forked from sony/nnabla-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gan_losses.py
385 lines (302 loc) · 12.5 KB
/
gan_losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Copyright 2020,2021 Sony Corporation.
# Copyright 2021 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import nnabla.functions as F
__all__ = [
'GanLossContainer',
'GanLoss',
'LsGanLoss',
'WassersteinGanLoss',
'GeometricGanLoss',
'HingeGanLoss',
'SymmetricHingeGanLoss',
'RelativisticAverageGanLoss',
]
class GanLossContainer(object):
'''
A container class of GAN outputs from `GanLoss` classes.
Attributes:
loss_dr (~nnabla.Variable): Discriminator loss for real data.
loss_df (~nnabla.Variable): Discriminator loss for fake data.
loss_gr (~nnabla.Variable):
Generator loss for real data. This is usually set as `None`
because generator parameters are independent of real data in
standard GAN losses. Exceptions for examples are relativistic
GAN losses.
loss_gf (~nnabla.Variable): Generator loss for fake data.
Property:
discriminator_loss (~nnabla.Variable):
Returns `loss_dr + loss_df`. It is devided by 2 if loss_gr is
not `None`.
generator_loss (~nnabla.Variable): Returns `loss_gr + loss_gf`
This class implements `+` (add) operators (radd as well) for the
following operands.
* `GanLossContainer + GanLossContainer`: Losses from containers are
added up for each of loss_dr, loss_df, loss_gr, and loss_gf
and a new GanLossContainer object is returned.
* `GanLossContainer + None`: `None` is ignored and the given
`GanLossContainer` is returned.
'''
def __init__(self, loss_dr, loss_df, loss_gr, loss_gf):
self.loss_dr = loss_dr
self.loss_df = loss_df
self.loss_gr = loss_gr
self.loss_gf = loss_gf
self.d_div_factor = 2.0
self._discriminator_loss = None
self._generator_loss = None
def set_persistent(self, b):
self.loss_dr.persistent = b
self.loss_df.persistent = b
if self.loss_gr is not None:
self.loss_gr.persistent = b
self.loss_gf.persistent = b
@property
def generator_loss(self):
if self._generator_loss is not None:
return self._generator_loss
self._generator_loss = self.loss_gf
if self.loss_gr is not None:
self._generator_loss += self.loss_gr
self._generator_loss /= 2
return self._generator_loss
@property
def discriminator_loss(self):
if self._discriminator_loss is not None:
return self._discriminator_loss
self._discriminator_loss = \
(self.loss_dr + self.loss_df) \
/ self.d_div_factor
return self._discriminator_loss
def __add__(self, rhs):
if rhs is None:
return self
assert isinstance(rhs, GanLossContainer)
loss_dr = self.loss_dr + rhs.loss_dr
loss_df = self.loss_df + rhs.loss_df
loss_gr = None
if self.loss_gr is not None:
loss_gr = self.loss_gr
if rhs.loss_gr is not None:
if loss_gr is None:
loss_gr = rhs.loss_gr
else:
loss_gr += rhs.loss_gr
loss_gf = self.loss_gf + rhs.loss_gf
return GanLossContainer(loss_dr, loss_df, loss_gr, loss_gf)
def __radd__(self, rhs):
return self.__add__(rhs)
class BaseGanLoss(object):
'''
A base class of GAN loss functions.
This class object offers a callable method which takes discriminator
output variables from both real and fake, and returns a `GanLossContainer` which
holds discreminator and generator loss values as computation graph
variables.
GAN loss functions for discriminator :math:`L_D` and generator :math:`L_G` can be written in the following generalized form
.. math::
L_D &= \mathop{\mathbb{E}}_{x_r \sim P_{\rm data}} \left[L^r_D \left(D(x_r)\right)\right] + \mathop{\mathbb{E}}_{x_f \sim G}\left[L^f_D \left( D(x_f) \right)\right] \\
L_G &= \mathop{\mathbb{E}}_{x_r \sim P_{\rm data}} \left[L^r_G \left( D(x_r) \right)\right] + \mathop{\mathbb{E}}_{x_f \sim G} \left[L^f_G \left( D(x_f) \right)\right]
where :math:`L^r_D` and :math:`L^r_G` are loss functions of real data :math:`x_r` sampled from dataset :math:`P_{\rm data}` for discriminator and generator respectively, and :math:`L^f_D` and :math:`L^f_G` are for fake data :math:`x_f` generated from the current generator :math:`G`. Those functions take discriminator outputs :math:`D(\cdot)` as inputs.
In most of GAN variants (with some exceptions), those loss functions can be defined as the following symmetric form
.. math::
L^r_D(d) = l^+(d)
L^f_D(d) = l^-(d)
L^r_G(d) = l^-(d)
L^f_G(d) = l^+(d)
where :math:`l^+` is a loss function which encourages the discriminator
output to be high while :math:`l^-` to be low.
Different :math:`l^+` and :math:`l^-` give different types of GAN losses.
For example, the Least Square GAN (LSGAN) is derived from
.. math::
l^+(d) &= (d - 1)^2 \\
l^-(d) &= (d - 0)^2.
Any derived class must implement both :math:`l^+(d)` :math:`l^-(d)` as `def _loss_plus(self, d)` and `def _loss_minus(self, d)` for :math:`l^+(d)` and :math:`l^-(d)` respectively, then the overall loss function is defined by the symmetric form explained above.
Note:
The loss term for real data of generator loss :math:`\mathop{\mathbb{E}}_{x_r \sim P_{\rm data}} \left[l^- \left( D(x_r) \right)\right]` is usually omitted at computation graph because generator model is not dependent of that term. If you want to obtain it as outputs, call a method `use_generator_loss_real(True)` to enable it.
'''
def __init__(self):
self._use_generator_loss_for_real = False
def use_generator_loss_for_real(self, use):
'''
Whether or not to compute generator loss for real data. This is
originally set as False, because the generator model which
we would like to train is not dependent of real data, so we don't
have to consider the generator loss for real data as training loss.
Args:
use (bool):
If True, the generator loss for real data is taken into
account.
'''
self._use_generator_loss_for_real = use
def _mean(self, loss):
'''
Reduction function to obtain a scalar value for each GAN loss.
'''
return F.mean(loss)
def _loss_plus(self, dout):
raise NotImplementedError('Not implemented.')
def _loss_minus(self, dout):
raise NotImplementedError('Not implemented.')
def _loss_dis_real(self, dout):
return self._loss_plus(dout)
def _loss_dis_fake(self, dout):
return self._loss_minus(dout)
def _loss_gen_real(self, dout):
return self._loss_minus(dout)
def _loss_gen_fake(self, dout):
return self._loss_plus(dout)
def __call__(self, d_r, d_f):
'''
Get GAN losses given disriminator outputs of both real and fake.
Args:
d_r (~nnabla.Variable): Discriminator output of real data, `D(x_real)`.
d_f (~nnabla.Variable): Discriminator output of fake data, `D(x_fake)`.
Note:
The discriminator scores which are fed into this must be
pre-activation values, that is `[-inf, inf]`.
Returns: GanLossContainer
'''
# L_D
loss_dr = self._mean(self._loss_dis_real(d_r))
loss_df = self._mean(self._loss_dis_fake(d_f))
# L_G
loss_gr = None
if self._use_generator_loss_for_real:
loss_gr = self._mean(self._loss_gen_real(d_r))
loss_gf = self._mean(self._loss_gen_fake(d_f))
return GanLossContainer(loss_dr, loss_df, loss_gr, loss_gf)
class GanLoss(BaseGanLoss):
'''
Standard GAN loss defined as
.. math::
l^+(d) &= \ln \sigma (d) \\
l^-(d) &= \ln \left(1 - \sigma (d )\right)
in a generalized form described in `BaseGanLoss` documentation. Here, :math:`\sigma` is Sigmoid function :math:`\sigma(d) = \frac{1}{1 + e^{-d}}` to interpret input as probability.
References:
`Ian J. Goodfellow et. al.
Generative Adversarial Networks
<https://arxiv.org/abs/1406.2661>`_
'''
def _loss_plus(self, dout):
return -F.log_sigmoid(dout)
def _loss_minus(self, dout):
return -F.log_sigmoid(-dout)
class LsGanLoss(BaseGanLoss):
'''
Least Square GAN loss defined as
.. math::
l^+(d) &= (d - 1)^2 \\
l^-(d) &= (d - 0)^2
in a generalized form described in `BaseGanLoss` documentation.
References:
`Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, Stephen Paul Smolley.
Least Squares Generative Adversarial Networks.
<https://arxiv.org/abs/1611.04076>`_
'''
def _loss_plus(self, dout):
return F.squared_error(dout,
F.constant(1., shape=dout.shape))
def _loss_minus(self, dout):
return F.squared_error(dout,
F.constant(0., shape=dout.shape))
class WassersteinGanLoss(BaseGanLoss):
'''
Wasserstein GAN loss defined as
.. math::
l^+(d) &= d \\
l^-(d) &= -d
in a generalized form described in `BaseGanLoss` documentation.
References:
`Martin Arjovsky, