-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel-examples.rkt
245 lines (208 loc) · 6.78 KB
/
model-examples.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#lang racket
;;
;; model-examples.rkt - some example Modelizer models, taken from McElreath
;;
;; Examples:
;; 1) Linear Regression
;; Inference will expect to get height and weight inputs.
;; α, β, and σ are subject to inference
(define example1
'(model
[type-decls [i Row]]
[var-decls [(h i) Number] [(μ i) Number] [α Number] [β Number]
[(w i) Number] [σ Number]]
[var-defs [(h i) . ~ . (normal (μ i) σ)]
[(μ i) . = . (+ α (* β (w i)))]
[α . ~ . (normal 0 1)]
[β . ~ . (normal 0 1)]
[(w i) . ~ . (normal 80 5)]
[σ . ~ . (log-normal 100 100)]]))
;; 2) Stratified Linear Regression Model
;; Inference will expect to get height and weight inputs.
;; α, β, and σ are subject to inference
(define example2
'(model
[type-decls [i Row] [m Sex (Enum 'male 'female)]]
[var-decls [(h i) Number] [(μ i) Number] [(α m) Number] [β Number]
[(w i) Number] [(g i) Sex] [σ Number]]
[var-defs [(h i) . ~ . (normal (μ i) σ)]
[(μ i) . = . (+ (α (g i)) (* β (w i)))]
[(α m) . ~ . (normal 0 1)]
[β . ~ . (normal 0 1)]
[(w i) . ~ . (normal 80 5)]
[(g i) . ~ . (discrete ('male 1) ('female 1))]
[σ . ~ . (log-normal 100 100)]]))
;; Operations:
;; (draw-samples model [#:number n] variable-name ...)
;; variables should be in the same "tier" of variable
;;
;; (fit-model model data) ;; what form should "data" take?
;; Some examples taken from McElreath's quap implementation:
;;;;;;;;;;
;; flist0 <- list(
;; dist ~ dnorm( mean=a+b*speed , sd=sigma )
;; )
;; linear model integrated right into the likelihood
(define flist0a
'(model
[types [i Row]]
[var-decls [(dist i) Number] [α Number] [β Number]
[(speed i) Number] [σ Number]]
[var-defs [(dist i) . ~ . (normal (+ α (* β (speed i)) σ))]
[α . ~ . (normal 0 1)]
[β . ~ . (normal 0 1)]
[(speed i) . ~ . (normal 80 5)]
[σ . ~ . (log-normal 100 100)]]))
;;;;;;;;;;
;;flist0 <- list(
;; dist ~ dnorm( mean=mu , sd=sigma ) ,
;; mu ~ a+b*speed
;;)
;; linear model defined separately
(define flist0b
'(model
[types [i Row]]
[var-decls [(dist i) Number] [α Number] [β Number]
[(speed i) Number] [σ Number]]
[var-defs [(dist i) . ~ . (normal (μ i) σ)]
[(μ i) . = . (+ α (* β (speed i)))]
[α . ~ . (normal 0 1)]
[β . ~ . (normal 0 1)]
[(speed i) . ~ . (normal 80 5)]
[σ . ~ . (log-normal 100 100)]]))
;;;;;;;;;;
;;flist1 <- list(
;; dist ~ dnorm( mean=a+b*speed , sd=sigma ) ,
;; b ~ dnorm(0,1) ,
;; sigma ~ dcauchy(0,1)
;;)
;;
(define flist1a
'(model
[types [i Row]]
[var-decls [(dist i) Number] [α Number] [β Number]
[(speed i) Number] [σ Number]]
[var-defs [(dist i) . ~ . (normal (+ α (* β (speed i))) σ)]
[α . ~ . (normal 0 1)]
[β . ~ . (normal 0 1)]
[(speed i) . ~ . (normal 80 5)]
[σ . ~ . (cauchy 0 1)]]))
;;;;;;;;;;
;;flist1 <- list(
;; dist ~ dnorm( mean=mu , sd=sigma ) ,
;; mu ~ a+b*speed ,
;; b ~ dnorm(0,1) ,
;; sigma ~ dcauchy(0,1)
;;)
;;
(define flist1b
'(model
[types [i Row]]
[var-decls [(dist i) Number] [α Number] [β Number]
[(speed i) Number] [σ Number]]
[var-defs [(dist i) . ~ . (normal (μ i) σ)]
[(μ i) . = . (+ α (* β (speed i)))]
[α . ~ . (normal 0 1)]
[β . ~ . (normal 0 1)]
[(speed i) . ~ . (normal 80 5)]
[σ . ~ . (cauchy 0 1)]]))
;;;;;;;;;;
;;flist2 <- list(
;; dist ~ dnorm( mean=a+b*speed , sd=sigma ) ,
;; c(a,b) ~ dnorm(0,10) ,
;; sigma ~ dcauchy(0,1)
;;)
;; use vector to assign a and b the same distribution (hurm...)
