x = false;
bool some_boxes_are_only_optional_on_y = false;
for (int i = 0; i < x.size(); ++i) {
if (x_helper->IsOptional(i) && y_helper->IsOptional(i) &&
x_helper->PresenceLiteral(i) != y_helper->PresenceLiteral(i)) {
// Abort as the task would be conditioned by two literals.
return;
}
if (x_helper->IsOptional(i) && !y_helper->IsOptional(i)) {
// We cannot use x_size as the demand of the cumulative based on
// the y_intervals.
some_boxes_are_only_optional_on_x = true;
}
if (y_helper->IsOptional(i) && !x_helper->IsOptional(i)) {
// We cannot use y_size as the demand of the cumulative based on
// the y_intervals.
some_boxes_are_only_optional_on_y = true;
}
}
if (!some_boxes_are_only_optional_on_y) {
AddDiffnCumulativeRelationOnX(x_helper, y_helper, model);
}
if (!some_boxes_are_only_optional_on_x) {
AddDiffnCumulativeRelationOnX(y_helper, x_helper, model);
}
}
if (params.use_area_energetic_reasoning_in_no_overlap_2d()) {
NonOverlappingRectanglesEnergyPropagator* energy_constraint =
new NonOverlappingRectanglesEnergyPropagator(x_helper, y_helper, model);
GenericLiteralWatcher* const watcher =
model->GetOrCreate<GenericLiteralWatcher>();
watcher->SetPropagatorPriority(energy_constraint->RegisterWith(watcher), 5);
model->TakeOwnership(energy_constraint);
}
if (params.use_try_edge_reasoning_in_no_overlap_2d()) {
CreateAndRegisterTryEdgePropagator(x_helper, y_helper, model, watcher);
}
}
#define RETURN_IF_FALSE(f) \
if (!(f)) return false;
NonOverlappingRectanglesEnergyPropagator::
~NonOverlappingRectanglesEnergyPropagator() {
if (!VLOG_IS_ON(1)) return;
std::vector<std::pair<std::string, int64_t>> stats;
stats.push_back(
{"NonOverlappingRectanglesEnergyPropagator/called", num_calls_});
stats.push_back(
{"NonOverlappingRectanglesEnergyPropagator/conflicts", num_conflicts_});
stats.push_back(
{"NonOverlappingRectanglesEnergyPropagator/conflicts_two_boxes",
num_conflicts_two_boxes_});
stats.push_back({"NonOverlappingRectanglesEnergyPropagator/refined",
num_refined_conflicts_});
stats.push_back(
{"NonOverlappingRectanglesEnergyPropagator/conflicts_with_slack",
num_conflicts_with_slack_});
shared_stats_->AddStats(stats);
}
bool NonOverlappingRectanglesEnergyPropagator::Propagate() {
// TODO(user): double-check/revisit the algo for box of variable sizes.
const int num_boxes = x_.NumTasks();
if (!x_.SynchronizeAndSetTimeDirection(true)) return false;
if (!y_.SynchronizeAndSetTimeDirection(true)) return false;
Rectangle bounding_box = {.x_min = std::numeric_limits<IntegerValue>::max(),
.x_max = std::numeric_limits<IntegerValue>::min(),
.y_min = std::numeric_limits<IntegerValue>::max(),
.y_max = std::numeric_limits<IntegerValue>::min()};
std::vector<RectangleInRange> active_box_ranges;
active_box_ranges.reserve(num_boxes);
for (int box = 0; box < num_boxes; ++box) {
if (x_.SizeMin(box) == 0 || y_.SizeMin(box) == 0) continue;
if (!x_.IsPresent(box) || !y_.IsPresent(box)) continue;
bounding_box.x_min = std::min(bounding_box.x_min, x_.StartMin(box));
bounding_box.x_max = std::max(bounding_box.x_max, x_.EndMax(box));
bounding_box.y_min = std::min(bounding_box.y_min, y_.StartMin(box));
bounding_box.y_max = std::max(bounding_box.y_max, y_.EndMax(box));
active_box_ranges.push_back(RectangleInRange{
.box_index = box,
.bounding_area = {.x_min = x_.StartMin(box),
.x_max = x_.StartMax(box) + x_.SizeMin(box),
.y_min = y_.StartMin(box),
.y_max = y_.StartMax(box) + y_.SizeMin(box)},
.x_size = x_.SizeMin(box),
.y_size = y_.SizeMin(box)});
}
if (active_box_ranges.size() < 2) {
return true;
}
// Our algo is quadratic, so we don't want to run it on really large problems.
