-
Notifications
You must be signed in to change notification settings - Fork 3
/
twofish.js
722 lines (654 loc) · 28 KB
/
twofish.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
//----------------------------------------------------------------------------
// TwoFish Encryption Scheme
// Ported from original C reference code (c) CounterPane Labs
// http://www.counterpane.com/twofish.html
//
TwoFish = new Object; // All functions and variables placed in 'TwoFish' object
// to avoid name collisions
TwoFish.MODE_ECB = 1 /* Are we ciphering in ECB mode? */
TwoFish.MODE_CBC = 2 /* Are we ciphering in CBC mode? */
TwoFish.MODE_CFB1 = 3 /* Are we ciphering in 1-bit CFB mode? */
TwoFish.BLOCK_SIZE = 128 /* number of bits per block */
TwoFish.MAX_ROUNDS = 16 /* max # rounds (for allocating subkey array) */
TwoFish.ROUNDS_128 = 16 /* default number of rounds for 128-bit keys*/
TwoFish.ROUNDS_192 = 16 /* default number of rounds for 192-bit keys*/
TwoFish.ROUNDS_256 = 16 /* default number of rounds for 256-bit keys*/
TwoFish.MAX_KEY_BITS = 256 /* max number of bits of key */
TwoFish.MIN_KEY_BITS = 128 /* min number of bits of key (zero pad) */
TwoFish.input_WHITEN = 0 /* subkey array indices */
TwoFish.OUTPUT_WHITEN = (TwoFish.input_WHITEN + TwoFish.BLOCK_SIZE/32)
TwoFish.ROUND_SUBKEYS = (TwoFish.OUTPUT_WHITEN + TwoFish.BLOCK_SIZE/32) /* use 2 * (# rounds) */
TwoFish.TOTAL_SUBKEYS = (TwoFish.ROUND_SUBKEYS + 2*TwoFish.MAX_ROUNDS)
/* for computing subkeys */
TwoFish.SK_STEP = 0x02020202 |0;
TwoFish.SK_BUMP = 0x01010101 |0;
TwoFish.SK_ROTL = 9;
/* Reed-Solomon code parameters: (12,8) reversible code
g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1
where a = primitive root of field generator 0x14D */
TwoFish.RS_GF_FDBK = 0x14D; /* field generator */
function TwoFish_RS_rem(x)
{
var b = (x >>> 24);
var g2 = ((b << 1) ^ ((b & 0x80) ? TwoFish.RS_GF_FDBK : 0 )) & 0xFF; //dword
var g3 = ((b >>> 1) & 0x7F) ^ ((b & 1) ? TwoFish.RS_GF_FDBK >>> 1 : 0 ) ^ g2; //dword
return (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b;
}
TwoFish.RS_rem = TwoFish_RS_rem;
/* Macros for the MDS matrix
* The MDS matrix is (using primitive polynomial 169):
* 01 EF 5B 5B
* 5B EF EF 01
* EF 5B 01 EF
* EF 01 EF 5B
*----------------------------------------------------------------
* More statistical properties of this matrix (from MDS.EXE output):
*
* Min Hamming weight (one byte difference) = 8. Max=26. Total = 1020.
* Prob[8]: 7 23 42 20 52 95 88 94 121 128 91
* 102 76 41 24 8 4 1 3 0 0 0
* Runs[8]: 2 4 5 6 7 8 9 11
* MSBs[8]: 1 4 15 8 18 38 40 43
* HW= 8: 05040705 0A080E0A 14101C14 28203828 50407050 01499101 A080E0A0
* HW= 9: 04050707 080A0E0E 10141C1C 20283838 40507070 80A0E0E0 C6432020 07070504
* 0E0E0A08 1C1C1410 38382820 70705040 E0E0A080 202043C6 05070407 0A0E080E
* 141C101C 28382038 50704070 A0E080E0 4320C620 02924B02 089A4508
* Min Hamming weight (two byte difference) = 3. Max=28. Total = 390150.
