Skip to content

Latest commit

 

History

History
458 lines (390 loc) · 16.3 KB

File metadata and controls

458 lines (390 loc) · 16.3 KB

MongoDB

MongoDB Source Connector

Support Those Engines

Spark
Flink
SeaTunnel Zeta

Key Features

Description

The MongoDB Connector provides the ability to read and write data from and to MongoDB. This document describes how to set up the MongoDB connector to run data reads against MongoDB.

Supported DataSource Info

In order to use the Mongodb connector, the following dependencies are required. They can be downloaded via install-plugin.sh or from the Maven central repository.

Datasource Supported Versions Dependency
MongoDB universal Download

Data Type Mapping

The following table lists the field data type mapping from MongoDB BSON type to SeaTunnel data type.

MongoDB BSON type SeaTunnel Data type
ObjectId STRING
String STRING
Boolean BOOLEAN
Binary BINARY
Int32 INTEGER
Int64 BIGINT
Double DOUBLE
Decimal128 DECIMAL
Date Date
Timestamp Timestamp
Object ROW
Array ARRAY

For specific types in MongoDB, we use Extended JSON format to map them to SeaTunnel STRING type.

MongoDB BSON type SeaTunnel STRING
Symbol {"_value": {"$symbol": "12"}}
RegularExpression {"_value": {"$regularExpression": {"pattern": "^9$", "options": "i"}}}
JavaScript {"_value": {"$code": "function() { return 10; }"}}
DbPointer {"_value": {"$dbPointer": {"$ref": "db.coll", "$id": {"$oid": "63932a00da01604af329e33c"}}}}

Tips

1.When using the DECIMAL type in SeaTunnel, be aware that the maximum range cannot exceed 34 digits, which means you should use decimal(34, 18).

Source Options

Name Type Required Default Description
uri String Yes - The MongoDB standard connection uri. eg. mongodb://user:password@hosts:27017/database?readPreference=secondary&slaveOk=true.
database String Yes - The name of MongoDB database to read or write.
collection String Yes - The name of MongoDB collection to read or write.
schema String Yes - MongoDB's BSON and seatunnel data structure mapping.
match.query String No - In MongoDB, filters are used to filter documents for query operations.
match.projection String No - In MongoDB, Projection is used to control the fields contained in the query results.
partition.split-key String No _id The key of Mongodb fragmentation.
partition.split-size Long No 64 * 1024 * 1024 The size of Mongodb fragment.
cursor.no-timeout Boolean No true MongoDB server normally times out idle cursors after an inactivity period (10 minutes) to prevent excess memory use. Set this option to true to prevent that. However, if the application takes longer than 30 minutes to process the current batch of documents, the session is marked as expired and closed.
fetch.size Int No 2048 Set the number of documents obtained from the server for each batch. Setting the appropriate batch size can improve query performance and avoid the memory pressure caused by obtaining a large amount of data at one time.
max.time-min Long No 600 This parameter is a MongoDB query option that limits the maximum execution time for query operations. The value of maxTimeMin is in Minute. If the execution time of the query exceeds the specified time limit, MongoDB will terminate the operation and return an error.
flat.sync-string Boolean No true By utilizing flatSyncString, only one field attribute value can be set, and the field type must be a String. This operation will perform a string mapping on a single MongoDB data entry.
common-options No - Source plugin common parameters, please refer to Source Common Options for details

Tips

1.The parameter match.query is compatible with the historical old version parameter matchQuery, and they are equivalent replacements.

How to Create a MongoDB Data Synchronization Jobs

The following example demonstrates how to create a data synchronization job that reads data from MongoDB and prints it on the local client:

# Set the basic configuration of the task to be performed
env {
  parallelism = 1
  job.mode = "BATCH"
}

# Create a source to connect to Mongodb
source {
  MongoDB {
    uri = "mongodb://user:[email protected]:27017"
    database = "test_db"
    collection = "source_table"
    schema = {
      fields {
        c_map = "map<string, string>"
        c_array = "array<int>"
        c_string = string
        c_boolean = boolean
        c_int = int
        c_bigint = bigint
        c_double = double
        c_bytes = bytes
        c_date = date
        c_decimal = "decimal(38, 18)"
        c_timestamp = timestamp
        c_row = {
          c_map = "map<string, string>"
          c_array = "array<int>"
          c_string = string
          c_boolean = boolean
          c_int = int
          c_bigint = bigint
          c_double = double
          c_bytes = bytes
          c_date = date
          c_decimal = "decimal(38, 18)"
          c_timestamp = timestamp
        }
      }
    }
  }
}

# Console printing of the read Mongodb data
sink {
  Console {
    parallelism = 1
  }
}

Parameter Interpretation

MongoDB Database Connection URI Examples

Unauthenticated single node connection:

mongodb://192.168.0.100:27017/mydb

Replica set connection:

mongodb://192.168.0.100:27017/mydb?replicaSet=xxx

Authenticated replica set connection:

mongodb://admin:[email protected]:27017/mydb?replicaSet=xxx&authSource=admin

Multi-node replica set connection:

mongodb://192.168.0.1:27017,192.168.0.2:27017,192.168.0.3:27017/mydb?replicaSet=xxx

Sharded cluster connection:

mongodb://192.168.0.100:27017/mydb

Multiple mongos connections:

mongodb://192.168.0.1:27017,192.168.0.2:27017,192.168.0.3:27017/mydb

Note: The username and password in the URI must be URL-encoded before being concatenated into the connection string.

MatchQuery Scan

In data synchronization scenarios, the matchQuery approach needs to be used early to reduce the number of documents that need to be processed by subsequent operators, thus improving performance. Here is a simple example of a seatunnel using match.query

source {
  MongoDB {
    uri = "mongodb://user:[email protected]:27017"
    database = "test_db"
    collection = "orders"
    match.query = "{status: \"A\"}"
    schema = {
      fields {
        id = bigint
        status = string
      }
    }
  }
}

The following are examples of MatchQuery query statements of various data types:

# Query Boolean type
"{c_boolean:true}"
# Query string type
"{c_string:\"OCzCj\"}"
# Query the integer
"{c_int:2}"
# Type of query time
"{c_date:ISODate(\"2023-06-26T16:00:00.000Z\")}"
# Query floating point type
{c_double:{$gte:1.71763202185342e+308}}

Please refer to how to write the syntax of match.queryhttps://www.mongodb.com/docs/manual/tutorial/query-documents

Projection Scan

In MongoDB, Projection is used to control which fields are included in the query results. This can be accomplished by specifying which fields need to be returned and which fields do not. In the find() method, a projection object can be passed as a second argument. The key of the projection object indicates the fields to include or exclude, and a value of 1 indicates inclusion and 0 indicates exclusion. Here is a simple example, assuming we have a collection named users:

# Returns only the name and email fields
db.users.find({}, { name: 1, email: 0 });

In data synchronization scenarios, projection needs to be used early to reduce the number of documents that need to be processed by subsequent operators, thus improving performance. Here is a simple example of a seatunnel using projection:

source {
  MongoDB {
    uri = "mongodb://user:[email protected]:27017"
    database = "test_db"
    collection = "users"
    match.projection = "{ name: 1, email: 0 }"
    schema = {
      fields {
        name = string
      }
    }
  }
}

Partitioned Scan

To speed up reading data in parallel source task instances, seatunnel provides a partitioned scan feature for MongoDB collections. The following partitioning strategies are provided. Users can control data sharding by setting the partition.split-key for sharding keys and partition.split-size for sharding size.

source {
  MongoDB {
    uri = "mongodb://user:[email protected]:27017"
    database = "test_db"
    collection = "users"
    partition.split-key = "id"
    partition.split-size = 1024
    schema = {
      fields {
        id = bigint
        status = string
      }
    }
  }
}

Flat Sync String

By utilizing flat.sync-string, only one field attribute value can be set, and the field type must be a String. This operation will perform a string mapping on a single MongoDB data entry.

env {
  parallelism = 10
  job.mode = "BATCH"
}
source {
  MongoDB {
    uri = "mongodb://user:[email protected]:27017"
    database = "test_db"
    collection = "users"
    flat.sync-string = true
    schema = {
      fields {
        data = string
      }
    }
  }
}
sink {
  Console {}
}

Use the data samples synchronized with modified parameters, such as the following:

{
  "_id":{
    "$oid":"643d41f5fdc6a52e90e59cbf"
  },
  "c_map":{
    "OQBqH":"jllt",
    "rkvlO":"pbfdf",
    "pCMEX":"hczrdtve",
    "DAgdj":"t",
    "dsJag":"voo"
  },
  "c_array":[
    {
      "$numberInt":"-865590937"
    },
    {
      "$numberInt":"833905600"
    },
    {
      "$numberInt":"-1104586446"
    },
    {
      "$numberInt":"2076336780"
    },
    {
      "$numberInt":"-1028688944"
    }
  ],
  "c_string":"bddkzxr",
  "c_boolean":false,
  "c_tinyint":{
    "$numberInt":"39"
  },
  "c_smallint":{
    "$numberInt":"23672"
  },
  "c_int":{
    "$numberInt":"-495763561"
  },
  "c_bigint":{
    "$numberLong":"3768307617923954543"
  },
  "c_float":{
    "$numberDouble":"5.284220288280258E37"
  },
  "c_double":{
    "$numberDouble":"1.1706091642478246E308"
  },
  "c_bytes":{
    "$binary":{
      "base64":"ZWJ4",
      "subType":"00"
    }
  },
  "c_date":{
    "$date":{
      "$numberLong":"1686614400000"
    }
  },
  "c_decimal":{
    "$numberDecimal":"683265300"
  },
  "c_timestamp":{
    "$date":{
      "$numberLong":"1684283772000"
    }
  },
  "c_row":{
    "c_map":{
      "OQBqH":"cbrzhsktmm",
      "rkvlO":"qtaov",
      "pCMEX":"tuq",
      "DAgdj":"jzop",
      "dsJag":"vwqyxtt"
    },
    "c_array":[
      {
        "$numberInt":"1733526799"
      },
      {
        "$numberInt":"-971483501"
      },
      {
        "$numberInt":"-1716160960"
      },
      {
        "$numberInt":"-919976360"
      },
      {
        "$numberInt":"727499700"
      }
    ],
    "c_string":"oboislr",
    "c_boolean":true,
    "c_tinyint":{
      "$numberInt":"-66"
    },
    "c_smallint":{
      "$numberInt":"1308"
    },
    "c_int":{
      "$numberInt":"-1573886733"
    },
    "c_bigint":{
      "$numberLong":"4877994302999518682"
    },
    "c_float":{
      "$numberDouble":"1.5353209063652051E38"
    },
    "c_double":{
      "$numberDouble":"1.1952441956458565E308"
    },
    "c_bytes":{
      "$binary":{
        "base64":"cWx5Ymp0Yw==",
        "subType":"00"
      }
    },
    "c_date":{
      "$date":{
        "$numberLong":"1686614400000"
      }
    },
    "c_decimal":{
      "$numberDecimal":"656406177"
    },
    "c_timestamp":{
      "$date":{
        "$numberLong":"1684283772000"
      }
    }
  },
  "id":{
    "$numberInt":"2"
  }
}

Changelog

2.2.0-beta 2022-09-26

  • Add MongoDB Source Connector

Next Version

  • [Feature]Refactor mongodb source connector(4620)