if (active_box_ranges.size() > 1000) {
return true;
}
if (std::max(bounding_box.SizeX(), bounding_box.SizeY()) *
active_box_ranges.size() >
std::numeric_limits<int32_t>::max()) {
// Avoid integer overflows if the area of the boxes get comparable with
// INT64_MAX
return true;
}
num_calls_++;
std::optional<Conflict> best_conflict =
FindConflict(std::move(active_box_ranges));
if (!best_conflict.has_value()) {
return true;
}
num_conflicts_++;
// We found a conflict, so we can afford to run the propagator again to
// search for a best explanation. This is specially the case since we only
// want to re-run it over the items that participate in the conflict, so it is
// a much smaller problem.
IntegerValue best_explanation_size =
best_conflict->opp_result.GetItemsParticipatingOnConflict().size();
bool refined = false;
while (true) {
std::vector<RectangleInRange> items_participating_in_conflict;
items_participating_in_conflict.reserve(
best_conflict->items_for_opp.size());
for (const auto& item :
best_conflict->opp_result.GetItemsParticipatingOnConflict()) {
items_participating_in_conflict.push_back(
best_conflict->items_for_opp[item.index]);
}
std::optional<Conflict> conflict =
FindConflict(items_participating_in_conflict);
if (!conflict.has_value()) break;
// We prefer an explanation with the least number of boxes.
if (conflict->opp_result.GetItemsParticipatingOnConflict().size() >=
best_explanation_size) {
// The new explanation isn't better than the old one. Stop trying.
break;
}
best_explanation_size =
conflict->opp_result.GetItemsParticipatingOnConflict().size();
best_conflict = std::move(conflict);
refined = true;
}
num_refined_conflicts_ += refined;
const std::vector<RectangleInRange> generalized_explanation =
GeneralizeExplanation(*best_conflict);
if (best_explanation_size == 2) {
num_conflicts_two_boxes_++;
}
BuildAndReportEnergyTooLarge(generalized_explanation);
return false;
}
std::optional<NonOverlappingRectanglesEnergyPropagator::Conflict>
NonOverlappingRectanglesEnergyPropagator::FindConflict(
std::vector<RectangleInRange> active_box_ranges) {
const auto rectangles_with_too_much_energy =
FindRectanglesWithEnergyConflictMC(active_box_ranges, *random_, 1.0, 0.8);
if (rectangles_with_too_much_energy.conflicts.empty() &&
rectangles_with_too_much_energy.candidates.empty()) {
return std::nullopt;
}
Conflict best_conflict;
// Sample 10 rectangles (at least five among the ones for which we already
// detected an energy overflow), extract an orthogonal packing subproblem for
// each and look for conflict. Sampling avoids making this heuristic too
// costly.
constexpr int kSampleSize = 10;
absl::InlinedVector<Rectangle, kSampleSize> sampled_rectangles;
std::sample(rectangles_with_too_much_energy.conflicts.begin(),
rectangles_with_too_much_energy.conflicts.end(),
std::back_inserter(sampled_rectangles), 5, *random_);
std::sample(rectangles_with_too_much_energy.candidates.begin(),
rectangles_with_too_much_energy.candidates.end(),
std::back_inserter(sampled_rectangles),
kSampleSize - sampled_rectangles.size(), *random_);
std::sort(sampled_rectangles.begin(), sampled_rectangles.end(),
[](const Rectangle& a, const Rectangle& b) {
const bool larger = std::make_pair(a.SizeX(), a.SizeY()) >
std::make_pair(b.SizeX(), b.SizeY());
// Double-check the invariant from
// FindRectanglesWithEnergyConflictMC() that given two returned
// rectangles there is one that is fully inside the other.