* Prob[3]: 7 18 55 149 270 914 2185 5761 11363 20719 32079
* 43492 51612 53851 52098 42015 31117 20854 11538 6223 2492 1033
* MDS OK, ROR: 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+
* 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
*/
TwoFish.MDS_GF_FDBK = 0x169; /* primitive polynomial for GF(256)*/
function TwoFish_LFSR1(x)
{
return ((x >>> 1) ^ ((x & 0x01) ? TwoFish.MDS_GF_FDBK/2 : 0)) & 0xFF;
}
TwoFish.LFSR1 = TwoFish_LFSR1;
function TwoFish_LFSR2(x)
{
return ((x >>> 2) ^ ((x & 0x02) ? TwoFish.MDS_GF_FDBK/2 : 0) ^ ((x & 0x01) ? TwoFish.MDS_GF_FDBK/4 : 0)) & 0xFF;
}
TwoFish.LFSR2 = TwoFish_LFSR2;
function TwoFish_Mx_1(x)
{
return x & 0xFF;
}
TwoFish.Mx_1 = TwoFish_Mx_1;
function TwoFish_Mx_X(x) /* 5B */
{
return x ^ TwoFish.LFSR2(x);
}
TwoFish.Mx_X = TwoFish_Mx_X;
function TwoFish_Mx_Y(x) /* EF */
{
return x ^ TwoFish.LFSR1(x) ^ TwoFish.LFSR2(x);
}
TwoFish.Mx_Y = TwoFish_Mx_Y;
TwoFish.Mul_1 = TwoFish.Mx_1; //moved
TwoFish.Mul_X = TwoFish.Mx_X;
TwoFish.Mul_Y = TwoFish.Mx_Y;
TwoFish.M00 = TwoFish.Mul_1;
TwoFish.M01 = TwoFish.Mul_Y;
TwoFish.M02 = TwoFish.Mul_X;
TwoFish.M03 = TwoFish.Mul_X;
TwoFish.M10 = TwoFish.Mul_X;
TwoFish.M11 = TwoFish.Mul_Y;
TwoFish.M12 = TwoFish.Mul_Y;
TwoFish.M13 = TwoFish.Mul_1;
TwoFish.M20 = TwoFish.Mul_Y;
TwoFish.M21 = TwoFish.Mul_X;
TwoFish.M22 = TwoFish.Mul_1;
TwoFish.M23 = TwoFish.Mul_Y;
TwoFish.M30 = TwoFish.Mul_Y;
TwoFish.M31 = TwoFish.Mul_1;
TwoFish.M32 = TwoFish.Mul_Y;
TwoFish.M33 = TwoFish.Mul_X;
/* Define the fixed p0/p1 permutations used in keyed S-box lookup.
By changing the following constant definitions for P_ij, the S-boxes will
automatically get changed in all the Twofish source code. Note that P_i0 is
the "outermost" 8x8 permutation applied. See the f32() function to see
how these constants are to be used.
*/
TwoFish.P_00 = 1; /* "outermost" permutation */
TwoFish.P_01 = 0;
TwoFish.P_02 = 0;
TwoFish.P_03 = (TwoFish.P_01^1) & 0xFF; /* "extend" to larger key sizes */
TwoFish.P_04 = 1;
TwoFish.P_10 = 0;
TwoFish.P_11 = 0;
TwoFish.P_12 = 1;
TwoFish.P_13 = (TwoFish.P_11^1) & 0xFF;
TwoFish.P_14 = 0;
TwoFish.P_20 = 1;
TwoFish.P_21 = 1;
TwoFish.P_22 = 0;
TwoFish.P_23 = (TwoFish.P_21^1) & 0xFF;
TwoFish.P_24 = 0;
TwoFish.P_30 = 0;
TwoFish.P_31 = 1;
TwoFish.P_32 = 1;
TwoFish.P_33 = (TwoFish.P_31^1) & 0xFF;
TwoFish.P_34 = 1;
/* fixed 8x8 permutation S-boxes */
/***********************************************************************
* 07:07:14 05/30/98 [4x4] TestCnt=256. keySize=128. CRC=4BD14D9E.
* maxKeyed: dpMax = 18. lpMax =100. fixPt = 8. skXor = 0. skDup = 6.
