diff --git a/templates/components/agents/python/deep_research/app/workflows/agents.py b/templates/components/agents/python/deep_research/app/workflows/agents.py index 8d32db75..1aea2cd3 100644 --- a/templates/components/agents/python/deep_research/app/workflows/agents.py +++ b/templates/components/agents/python/deep_research/app/workflows/agents.py @@ -16,7 +16,10 @@ class AnalysisDecision(BaseModel): description="Whether to continue research, write a report, or cancel the research after several retries" ) research_questions: Optional[List[str]] = Field( - description="Questions to research if continuing research. Maximum 3 questions. Set to null or empty if writing a report.", + description=""" + If the decision is to research, provide a list of questions to research that related to the user request. + Maximum 3 questions. Set to null or empty if writing a report or cancel the research. + """, default_factory=list, ) cancel_reason: Optional[str] = Field( @@ -29,23 +32,23 @@ async def plan_research( memory: SimpleComposableMemory, context_nodes: List[Node], user_request: str, + total_questions: int, ) -> AnalysisDecision: - analyze_prompt = PromptTemplate( - """ + analyze_prompt = """ You are a professor who is guiding a researcher to research a specific request/problem. Your task is to decide on a research plan for the researcher. + The possible actions are: + Provide a list of questions for the researcher to investigate, with the purpose of clarifying the request. + Write a report if the researcher has already gathered enough research on the topic and can resolve the initial request. + Cancel the research if most of the answers from researchers indicate there is insufficient information to research the request. Do not attempt more than 3 research iterations or too many questions. + The workflow should be: + Always begin by providing some initial questions for the researcher to investigate. + Analyze the provided answers against the initial topic/request. If the answers are insufficient to resolve the initial request, provide additional questions for the researcher to investigate. + If the answers are sufficient to resolve the initial request, instruct the researcher to write a report. - - {user_request} - + Here are the context: {context_str} @@ -53,8 +56,29 @@ async def plan_research( {conversation_context} + + {enhanced_prompt} + + Now, provide your decision in the required format for this user request: + + {user_request} + """ - ) + # Manually craft the prompt to avoid LLM hallucination + enhanced_prompt = "" + if total_questions == 0: + # Avoid writing a report without any research context + enhanced_prompt = """ + + The student has no questions to research. Let start by asking some questions. + """ + elif total_questions > 6: + # Avoid asking too many questions (when the data is not ready for writing a report) + enhanced_prompt = """ + + The student has researched {total_questions} questions. Should cancel the research if the context is not enough to write a report. + """ + conversation_context = "\n".join( [f"{message.role}: {message.content}" for message in memory.get_all()] ) @@ -63,10 +87,11 @@ async def plan_research( ) res = await Settings.llm.astructured_predict( output_cls=AnalysisDecision, - prompt=analyze_prompt, + prompt=PromptTemplate(template=analyze_prompt), user_request=user_request, context_str=context_str, conversation_context=conversation_context, + enhanced_prompt=enhanced_prompt, ) return res diff --git a/templates/components/agents/python/deep_research/app/workflows/deep_research.py b/templates/components/agents/python/deep_research/app/workflows/deep_research.py index e739fe12..59648b52 100644 --- a/templates/components/agents/python/deep_research/app/workflows/deep_research.py +++ b/templates/components/agents/python/deep_research/app/workflows/deep_research.py @@ -89,10 +89,11 @@ def __init__( ) @step - def retrieve(self, ctx: Context, ev: StartEvent) -> PlanResearchEvent: + async def retrieve(self, ctx: Context, ev: StartEvent) -> PlanResearchEvent: """ Initiate the workflow: memory, tools, agent """ + await ctx.set("total_questions", 0) self.user_request = ev.get("input") self.memory.put_messages( messages=[ @@ -132,9 +133,7 @@ def retrieve(self, ctx: Context, ev: StartEvent) -> PlanResearchEvent: nodes=nodes, ) ) - return PlanResearchEvent( - context_nodes=self.context_nodes, - ) + return PlanResearchEvent() @step async def analyze( @@ -153,10 +152,12 @@ async def analyze( }, ) ) + total_questions = await ctx.get("total_questions") res = await plan_research( memory=self.memory, context_nodes=self.context_nodes, user_request=self.user_request, + total_questions=total_questions, ) if res.decision == "cancel": ctx.write_event_to_stream( @@ -172,6 +173,22 @@ async def analyze( result=res.cancel_reason, ) elif res.decision == "write": + # Writing a report without any research context is not allowed. + # It's a LLM hallucination. + if total_questions == 0: + ctx.write_event_to_stream( + DataEvent( + type="deep_research_event", + data={ + "event": "analyze", + "state": "done", + }, + ) + ) + return StopEvent( + result="Sorry, I have a problem when analyzing the retrieved information. Please try again.", + ) + self.memory.put( message=ChatMessage( role=MessageRole.ASSISTANT, @@ -180,7 +197,11 @@ async def analyze( ) ctx.send_event(ReportEvent()) else: - await ctx.set("n_questions", len(res.research_questions)) + total_questions += len(res.research_questions) + await ctx.set("total_questions", total_questions) # For tracking + await ctx.set( + "waiting_questions", len(res.research_questions) + ) # For waiting questions to be answered self.memory.put( message=ChatMessage( role=MessageRole.ASSISTANT, @@ -270,7 +291,7 @@ async def collect_answers( """ Collect answers to all questions """ - num_questions = await ctx.get("n_questions") + num_questions = await ctx.get("waiting_questions") results = ctx.collect_events( ev, expected=[CollectAnswersEvent] * num_questions, @@ -284,7 +305,7 @@ async def collect_answers( content=f"{result.question}\n{result.answer}", ) ) - await ctx.set("n_questions", 0) + await ctx.set("waiting_questions", 0) self.memory.put( message=ChatMessage( role=MessageRole.ASSISTANT,