if (larger) {
// Rectangle b is fully contained inside a
DCHECK(a.x_min <= b.x_min && a.x_max >= b.x_max &&
a.y_min <= b.y_min && a.y_max >= b.y_max);
} else {
// Rectangle a is fully contained inside b
DCHECK(a.x_min >= b.x_min && a.x_max <= b.x_max &&
a.y_min >= b.y_min && a.y_max <= b.y_max);
}
return larger;
});
std::vector<IntegerValue> sizes_x, sizes_y;
sizes_x.reserve(active_box_ranges.size());
sizes_y.reserve(active_box_ranges.size());
std::vector<RectangleInRange> filtered_items;
filtered_items.reserve(active_box_ranges.size());
for (const Rectangle& r : sampled_rectangles) {
sizes_x.clear();
sizes_y.clear();
filtered_items.clear();
for (int i = 0; i < active_box_ranges.size(); ++i) {
const RectangleInRange& box = active_box_ranges[i];
const Rectangle intersection = box.GetMinimumIntersection(r);
if (intersection.SizeX() > 0 && intersection.SizeY() > 0) {
sizes_x.push_back(intersection.SizeX());
sizes_y.push_back(intersection.SizeY());
filtered_items.push_back(box);
}
}
// This check the feasibility of a related orthogonal packing problem where
// our rectangle is the bounding box, and we need to fit inside it a set of
// items corresponding to the minimum intersection of the original items
// with this bounding box.
const auto opp_result = orthogonal_packing_checker_.TestFeasibility(
sizes_x, sizes_y, {r.SizeX(), r.SizeY()},
OrthogonalPackingOptions{
.use_pairwise = true,
.use_dff_f0 = true,
.use_dff_f2 = true,
.brute_force_threshold = 7,
.dff2_max_number_of_parameters_to_check = 100});
if (opp_result.GetResult() == OrthogonalPackingResult::Status::INFEASIBLE &&
(best_conflict.opp_result.GetResult() !=
OrthogonalPackingResult::Status::INFEASIBLE ||
best_conflict.opp_result.GetItemsParticipatingOnConflict().size() >
opp_result.GetItemsParticipatingOnConflict().size())) {
best_conflict.items_for_opp = filtered_items;
best_conflict.opp_result = opp_result;
best_conflict.rectangle_with_too_much_energy = r;
}
// Use the fact that our rectangles are ordered in shrinking order to remove
// all items that will never contribute again.
filtered_items.swap(active_box_ranges);
}
if (best_conflict.opp_result.GetResult() ==
OrthogonalPackingResult::Status::INFEASIBLE) {
return best_conflict;
} else {
return std::nullopt;
}
}
std::vector<RectangleInRange>
NonOverlappingRectanglesEnergyPropagator::GeneralizeExplanation(
const Conflict& conflict) {
const Rectangle& rectangle = conflict.rectangle_with_too_much_energy;
OrthogonalPackingResult relaxed_result = conflict.opp_result;
// Use the potential slack to have a stronger reason.
int used_slack_count = 0;
const auto& items = relaxed_result.GetItemsParticipatingOnConflict();
for (int i = 0; i < items.size(); ++i) {
if (!relaxed_result.HasSlack()) {
break;
}
const RectangleInRange& range = conflict.items_for_opp[items[i].index];
const RectangleInRange item_in_zero_level_range = {
.bounding_area = {.x_min = x_.LevelZeroStartMin(range.box_index),
.x_max = x_.LevelZeroStartMax(range.box_index) +
range.x_size,
.y_min = y_.LevelZeroStartMin(range.box_index),
.y_max = y_.LevelZeroStartMax(range.box_index) +
range.y_size},
.x_size = range.x_size,
.y_size = range.y_size};
// There is no point trying to intersect less the item with the rectangle
// than it would on zero-level. So do not waste the slack with it.