* log2(dpMax[ 6..18])= --- 15.42 1.33 0.89 4.05 7.98 12.05
* log2(lpMax[ 7..12])= 9.32 1.01 1.16 4.23 8.02 12.45
* log2(fixPt[ 0.. 8])= 1.44 1.44 2.44 4.06 6.01 8.21 11.07 14.09 17.00
* log2(skXor[ 0.. 0])
* log2(skDup[ 0.. 6])= --- 2.37 0.44 3.94 8.36 13.04 17.99
***********************************************************************/
TwoFish.P8x8 =
/* p0: */
/* dpMax = 10. lpMax = 64. cycleCnt= 1 1 1 0. */
/* 817D6F320B59ECA4.ECB81235F4A6709D.BA5E6D90C8F32471.D7F4126E9B3085CA. */
/* Karnaugh maps:
* 0111 0001 0011 1010. 0001 1001 1100 1111. 1001 1110 0011 1110. 1101 0101 1111 1001.
* 0101 1111 1100 0100. 1011 0101 0010 0000. 0101 1000 1100 0101. 1000 0111 0011 0010.
* 0000 1001 1110 1101. 1011 1000 1010 0011. 0011 1001 0101 0000. 0100 0010 0101 1011.
* 0111 0100 0001 0110. 1000 1011 1110 1001. 0011 0011 1001 1101. 1101 0101 0000 1100.
*/
new Array(
new Array(
0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76,
0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23,
0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C,
0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66,
0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA,
0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2,
0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB,
0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A,
0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02,
0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8,
0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00,
0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0),
/* p1: */
/* dpMax = 10. lpMax = 64. cycleCnt= 2 0 0 1. */
/* 28BDF76E31940AC5.1E2B4C376DA5F908.4C75169A0ED82B3F.B951C3DE647F208A. */
/* Karnaugh maps:
* 0011 1001 0010 0111. 1010 0111 0100 0110. 0011 0001 1111 0100. 1111 1000 0001 1100.
* 1100 1111 1111 1010. 0011 0011 1110 0100. 1001 0110 0100 0011. 0101 0110 1011 1011.
* 0010 0100 0011 0101. 1100 1000 1000 1110. 0111 1111 0010 0110. 0000 1010 0000 0011.
* 1101 1000 0010 0001. 0110 1001 1110 0101. 0001 0100 0101 0111. 0011 1011 1111 0010.
*/
new Array(
0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8,
0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D,
0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3,
0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70,
0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC,
0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3,
0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49,
0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19,
0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5,
0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB,
0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2,
0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91
));
TwoFish.FEISTEL = false; /* true -> use Feistel version (slow) */
/* number of rounds for various key sizes: 128, 192, 256 */
TwoFish.numRounds = new Array(0,TwoFish.ROUNDS_128,TwoFish.ROUNDS_192,TwoFish.ROUNDS_256);
/*
+*****************************************************************************
*
* Function Name: f32
*
* Function: Run four bytes through keyed S-boxes and apply MDS matrix
*
* Arguments: x = input to f function
* k32 = pointer to key dwords
* keyLen = total key length (k32 --> keyLey/2 bits)
*
* Return: The output of the keyed permutation applied to x.
*
* Notes:
* This function is a keyed 32-bit permutation. It is the major building
* block for the Twofish round function, including the four keyed 8x8
* permutations and the 4x4 MDS matrix multiply. This function is used
* both for generating round subkeys and within the round function on the
* block being encrypted.
*
* This version is fairly slow and pedagogical, although a smartcard would
* probably perform the operation exactly this way in firmware. For
* ultimate performance, the entire operation can be completed with four
* lookups into four 256x32-bit tables, with three dword xors.
*
* The MDS matrix is defined in TwoFish.H. To multiply by Mij, just use the
* macro Mij(x).
*
-****************************************************************************/
function TwoFish_f32(x,k32,keyLen)
{
var b = BSWAP(x);
/* Run each byte thru 8x8 S-boxes, xoring with key byte at each stage. */
/* Note that each byte goes through a different combination of S-boxes.*/
switch (Math.floor((keyLen + 63)/64) & 3)
{
case 0: /* 256 bits of key */
b = DWORD(TwoFish.P8x8[TwoFish.P_04][BYTE(b,0)] ^ BYTE(k32[3],0),
TwoFish.P8x8[TwoFish.P_14][BYTE(b,1)] ^ BYTE(k32[3],1),
TwoFish.P8x8[TwoFish.P_24][BYTE(b,2)] ^ BYTE(k32[3],2),
TwoFish.P8x8[TwoFish.P_34][BYTE(b,3)] ^ BYTE(k32[3],3));
/* fall thru, having pre-processed b[0]..b[3] with k32[3] */
case 3: /* 192 bits of key */
b = DWORD(TwoFish.P8x8[TwoFish.P_03][BYTE(b,0)] ^ BYTE(k32[2],0),
TwoFish.P8x8[TwoFish.P_13][BYTE(b,1)] ^ BYTE(k32[2],1),
TwoFish.P8x8[TwoFish.P_23][BYTE(b,2)] ^ BYTE(k32[2],2),
TwoFish.P8x8[TwoFish.P_33][BYTE(b,3)] ^ BYTE(k32[2],3));
/* fall thru, having pre-processed b[0]..b[3] with k32[2] */
case 2: /* 128 bits of key */
b = DWORD(TwoFish.P8x8[TwoFish.P_00][TwoFish.P8x8[TwoFish.P_01][TwoFish.P8x8[TwoFish.P_02][BYTE(b,0)] ^ BYTE(k32[1],0)] ^ BYTE(k32[0],0)],
TwoFish.P8x8[TwoFish.P_10][TwoFish.P8x8[TwoFish.P_11][TwoFish.P8x8[TwoFish.P_12][BYTE(b,1)] ^ BYTE(k32[1],1)] ^ BYTE(k32[0],1)],
TwoFish.P8x8[TwoFish.P_20][TwoFish.P8x8[TwoFish.P_21][TwoFish.P8x8[TwoFish.P_22][BYTE(b,2)] ^ BYTE(k32[1],2)] ^ BYTE(k32[0],2)],
TwoFish.P8x8[TwoFish.P_30][TwoFish.P8x8[TwoFish.P_31][TwoFish.P8x8[TwoFish.P_32][BYTE(b,3)] ^ BYTE(k32[1],3)] ^ BYTE(k32[0],3)]);
}
/* Now perform the MDS matrix multiply inline. */
return ((TwoFish.M00(BYTE(b,0)) ^ TwoFish.M01(BYTE(b,1)) ^ TwoFish.M02(BYTE(b,2)) ^ TwoFish.M03(BYTE(b,3))) ) ^
((TwoFish.M10(BYTE(b,0)) ^ TwoFish.M11(BYTE(b,1)) ^ TwoFish.M12(BYTE(b,2)) ^ TwoFish.M13(BYTE(b,3))) << 8 ) ^
((TwoFish.M20(BYTE(b,0)) ^ TwoFish.M21(BYTE(b,1)) ^ TwoFish.M22(BYTE(b,2)) ^ TwoFish.M23(BYTE(b,3))) << 16 ) ^
((TwoFish.M30(BYTE(b,0)) ^ TwoFish.M31(BYTE(b,1)) ^ TwoFish.M32(BYTE(b,2)) ^ TwoFish.M33(BYTE(b,3))) << 24 );
}
TwoFish.f32 = TwoFish_f32;
/*
+*****************************************************************************
*
* Function Name: RS_MDS_Encode
*
* Function: Use (12,8) Reed-Solomon code over GF(256) to produce
* a key S-box dword from two key material dwords.
*
* Arguments: k0 = 1st dword
* k1 = 2nd dword
*
* Return: Remainder polynomial generated using RS code
*
* Notes:
* Since this computation is done only once per reKey per 64 bits of key,
* the performance impact of this routine is imperceptible. The RS code
* chosen has "simple" coefficients to allow smartcard/hardware implementation
* without lookup tables.
*
-****************************************************************************/
function TwoFish_RS_MDS_Encode(k0,k1)
{
var r = 0;
for (var i=0;i<2;i++)
{
r ^= (i) ? k0 : k1; /* merge in 32 more key bits */
for (j=0;j<4;j++) /* shift one byte at a time */
r = TwoFish.RS_rem(r);
}
return r;
}
TwoFish.RS_MDS_Encode = TwoFish_RS_MDS_Encode
/*
+*****************************************************************************
*
* Function Name: makeKey
*
* Function: Initialize the Twofish key schedule
*
* Arguments: key = ptr to keyInstance to be initialized
* direction = DIR_ENCRYPT or DIR_DECRYPT
* keyLen = # bits of key text at *keyMaterial
* keyMaterial = ptr to hex ASCII chars representing key bits
*
* Return: TRUE on success
* else error code (e.g., BAD_KEY_DIR)
*
* Notes:
* This parses the key bits from keyMaterial. No crypto stuff happens here.
* The function reKey() is called to actually build the key schedule after
* the keyMaterial has been parsed.
*
-****************************************************************************/
function TwoFish_Key(keyMaterial)
{
var keyLen = keyMaterial.getlength();
if ((keyLen > TwoFish.MAX_KEY_BITS) || (keyLen < 8))
alert("BAD_KEY_MAT, length must be valid");
this.keyLen = (keyLen+63) & ~63; /* Length of the key, round up to multiple of 64 */
this.numRounds = TwoFish.numRounds[Math.floor((keyLen-1)/64)]; /* number of rounds in cipher */
this.key32 = new Array(TwoFish.MAX_KEY_BITS/32); /* actual key bits, in dwords */
for (var i=0;i<this.keyLen/32;i++)
this.key32[i]= keyMaterial[i];
for (var i=Math.floor(this.keyLen/32);i<TwoFish.MAX_KEY_BITS/32;i++) /* zero unused bits */
this.key32[i]= 0;
this.sboxKeys = new Array(TwoFish.MAX_KEY_BITS/64);/* key bits used for S-boxes */
this.subKeys = new Array(TwoFish.TOTAL_SUBKEYS); /* round subkeys, input/output whitening bits */
//this.sBox8x32 = MultiArray(4,256);
this.reKey = TwoFish_Key_reKey;
return this.reKey(); /* generate round subkeys */
};
TwoFish.Key = TwoFish_Key;
/*
+*****************************************************************************
*
* Function Name: reKey
*
* Function: Initialize the Twofish key schedule from key32
*
* Arguments: key = ptr to keyInstance to be initialized
*
* Return: TRUE on success
*
* Notes:
* Here we precompute all the round subkeys, although that is not actually
* required. For example, on a smartcard, the round subkeys can
* be generated on-the-fly using f32()
*
-****************************************************************************/
function TwoFish_Key_reKey()
{
var k64Cnt;
var subkeyCnt = TwoFish.ROUND_SUBKEYS + 2*this.numRounds;
var k32e = new Array(TwoFish.MAX_KEY_BITS/64); /* even/odd key dwords */
var k32o = new Array(TwoFish.MAX_KEY_BITS/64);
if ((this.keyLen % 64 != 0) || (this.keyLen < TwoFish.MIN_KEY_BITS))
alert("BAD_KEY_INSTANCE. Key passed is not valid.");
if (subkeyCnt > TwoFish.TOTAL_SUBKEYS)
alert("BAD_KEY_INSTANCE. Key passed is not valid.");
k64Cnt=Math.floor((this.keyLen+63)/64); /* round up to next multiple of 64 bits */
for (var i=0;i<k64Cnt;i++)
{ /* split into even/odd key dwords */
k32e[i]=this.key32[2*i ];
k32o[i]=this.key32[2*i+1];