(define flist2
'(model
[types [i Row]]
[var-decls [(dist i) Number] [α Number] [β Number]
[(speed i) Number] [σ Number]]
[var-defs [(dist i) . ~ . (normal (+ α (* β (speed i))) σ)]
[α . ~ . (normal 0 10)]
[β . ~ . (normal 0 10)]
[(speed i) . ~ . (normal 80 5)]
[σ . ~ . (cauchy 0 1)]]))
;;;;;;;;;;
;;flist3 <- list(
;; dist ~ dnorm( mean=a+b*speed , sd=sigma ) ,
;; b ~ dlaplace(1) ,
;; sigma ~ dcauchy(0,1)
;;)
;;
(define flist3
'(model
[types [i Row]]
[var-decls [(dist i) Number] [α Number] [β Number]
[(speed i) Number] [σ Number]]
[var-defs [(dist i) . ~ . (normal (+ α (* β (speed i))) σ)]
[α . ~ . (normal 0 1)]
[β . ~ . (laplace 1)]
[(speed i) . ~ . (normal 80 5)]
[σ . ~ . (cauchy 0 1)]]))
;; Example of fitting
;;fit <- map( flist1,
;; start=list(a=40,b=0.1,sigma=20),
;; data=cars,
;; debug=FALSE )
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Everything below here need not be supported, since (if I understand
;; correctly) quadratic approximation is not good for any of it.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;#########
;;
;;library(rethinking)
;;data(chimpanzees)
;;
;;;;;;;;;;
;;flist1 <- list(
;; pulled.left ~ dbinom( prob=logistic( a + b*prosoc.left ) , size=1 ),
;; c(a,b) ~ dnorm(0,1)
;;)
;;
;;;;;;;;;;
;;flist2 <- list(
;; pulled.left ~ dbinom( size=1 , prob=logistic( a + b*prosoc.left ) ),
;; b ~ dnorm(0,1)
;;)
;;
;;;;;;;;;;
;;flist4 <- alist(
;; pulled.left ~ dbinom( prob=p , size=1 ),
;; logit(p) <- a + b*prosoc.left ,
;; c(a,b) ~ dnorm(0,1)
;;)
;;
;;;;;;;;;;
;;fit2 <- map( flist4 , data=chimpanzees , start=list(a=0,b=0) , debug=FALSE )
;;
;;########
;;# regularized logistic regression example
;;y <- c( rep(0,10) , rep(1,10) )
;;x <- c( rep(-1,9) , rep(1,11) )
;;
;;;;;;;;;;
;;flist0 <- list(
;; y ~ dbinom( prob=logistic( a + b*x ) , size=1 )
;;)
;;
;;;;;;;;;;
;;flist1 <- list(
;; y ~ dbinom( prob=logistic( a + b*x ) , size=1 ),
;; c(a,b) ~ dnorm(0,10)
;;)
;;
;;;;;;;;;;
;;fit3a <- map( flist0 , data=list(y=y,x=x) , start=list(a=0,b=0) )
;;
;;;;;;;;;;
;;fit3b <- map( flist1 , data=list(y=y,x=x) , start=list(a=0,b=0) )
;;
;;plot( y ~ x )
;;p <- sample.naive.posterior(fit3b)
;;xseq <- seq(-1,1,length.out=20)
;;pi.mu <- sapply( xseq , function(x) mean(logistic(p$a+p$b*x)) )
;;pi.ci <- sapply( xseq , function(x) PCI(logistic(p$a+p$b*x)) )
;;lines( xseq , pi.mu )
;;shade( pi.ci , xseq )