const Rectangle max_overlap =
item_in_zero_level_range.GetMinimumIntersection(rectangle);
used_slack_count += relaxed_result.TryUseSlackToReduceItemSize(
i, OrthogonalPackingResult::Coord::kCoordX, max_overlap.SizeX());
used_slack_count += relaxed_result.TryUseSlackToReduceItemSize(
i, OrthogonalPackingResult::Coord::kCoordY, max_overlap.SizeY());
}
num_conflicts_with_slack_ += (used_slack_count > 0);
VLOG_EVERY_N_SEC(2, 3)
<< "Found a conflict on the OPP sub-problem of rectangle: " << rectangle
<< " using "
<< conflict.opp_result.GetItemsParticipatingOnConflict().size() << "/"
<< conflict.items_for_opp.size() << " items.";
std::vector<RectangleInRange> ranges_for_explanation;
ranges_for_explanation.reserve(conflict.items_for_opp.size());
std::vector<OrthogonalPackingResult::Item> sorted_items =
relaxed_result.GetItemsParticipatingOnConflict();
// TODO(user) understand why sorting high-impact items first improves the
// benchmarks
std::sort(sorted_items.begin(), sorted_items.end(),
[](const OrthogonalPackingResult::Item& a,
const OrthogonalPackingResult::Item& b) {
return a.size_x * a.size_y > b.size_x * b.size_y;
});
for (const auto& item : sorted_items) {
const RectangleInRange& range = conflict.items_for_opp[item.index];
ranges_for_explanation.push_back(
RectangleInRange::BiggestWithMinIntersection(rectangle, range,
item.size_x, item.size_y));
}
return ranges_for_explanation;
}
int NonOverlappingRectanglesEnergyPropagator::RegisterWith(
GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
x_.WatchAllTasks(id);
y_.WatchAllTasks(id);
return id;
}
bool NonOverlappingRectanglesEnergyPropagator::BuildAndReportEnergyTooLarge(
const std::vector<RectangleInRange>& ranges) {
if (ranges.size() == 2) {
num_conflicts_two_boxes_++;
return ClearAndAddTwoBoxesConflictReason(ranges[0].box_index,
ranges[1].box_index, &x_, &y_);
}
x_.ClearReason();
y_.ClearReason();
for (const auto& range : ranges) {
const int b = range.box_index;
x_.AddStartMinReason(b, range.bounding_area.x_min);
y_.AddStartMinReason(b, range.bounding_area.y_min);
x_.AddStartMaxReason(b, range.bounding_area.x_max - range.x_size);
y_.AddStartMaxReason(b, range.bounding_area.y_max - range.y_size);
x_.AddSizeMinReason(b);
y_.AddSizeMinReason(b);
x_.AddPresenceReason(b);
y_.AddPresenceReason(b);
}
x_.ImportOtherReasons(y_);
return x_.ReportConflict();
}
namespace {
// We want for different propagation to reuse as much as possible the same
// line. The idea behind this is to compute the 'canonical' line to use
// when explaining that boxes overlap on the 'y_dim' dimension. We compute
// the multiple of the biggest power of two that is common to all boxes.
IntegerValue FindCanonicalValue(IntegerValue lb, IntegerValue ub) {
if (lb == ub) return lb;
if (lb <= 0 && ub > 0) return IntegerValue(0);
if (lb < 0 && ub <= 0) {
return -FindCanonicalValue(-ub, -lb);
}
int64_t mask = 0;
IntegerValue candidate = ub;
for (int o = 0; o < 62; ++o) {
mask = 2 * mask + 1;
const IntegerValue masked_ub(ub.value() & ~mask);
if (masked_ub >= lb) {
candidate = masked_ub;
} else {
break;
}
}
return candidate;
}
void SplitDisjointBoxes(const SchedulingConstraintHelper& x,
absl::Span<int> boxes,
std::vector<absl::Span<int>>* result) {
result->clear();
std::sort(boxes.begin(), boxes.end(), [&x](int a, int b) {
return x.ShiftedStartMin(a) < x.ShiftedStartMin(b);
});
int current_start = 0;
std::size_t current_length = 1;
IntegerValue current_max_end = x.EndMax(boxes[0]);
for (int b = 1; b < boxes.size(); ++b) {
const int box = boxes[b];
if (x.ShiftedStartMin(box) < current_max_end) {
// Merge.
current_length++;
current_max_end = std::max(current_max_end, x.EndMax(box));
} else {
if (current_length > 1) { // Ignore lists of size 1.
result->emplace_back(&boxes[current_start], current_length);
}
current_start = b;
current_length = 1;
current_max_end = x.EndMax(box);
}
}
// Push last span.
if (current_length > 1) {
result->emplace_back(&boxes[current_start], current_length);
}
}
// This function assumes that the left and right boxes overlap on the second
// dimension, and that left cannot be after right.
// It checks and pushes the lower bound of the right box and the upper bound
// of the left box if need.
//
// If y is not null, it import the mandatory reason for the overlap on y in
// the x helper.
bool LeftBoxBeforeRightBoxOnFirstDimension(int left, int right,
SchedulingConstraintHelper* x,
SchedulingConstraintHelper* y) {
// left box2 pushes right box2.
const IntegerValue left_end_min = x->EndMin(left);
if (left_end_min > x->StartMin(right)) {
x->ClearReason();
x->AddPresenceReason(left);
x->AddPresenceReason(right);
x->AddReasonForBeingBefore(left, right);
x->AddEndMinReason(left, left_end_min);
if (y != nullptr) {
// left and right must overlap on y.
ClearAndAddMandatoryOverlapReason(left, right, y);
// Propagate with the complete reason.
x->ImportOtherReasons(*y);
}
RETURN_IF_FALSE(x->IncreaseStartMin(right, left_end_min));
}
// right box2 pushes left box2.
const IntegerValue right_start_max = x->StartMax(right);
if (right_start_max < x->EndMax(left)) {
x->ClearReason();
x->AddPresenceReason(left);
x->AddPresenceReason(right);
x->AddReasonForBeingBefore(left, right);
x->AddStartMaxReason(right, right_start_max);
if (y != nullptr) {
// left and right must overlap on y.
ClearAndAddMandatoryOverlapReason(left, right, y);
// Propagate with the complete reason.
x->ImportOtherReasons(*y);
}
RETURN_IF_FALSE(x->DecreaseEndMax(left, right_start_max));
}
return true;
}
} // namespace
// Note that x_ and y_ must be initialized with enough intervals when passed
// to the disjunctive propagators.
NonOverlappingRectanglesDisjunctivePropagator::
NonOverlappingRectanglesDisjunctivePropagator(SchedulingConstraintHelper* x,
SchedulingConstraintHelper* y,
Model* model)
: global_x_(*x),
global_y_(*y),
x_(x->NumTasks(), model),
watcher_(model->GetOrCreate<GenericLiteralWatcher>()),
overload_checker_(&x_),
forward_detectable_precedences_(true, &x_),
backward_detectable_precedences_(false, &x_),
forward_not_last_(true, &x_),
backward_not_last_(false, &x_),
forward_edge_finding_(true, &x_),
backward_edge_finding_(false, &x_) {}
NonOverlappingRectanglesDisjunctivePropagator::
~NonOverlappingRectanglesDisjunctivePropagator() = default;
void NonOverlappingRectanglesDisjunctivePropagator::Register(
int fast_priority, int slow_priority) {
fast_id_ = watcher_->Register(this);
watcher_->SetPropagatorPriority(fast_id_, fast_priority);
global_x_.WatchAllTasks(fast_id_);
global_y_.WatchAllTasks(fast_id_);
// This propagator is the one making sure our propagation is complete, so
// we do need to make sure it is called again if it modified some bounds.
watcher_->NotifyThatPropagatorMayNotReachFixedPointInOnePass(fast_id_);
const int slow_id = watcher_->Register(this);
watcher_->SetPropagatorPriority(slow_id, slow_priority);
global_x_.WatchAllTasks(slow_id);
global_y_.WatchAllTasks(slow_id);
}
bool NonOverlappingRectanglesDisjunctivePropagator::
FindBoxesThatMustOverlapAHorizontalLineAndPropagate(
bool fast_propagation, const SchedulingConstraintHelper& x,
SchedulingConstraintHelper* y) {
// Note that since we only push bounds on x, we cache the value for y just
// once.
if (!y->SynchronizeAndSetTimeDirection(true)) return false;
// Compute relevant boxes, the one with a mandatory part of y. Because we will
// need to sort it this way, we consider them by increasing start max.
indexed_boxes_.clear();
const auto temp = y->TaskByIncreasingNegatedStartMax();
for (int i = temp.size(); --i >= 0;) {
const int box = temp[i].task_index;
// Ignore absent boxes.
if (x.IsAbsent(box) || y->IsAbsent(box)) continue;
// Ignore boxes where the relevant presence literal is only on the y
// dimension, or if both intervals are optionals with different literals.
if (x.IsPresent(box) && !y->IsPresent(box)) continue;
if (!x.IsPresent(box) && !y->IsPresent(box) &&
x.PresenceLiteral(box) != y->PresenceLiteral(box)) {
continue;
}
const IntegerValue start_max = -temp[i].time;
const IntegerValue end_min = y->EndMin(box);
if (start_max < end_min) {
indexed_boxes_.push_back({box, start_max, end_min});
}
}
// Less than 2 boxes, no propagation.
if (indexed_boxes_.size() < 2) return true;
ConstructOverlappingSets(/*already_sorted=*/true, &indexed_boxes_,
&events_overlapping_boxes_);
// Split lists of boxes into disjoint set of boxes (w.r.t. overlap).
boxes_to_propagate_.clear();
reduced_overlapping_boxes_.clear();
for (int i = 0; i < events_overlapping_boxes_.size(); ++i) {
SplitDisjointBoxes(x, absl::MakeSpan(events_overlapping_boxes_[i]),
&disjoint_boxes_);
for (absl::Span<int> sub_boxes : disjoint_boxes_) {
// Boxes are sorted in a stable manner in the Split method.
// Note that we do not use reduced_overlapping_boxes_ directly so that
// the order of iteration is deterministic.
const auto& insertion = reduced_overlapping_boxes_.insert(sub_boxes);
if (insertion.second) boxes_to_propagate_.push_back(sub_boxes);
}
}
// And finally propagate.
//
// TODO(user): Sorting of boxes seems influential on the performance. Test.
for (const absl::Span<const int> boxes : boxes_to_propagate_) {
// The case of two boxes should be taken care of during "fast" propagation,
// so we can skip it here.
if (!fast_propagation && boxes.size() <= 2) continue;
x_.ClearOtherHelper();
if (!x_.ResetFromSubset(x, boxes)) return false;
// Collect the common overlapping coordinates of all boxes.
IntegerValue lb(std::numeric_limits<int64_t>::min());
IntegerValue ub(std::numeric_limits<int64_t>::max());
for (const int b : boxes) {
lb = std::max(lb, y->StartMax(b));
ub = std::min(ub, y->EndMin(b) - 1);
}
CHECK_LE(lb, ub);
// We want for different propagation to reuse as much as possible the same
// line. The idea behind this is to compute the 'canonical' line to use
// when explaining that boxes overlap on the 'y_dim' dimension. We compute
// the multiple of the biggest power of two that is common to all boxes.
//
// TODO(user): We should scan the integer trail to find the oldest
// non-empty common interval. Then we can pick the canonical value within
// it.
const IntegerValue line_to_use_for_reason = FindCanonicalValue(lb, ub);
// Setup x_dim for propagation.
x_.SetOtherHelper(y, boxes, line_to_use_for_reason);
if (fast_propagation) {
if (x_.NumTasks() == 2) {
// In that case, we can use simpler algorithms.
// Note that this case happens frequently (~30% of all calls to this
// method according to our tests).
RETURN_IF_FALSE(PropagateOnXWhenOnlyTwoBoxes());
} else {
RETURN_IF_FALSE(overload_checker_.Propagate());
RETURN_IF_FALSE(forward_detectable_precedences_.Propagate());
RETURN_IF_FALSE(backward_detectable_precedences_.Propagate());
}
} else {
DCHECK_GT(x_.NumTasks(), 2);
RETURN_IF_FALSE(forward_not_last_.Propagate());
RETURN_IF_FALSE(backward_not_last_.Propagate());
RETURN_IF_FALSE(backward_edge_finding_.Propagate());
RETURN_IF_FALSE(forward_edge_finding_.Propagate());
}
}
return true;
}
bool NonOverlappingRectanglesDisjunctivePropagator::Propagate() {
global_x_.SetTimeDirection(true);
global_y_.SetTimeDirection(true);
// Note that the code assumes that this was registered twice in fast and slow
// mode. So we will not redo some propagation in slow mode that was already
// done by the fast mode.
const bool fast_propagation = watcher_->GetCurrentId() == fast_id_;
RETURN_IF_FALSE(FindBoxesThatMustOverlapAHorizontalLineAndPropagate(
fast_propagation, global_x_, &global_y_));
// We can actually swap dimensions to propagate vertically.
RETURN_IF_FALSE(FindBoxesThatMustOverlapAHorizontalLineAndPropagate(
fast_propagation, global_y_, &global_x_));
return true;
}
// Specialized propagation on only two boxes that must intersect with the
// given y_line_for_reason.
bool NonOverlappingRectanglesDisjunctivePropagator::
PropagateOnXWhenOnlyTwoBoxes() {
if (!x_.IsPresent(0) || !x_.IsPresent(1)) return true;
// For each direction and each order, we test if the boxes can be disjoint.
const int state =
(x_.EndMin(0) <= x_.StartMax(1)) + 2 * (x_.EndMin(1) <= x_.StartMax(0));
switch (state) {
case 0: { // Conflict.
ClearAndAddMandatoryOverlapReason(0, 1, &x_);
// Note that the secondary helper is set on x.
return x_.ReportConflict();
}
case 1: { // b1 is left of b2.
return LeftBoxBeforeRightBoxOnFirstDimension(0, 1, &x_, /*y=*/nullptr);
}
case 2: { // b2 is left of b1.
return LeftBoxBeforeRightBoxOnFirstDimension(1, 0, &x_, /*y=*/nullptr);
}
default: { // Nothing to deduce.
return true;
}
}
}
int RectanglePairwisePropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
global_x_.WatchAllTasks(id);
global_y_.WatchAllTasks(id);
watcher->NotifyThatPropagatorMayNotReachFixedPointInOnePass(id);
return id;
}
RectanglePairwisePropagator::~RectanglePairwisePropagator() {
if (!VLOG_IS_ON(1)) return;
std::vector<std::pair<std::string, int64_t>> stats;
stats.push_back({"RectanglePairwisePropagator/called", num_calls_});
stats.push_back({"RectanglePairwisePropagator/pairwise_conflicts",
num_pairwise_conflicts_});
stats.push_back({"RectanglePairwisePropagator/pairwise_propagations",
num_pairwise_propagations_});
shared_stats_->AddStats(stats);
}
bool RectanglePairwisePropagator::Propagate() {
if (!global_x_.SynchronizeAndSetTimeDirection(true)) return false;
if (!global_y_.SynchronizeAndSetTimeDirection(true)) return false;
num_calls_++;
horizontal_zero_area_boxes_.clear();
vertical_zero_area_boxes_.clear();
point_zero_area_boxes_.clear();
non_zero_area_boxes_.clear();
for (int b = 0; b < global_x_.NumTasks(); ++b) {
if (!global_x_.IsPresent(b) || !global_y_.IsPresent(b)) continue;
const IntegerValue x_size_max = global_x_.SizeMax(b);
const IntegerValue y_size_max = global_y_.SizeMax(b);
ItemForPairwiseRestriction* box;
if (x_size_max == 0) {
if (y_size_max == 0) {
box = &point_zero_area_boxes_.emplace_back();
} else {
box = &vertical_zero_area_boxes_.emplace_back();
}
} else if (y_size_max == 0) {
box = &horizontal_zero_area_boxes_.emplace_back();
} else {
box = &non_zero_area_boxes_.emplace_back();
}
*box = ItemForPairwiseRestriction{.index = b,
.x = {.start_min = global_x_.StartMin(b),
.start_max = global_x_.StartMax(b),
.end_min = global_x_.EndMin(b),
.end_max = global_x_.EndMax(b)},
.y = {.start_min = global_y_.StartMin(b),
.start_max = global_y_.StartMax(b),
.end_min = global_y_.EndMin(b),
.end_max = global_y_.EndMax(b)}};
}
std::vector<PairwiseRestriction> restrictions;
RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(non_zero_area_boxes_,
&restrictions));
// Check zero area boxes against non-zero area boxes.
RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
non_zero_area_boxes_, horizontal_zero_area_boxes_, &restrictions));
RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
non_zero_area_boxes_, vertical_zero_area_boxes_, &restrictions));
RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
non_zero_area_boxes_, point_zero_area_boxes_, &restrictions));
// Check vertical zero area boxes against horizontal zero area boxes.
RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
vertical_zero_area_boxes_, horizontal_zero_area_boxes_, &restrictions));
for (const PairwiseRestriction& restriction : restrictions) {
RETURN_IF_FALSE(PropagateTwoBoxes(restriction));
}
return true;
}
bool RectanglePairwisePropagator::FindRestrictionsAndPropagateConflict(
absl::Span<const ItemForPairwiseRestriction> items,
std::vector<PairwiseRestriction>* restrictions) {
const int max_pairs =
params_->max_pairs_pairwise_reasoning_in_no_overlap_2d();
if (items.size() * (items.size() - 1) / 2 > max_pairs) {
return true;
}
AppendPairwiseRestrictions(items, restrictions);
for (const PairwiseRestriction& restriction : *restrictions) {
if (restriction.type ==
PairwiseRestriction::PairwiseRestrictionType::CONFLICT) {
RETURN_IF_FALSE(PropagateTwoBoxes(restriction));
}
}
return true;
}
bool RectanglePairwisePropagator::FindRestrictionsAndPropagateConflict(
const std::vector<ItemForPairwiseRestriction>& items1,
const std::vector<ItemForPairwiseRestriction>& items2,
std::vector<PairwiseRestriction>* restrictions) {
const int max_pairs =
params_->max_pairs_pairwise_reasoning_in_no_overlap_2d();
if (items1.size() * items2.size() > max_pairs) {
return true;
}
AppendPairwiseRestrictions(items1, items2, restrictions);
for (const PairwiseRestriction& restriction : *restrictions) {
if (restriction.type ==
PairwiseRestriction::PairwiseRestrictionType::CONFLICT) {
RETURN_IF_FALSE(PropagateTwoBoxes(restriction));
}
}
return true;
}
bool RectanglePairwisePropagator::PropagateTwoBoxes(
const PairwiseRestriction& restriction) {
const int box1 = restriction.first_index;
const int box2 = restriction.second_index;
switch (restriction.type) {
case PairwiseRestriction::PairwiseRestrictionType::CONFLICT:
num_pairwise_conflicts_++;
return ClearAndAddTwoBoxesConflictReason(box1, box2, &global_x_,
&global_y_);
case PairwiseRestriction::PairwiseRestrictionType::FIRST_LEFT_OF_SECOND:
num_pairwise_propagations_++;
return LeftBoxBeforeRightBoxOnFirstDimension(box1, box2, &global_x_,
&global_y_);
case PairwiseRestriction::PairwiseRestrictionType::FIRST_RIGHT_OF_SECOND:
num_pairwise_propagations_++;
return LeftBoxBeforeRightBoxOnFirstDimension(box2, box1, &global_x_,
&global_y_);
case PairwiseRestriction::PairwiseRestrictionType::FIRST_BELOW_SECOND:
num_pairwise_propagations_++;
return LeftBoxBeforeRightBoxOnFirstDimension(box1, box2, &global_y_,
&global_x_);
case PairwiseRestriction::PairwiseRestrictionType::FIRST_ABOVE_SECOND:
num_pairwise_propagations_++;
return LeftBoxBeforeRightBoxOnFirstDimension(box2, box1, &global_y_,
&global_x_);
}
}
#undef RETURN_IF_FALSE
} // namespace sat
} // namespace operations_research