/* compute S-box keys using (12,8) Reed-Solomon code over GF(256) */
this.sboxKeys[k64Cnt-1-i] = TwoFish.RS_MDS_Encode(k32e[i],k32o[i]); /* reverse order */
}
/*DWORD*/ var A,B;
for (var i=0;i<subkeyCnt/2;i++) /* compute round subkeys for PHT */
{
A = TwoFish.f32(i*TwoFish.SK_STEP ,k32e,this.keyLen); /* A uses even key dwords */
B = TwoFish.f32(i*TwoFish.SK_STEP+TwoFish.SK_BUMP,k32o,this.keyLen); /* B uses odd key dwords */
B = ROL(B,8);
this.subKeys[2*i ] = (A+B)|0; /* combine with a PHT */
this.subKeys[2*i+1] = ROL(A+2*B,TwoFish.SK_ROTL);
}
return true;
}
/*
+*****************************************************************************
*
* Function Name: cipherInit
*
* Function: Initialize the Twofish cipher in a given mode
*
* Arguments: cipher = ptr to cipherInstance to be initialized
* mode = MODE_ECB, MODE_CBC, or MODE_CFB1
* IV = ptr to hex ASCII test representing IV bytes
*
* Return: TRUE on success
* else error code (e.g., BAD_CIPHER_MODE)
*
-****************************************************************************/
function TwoFish_Cipher(mode,IV)
{
if ((mode != TwoFish.MODE_ECB) && (mode != TwoFish.MODE_CBC) && (mode != TwoFish.MODE_CFB1))
alert("BAD_CIPHER_MODE, Invalid cipher mode");
this.mode = mode; /* MODE_ECB, MODE_CBC, or MODE_CFB1 */
this.iv32 = new BinData(TwoFish.BLOCK_SIZE/32); /* CBC IV bytes arranged as dwords */
if ((mode != TwoFish.MODE_ECB) && (IV)) /* parse the IV */
{
for (var i=0;i<TwoFish.BLOCK_SIZE/32;i++)
this.iv32[i] = BSWAP(IV[i]);
}
};
TwoFish.Cipher = TwoFish_Cipher;
/*
+*****************************************************************************
*
* Function Name: blockEncrypt
*
* Function: Encrypt block(s) of data using Twofish
*
* Arguments: cipher = ptr to already initialized cipherInstance
* key = ptr to already initialized keyInstance
* input = ptr to data blocks to be encrypted
* inputLen = # bits to encrypt (multiple of blockSize)
* outBuffer = ptr to where to put encrypted blocks
*
* Return: # bits ciphered (>= 0)
* else error code (e.g., BAD_CIPHER_STATE, BAD_KEY_MATERIAL)
*
* Notes: The only supported block size for ECB/CBC modes is BLOCK_SIZE bits.
* If inputLen is not a multiple of BLOCK_SIZE bits in those modes,
* an error BAD_input_LEN is returned. In CFB1 mode, all block
* sizes can be supported.
*
-****************************************************************************/
function TwoFish_Encrypt(cipher,key,input)
{
var rounds=key.numRounds; /* number of rounds */
var outBuffer = new BinData();
var oldlength = input.getlength();
var inputLen = cipher.mode == TwoFish.MODE_CFB1 ? oldlength : Math.ceil(oldlength/TwoFish.BLOCK_SIZE)*TwoFish.BLOCK_SIZE;
input.setlength(inputLen);
var x = new BinData(TwoFish.BLOCK_SIZE/32,32); /* temp data */
if (!cipher)
alert("BAD_CIPHER_STATE. Cipher in wrong state (e.g., not initialized).");
if (!key)
alert("BAD_KEY_INSTANCE. Key passed is not valid.");
if ((rounds < 2) || (rounds > TwoFish.MAX_ROUNDS) || (rounds&1))
alert("BAD_KEY_INSTANCE. Key passed is not valid");
if (cipher.mode == TwoFish.MODE_CFB1)
{ /* use recursion here to handle CFB, one block at a time */
input.setalign(8);
outBuffer.setalign(8);
x.setalign(8);
