-
Notifications
You must be signed in to change notification settings - Fork 7
/
dist_train.py
248 lines (203 loc) · 8.18 KB
/
dist_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import datetime
import logging
import os
import random
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from omegaconf import OmegaConf
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from core.model import WeTr
from datasets import voc
from utils import eval_seg
from utils.optimizer import PolyWarmupAdamW
parser = argparse.ArgumentParser()
parser.add_argument("--config",
default='configs/voc.yaml',
type=str,
help="config")
parser.add_argument("--local_rank", default=-1, type=int, help="local_rank")
parser.add_argument('--backend', default='nccl')
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def setup_logger(filename='test.log'):
## setup logger
#logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(filename)s - %(levelname)s: %(message)s')
logFormatter = logging.Formatter('%(asctime)s - %(filename)s - %(levelname)s: %(message)s')
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fHandler = logging.FileHandler(filename, mode='w')
fHandler.setFormatter(logFormatter)
logger.addHandler(fHandler)
cHandler = logging.StreamHandler()
cHandler.setFormatter(logFormatter)
logger.addHandler(cHandler)
def cal_eta(time0, cur_iter, total_iter):
time_now = datetime.datetime.now()
time_now = time_now.replace(microsecond=0)
#time_now = datetime.datetime.strptime(time_now.strftime('%Y-%m-%d %H:%M:%S'), '%Y-%m-%d %H:%M:%S')
scale = (total_iter-cur_iter) / float(cur_iter)
delta = (time_now - time0)
eta = (delta*scale)
time_fin = time_now + eta
eta = time_fin.replace(microsecond=0) - time_now
return str(delta), str(eta)
def validate(model=None, criterion=None, data_loader=None):
val_loss = 0.0
preds, gts = [], []
model.eval()
with torch.no_grad():
for _, data in tqdm(enumerate(data_loader),
total=len(data_loader), ncols=100, ascii=" >="):
_, inputs, labels = data
#inputs = inputs.to()
#labels = labels.to(inputs.device)
outputs = model(inputs)
labels = labels.long().to(outputs.device)
resized_outputs = F.interpolate(outputs,
size=labels.shape[1:],
mode='bilinear',
align_corners=False)
loss = criterion(resized_outputs, labels)
val_loss += loss
preds += list(
torch.argmax(resized_outputs,
dim=1).cpu().numpy().astype(np.int16))
gts += list(labels.cpu().numpy().astype(np.int16))
score = eval_seg.scores(gts, preds)
return val_loss.cpu().numpy() / float(len(data_loader)), score
def train(cfg):
num_workers = 4
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend=args.backend,)
time0 = datetime.datetime.now()
time0 = time0.replace(microsecond=0)
train_dataset = voc.VOC12SegDataset(
root_dir=cfg.dataset.root_dir,
name_list_dir=cfg.dataset.name_list_dir,
split=cfg.train.split,
stage='train',
aug=True,
resize_range=cfg.dataset.resize_range,
rescale_range=cfg.dataset.rescale_range,
crop_size=cfg.dataset.crop_size,
img_fliplr=True,
ignore_index=cfg.dataset.ignore_index,
num_classes=cfg.dataset.num_classes,
)
val_dataset = voc.VOC12SegDataset(
root_dir=cfg.dataset.root_dir,
name_list_dir=cfg.dataset.name_list_dir,
split=cfg.val.split,
stage='val',
aug=False,
ignore_index=cfg.dataset.ignore_index,
num_classes=cfg.dataset.num_classes,
)
train_sampler = DistributedSampler(train_dataset,shuffle=True)
train_loader = DataLoader(train_dataset,
batch_size=cfg.train.samples_per_gpu,
#shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
sampler=train_sampler,
prefetch_factor=4)
val_loader = DataLoader(val_dataset,
batch_size=1,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
drop_last=False)
'''
if torch.cuda.is_available() is True:
device = torch.device('cuda')
print('%d GPUs are available:'%(torch.cuda.device_count()))
else:
print('Using CPU:')
device = torch.device('cpu')
'''
device =torch.device(args.local_rank)
wetr = WeTr(backbone=cfg.exp.backbone,
num_classes=cfg.dataset.num_classes,
embedding_dim=256,
pretrained=True)
param_groups = wetr.get_param_groups()
wetr.to(device)
optimizer = PolyWarmupAdamW(
params=[
{
"params": param_groups[0],
"lr": cfg.optimizer.learning_rate,
"weight_decay": cfg.optimizer.weight_decay,
},
{
"params": param_groups[1],
"lr": cfg.optimizer.learning_rate,
"weight_decay": 0.0,
},
{
"params": param_groups[2],
"lr": cfg.optimizer.learning_rate * 10,
"weight_decay": cfg.optimizer.weight_decay,
},
],
lr = cfg.optimizer.learning_rate,
weight_decay = cfg.optimizer.weight_decay,
betas = cfg.optimizer.betas,
warmup_iter = cfg.scheduler.warmup_iter,
max_iter = cfg.train.max_iters,
warmup_ratio = cfg.scheduler.warmup_ratio,
power = cfg.scheduler.power
)
#wetr, optimizer = amp.initialize(wetr, optimizer, opt_level="O1")
wetr = DistributedDataParallel(wetr, device_ids=[args.local_rank], find_unused_parameters=True)
# criterion
criterion = torch.nn.CrossEntropyLoss(ignore_index=cfg.dataset.ignore_index)
criterion = criterion.to(device)
train_sampler.set_epoch(0)
train_loader_iter = iter(train_loader)
#for n_iter in tqdm(range(cfg.train.max_iters), total=cfg.train.max_iters, dynamic_ncols=True):
for n_iter in range(cfg.train.max_iters):
try:
_, inputs, labels = next(train_loader_iter)
except:
train_sampler.set_epoch(n_iter)
train_loader_iter = iter(train_loader)
_, inputs, labels = next(train_loader_iter)
inputs = inputs.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
outputs = wetr(inputs)
outputs = F.interpolate(outputs, size=labels.shape[1:], mode='bilinear', align_corners=False)
seg_loss = criterion(outputs, labels.type(torch.long))
optimizer.zero_grad()
seg_loss.backward()
optimizer.step()
if (n_iter+1) % cfg.train.log_iters == 0 and args.local_rank==0:
delta, eta = cal_eta(time0, n_iter+1, cfg.train.max_iters)
lr = optimizer.param_groups[0]['lr']
logging.info("Iter: %d; Elasped: %s; ETA: %s; LR: %.3e; seg_loss: %f"%(n_iter+1, delta, eta, lr, seg_loss.item()))
if (n_iter+1) % cfg.train.eval_iters == 0:
if args.local_rank==0:
logging.info('Validating...')
val_loss, val_score = validate(model=wetr, criterion=criterion, data_loader=val_loader)
if args.local_rank==0:
logging.info(val_score)
return True
if __name__ == "__main__":
args = parser.parse_args()
cfg = OmegaConf.load(args.config)
if args.local_rank == 0:
setup_logger()
logging.info('\nconfigs: %s' % cfg)
#setup_seed(1)
train(cfg=cfg)