-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
187 lines (185 loc) · 7.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
from datetime import datetime
from models import PointFormer, PointRNN, PointLSTM
import numpy as np
import pathlib
import time as t
import torch
from torch import nn
import torch.optim as optim
from torch.utils.data import DataLoader
from utils.datasets import torch_np_fix_seed, make_datasets
from utils.losses import Window_Loss
root_path = pathlib.Path("")
torch_np_fix_seed(1111)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, type=str)
parser.add_argument("--point_num", default=60, type=int)
parser.add_argument("--future_seconds", default=60, type=int)
parser.add_argument("--load_name", type=str)
parser.add_argument("--best_save_name", required=True, type=str)
parser.add_argument("--last_save_name", required=True, type=str)
parser.add_argument("--learning_rate", default=0.001, type=float)
parser.add_argument("--window_size", default=10, type=int)
parser.add_argument("--batch_size", default=256, type=int)
parser.add_argument("--num_epoch", default=100, type=int)
parser.add_argument("--num_workers", default=2, type=int)
parser.add_argument("--start_dates", required=True, type=str, nargs="*")
parser.add_argument("--end_dates", required=True, type=str, nargs="*")
parser.add_argument("--symbols", required=True, type=str, nargs="*")
args = parser.parse_args()
def train(model, future_seconds,
load_path, best_save_path, last_save_path, learning_rate,
train_dataset, valid_dataset,
batch_size, num_epoch, num_workers, window_size,
device):
print(f"device: {device}")
torch.backends.cudnn.benchmark = True
if load_path is not None:
checkpoint = torch.load(load_path, map_location=torch.device(device))
model.load_state_dict(checkpoint["model_state_dict"], strict=True)
START_EPOCH = checkpoint["current_epoch"]
END_EPOCH = START_EPOCH + num_epoch
train_losses = checkpoint["train_losses"]
valid_losses = checkpoint["valid_losses"]
best_loss = checkpoint["best_loss"]
else:
END_EPOCH = num_epoch
START_EPOCH = 0
train_losses = []
valid_losses = []
best_loss = 1e+10
train_n = len(train_dataset)
valid_n = len(valid_dataset)
params = model.parameters()
criterion = Window_Loss(window_size, future_seconds, device)
optimizer = optim.AdamW(params, lr=learning_rate)
train_dataloader = DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True)
valid_dataloader = DataLoader(valid_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True)
model.to(device)
for epoch in range(START_EPOCH, END_EPOCH):
train_loss = 0
train_time_start = t.time()
model.train()
for i, batch in enumerate(train_dataloader):
optimizer.zero_grad()
inputs, targets = batch[0].to(device), batch[1].to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += float(loss) / train_n
if i % 100 == 99:
print(float(loss))
inputs = inputs.to("cpu")
targets = targets.to("cpu")
outputs = outputs.to("cpu")
train_loss = np.sqrt(train_loss)
train_losses.append(train_loss)
train_time_end = t.time()
valid_loss = 0
valid_time_start = t.time()
model.eval()
with torch.no_grad():
for j, batch in enumerate(valid_dataloader):
inputs, targets = batch[0].to(device), batch[1].to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
if j % 100 == 99:
print(float(loss))
valid_loss += float(loss) / valid_n
inputs = inputs.to("cpu")
targets = targets.to("cpu")
outputs = outputs.to("cpu")
valid_loss = np.sqrt(valid_loss)
valid_losses.append(valid_loss)
valid_time_end = t.time()
train_time_total = train_time_end - train_time_start
valid_time_total = valid_time_end - valid_time_start
total_time = train_time_total + valid_time_total
print(f"epoch:{epoch+1}/{END_EPOCH}" +
f" [loss]tra:{train_loss:.6f} val:{valid_loss:.6f}"
f" [time]total{total_time:.2f}sec" +
f" tra{train_time_total:.2f}sec val{valid_time_total:.2f}sec")
if valid_loss < best_loss:
best_loss = valid_loss
save_path = best_save_path
else:
save_path = last_save_path
torch.save(
{
"model_state_dict": model.state_dict(),
"current_epoch": epoch+1,
"train_losses": train_losses,
"valid_losses": valid_losses,
"best_loss": best_loss
},
str(save_path)
)
print(f"model saved to >> {str(save_path)}")
print()
return
if __name__ == "__main__":
start_dates = args.start_dates
start_dates = [datetime.strptime(x, "%Y/%m/%d").date() for x in start_dates]
end_dates = args.end_dates
end_dates = [datetime.strptime(x, "%Y/%m/%d").date() for x in end_dates]
symbols = args.symbols
coin_num = len(symbols)
point_num = args.point_num
future_seconds = args.future_seconds
datasets, _ = make_datasets(symbols, start_dates, end_dates,
point_num, future_seconds)
train_dataset = datasets[0]
valid_dataset = datasets[1]
model_name = args.model
if model_name == "PointFormer":
model = PointFormer(coin_num=coin_num,
feature_num=4,
point_num=point_num,
d_model=4, d_ff=2, d_ff2=2,
future_seconds=future_seconds,
nhead1=4, device=device)
elif model_name == "PointRNN":
model = PointRNN(coin_num=coin_num,
feature_num=4,
point_num=point_num, future_seconds=future_seconds,
hidden_size=12, device=device)
elif model_name =="PointLSTM":
model = PointLSTM(coin_num=coin_num,
feature_num=4, point_num=point_num, future_seconds=future_seconds,
hidden_size=12, device=device)
else:
try:
raise ValueError("model name must be PointFormer or PointRNN or PointLSTM.")
except ValueError as e:
print(e)
checkpoints_path = root_path / "checkpoints"
load_name = args.load_name
if load_name is not None:
load_path = checkpoints_path / load_name
else:
load_path = None
best_save_name = args.best_save_name
best_save_path = checkpoints_path / best_save_name
last_save_name = args.last_save_name
last_save_path = checkpoints_path / last_save_name
learning_rate = args.learning_rate
batch_size = args.batch_size
num_epoch = args.num_epoch
num_workers = args.num_workers
window_size = args.window_size
train(model, future_seconds,
load_path, best_save_path, last_save_path, learning_rate,
train_dataset, valid_dataset,
batch_size, num_epoch, num_workers, window_size,
device)