cipher.iv32.setalign(8);
cipher.mode = TwoFish.MODE_ECB; /* do encryption in ECB */
for (var n=0;n<inputLen;n++)
{
var n8 = Math.floor(n/8);
x = TwoFish_Encrypt(cipher,key,cipher.iv32);
var bit = 0x80 >>> (n & 7);/* which bit position in byte */
var ctBit = (input.get(n8) & bit) ^ ((x.get(0) & 0x80) >> (n&7));
outBuffer.set(n8,(outBuffer.get(n8) & ~ bit) | ctBit);
var carry = ctBit >>> (7 - (n&7));
for (var i=TwoFish.BLOCK_SIZE/8-1;i>=0;i--)
{
bit = cipher.iv32.get(i) >>> 7; /* save next "carry" from shift */
cipher.iv32.set(i,(cipher.iv32.get(i) << 1) ^ carry);
carry = bit;
};
};
cipher.mode = TwoFish.MODE_CFB1; /* restore mode for next time */
outBuffer.setlength(inputLen);
input.setlength(oldlength);
return outBuffer;
};
/* here for ECB, CBC modes */
for(var n=0; n<inputLen; n+=TwoFish.BLOCK_SIZE) //also increments input, output in original source
{
for (var i=0;i<TwoFish.BLOCK_SIZE/32;i++) /* copy in the block, add whitening */
{
x[i]=BSWAP(input[i+n/32]) ^ key.subKeys[TwoFish.input_WHITEN+i];
if (cipher.mode == TwoFish.MODE_CBC)
x[i] ^= cipher.iv32[i];
}
for (var r=0;r<rounds;r++) /* main Twofish encryption loop */
{
if(TwoFish.FEISTEL)
{
var t0 = TwoFish.f32(ROR(x[0], Math.floor((r+1)/2)),key.sboxKeys,key.keyLen);
var t1 = TwoFish.f32(ROL(x[1],8+(r+1)/2),key.sboxKeys,key.keyLen);
/* PHT, round keys */
x[2]^= ROL(t0 + t1 + key.subKeys[TwoFish.ROUND_SUBKEYS+2*r ],Math.floor(r/2) );
x[3]^= ROR(t0 + 2*t1 + key.subKeys[TwoFish.ROUND_SUBKEYS+2*r+1],Math.floor(r/2)+1);
}
else //not feistel
{
var t0 = TwoFish.f32( x[0] ,key.sboxKeys,key.keyLen);
var t1 = TwoFish.f32(ROL(x[1],8),key.sboxKeys,key.keyLen);
x[3] = ROL(x[3],1);
x[2]^= t0 + t1 + key.subKeys[TwoFish.ROUND_SUBKEYS+2*r ]; /* PHT, round keys */
x[3]^= t0 + 2*t1 + key.subKeys[TwoFish.ROUND_SUBKEYS+2*r+1];
x[2] = ROR(x[2],1);
};
if (r < rounds-1) /* swap for next round */
{
var tmp = x[0]; x[0]= x[2]; x[2] = tmp;
tmp = x[1]; x[1]= x[3]; x[3] = tmp;
}
};
if(TwoFish.FEISTEL)
{
x[0] = ROR(x[0],8); /* "final permutation" */
x[1] = ROL(x[1],8);
x[2] = ROR(x[2],8);
x[3] = ROL(x[3],8);
};
for (i=0;i<TwoFish.BLOCK_SIZE/32;i++) /* copy out, with whitening */
{
outBuffer[i+n/32] = BSWAP(x[i] ^ key.subKeys[TwoFish.OUTPUT_WHITEN+i]);
if (cipher.mode == TwoFish.MODE_CBC)
cipher.iv32[i] = BSWAP(outBuffer[i+n/32]);
};
}
outBuffer.setlength(inputLen);
input.setlength(oldlength);
return outBuffer;
}
TwoFish.Encrypt = TwoFish_Encrypt;
/*
+*****************************************************************************
*
* Function Name: blockDecrypt
*
* Function: Decrypt block(s) of data using Twofish
*
* Arguments: cipher = ptr to already initialized cipherInstance
* key = ptr to already initialized keyInstance
* input = ptr to data blocks to be decrypted
* inputLen = # bits to encrypt (multiple of blockSize)
* outBuffer = ptr to where to put decrypted blocks
*
* Return: # bits ciphered (>= 0)
* else error code (e.g., BAD_CIPHER_STATE, BAD_KEY_MATERIAL)
*
* Notes: The only supported block size for ECB/CBC modes is BLOCK_SIZE bits.
* If inputLen is not a multiple of BLOCK_SIZE bits in those modes,
* an error BAD_input_LEN is returned. In CFB1 mode, all block
* sizes can be supported.
*
-****************************************************************************/
function TwoFish_Decrypt(cipher,key,input)
{
var rounds=key.numRounds; /* number of rounds */
var oldlength = input.getlength();
var inputLen = cipher.mode == TwoFish.MODE_CFB1 ? oldlength : Math.ceil(oldlength/TwoFish.BLOCK_SIZE)*TwoFish.BLOCK_SIZE;
input.setlength(inputLen);
var outBuffer = new BinData();
var x = new BinData(TwoFish.BLOCK_SIZE/32,32); /* temp data */
if (!cipher)
alert("BAD_CIPHER_STATE. Cipher in wrong state (e.g., not initialized).");
if (!key)
alert("BAD_KEY_INSTANCE. Key passed is not valid.");
if ((rounds < 2) || (rounds > TwoFish.MAX_ROUNDS) || (rounds&1))
alert("BAD_KEY_INSTANCE. Key passed is not valid.");
if (cipher.mode == TwoFish.MODE_CFB1)
{ /* use blockEncrypt here to handle CFB, one block at a time */
input.setalign(8);
outBuffer.setalign(8);
x.setalign(8);
cipher.iv32.setalign(8);
cipher.mode = TwoFish.MODE_ECB; /* do encryption in ECB */
for (var n=0;n<inputLen;n++)
{
var n8 = Math.floor(n/8);
x = TwoFish_Encrypt(cipher,key,cipher.iv32);
var bit = 0x80 >>> (n & 7);
var ctBit = input.get(n8) & bit;
outBuffer.set(n8,outBuffer.get(n8) & ~ bit) | (ctBit ^ ((x.get(0) & 0x80) >> (n&7)));
var carry = ctBit >>> (7 - (n&7));
for (var i=TwoFish.BLOCK_SIZE/8-1;i>=0;i--)
{
bit = cipher.iv32.get(i) >>> 7; /* save next "carry" from shift */
cipher.iv32.set(i,(cipher.iv32.get(i) << 1) ^ carry);
carry = bit;
};
};
cipher.mode = TwoFish.MODE_CFB1; /* restore mode for next time */
input.setlength(oldlength);
outBuffer.setlength(inputLen);
return outBuffer;
};
/* here for ECB, CBC modes */
for (var n=0;n<inputLen;n+=TwoFish.BLOCK_SIZE)
{
for (i=0;i<TwoFish.BLOCK_SIZE/32;i++) /* copy in the block, add whitening */
x[i]=BSWAP(input[i+n/32]) ^ key.subKeys[TwoFish.OUTPUT_WHITEN+i];
for (var r=rounds-1;r>=0;r--) /* main Twofish decryption loop */
{
var t0 = TwoFish.f32( x[0] ,key.sboxKeys,key.keyLen);
var t1 = TwoFish.f32(ROL(x[1],8),key.sboxKeys,key.keyLen);
x[2] = ROL(x[2],1);
x[2]^= t0 + t1 + key.subKeys[TwoFish.ROUND_SUBKEYS+2*r ]; /* PHT, round keys */
x[3]^= t0 + 2*t1 + key.subKeys[TwoFish.ROUND_SUBKEYS+2*r+1];
x[3] = ROR(x[3],1);
if (r) /* unswap, except for last round */
{
var t0 = x[0]; x[0]= x[2]; x[2] = t0;
var t1 = x[1]; x[1]= x[3]; x[3] = t1;
}
}
for (i=0;i<TwoFish.BLOCK_SIZE/32;i++) /* copy out, with whitening */
{
x[i] ^= key.subKeys[TwoFish.input_WHITEN+i];
if (cipher.mode == TwoFish.MODE_CBC)
{
x[i] ^= cipher.iv32[i];
cipher.iv32[i] = BSWAP(input[i+n/32]);
}
outBuffer[i+n/32] = BSWAP(x[i]);
};
}
input.setlength(oldlength);
outBuffer.setlength(inputLen);
return outBuffer;
}
TwoFish.Decrypt = TwoFish_Decrypt
// End of TwoFish Port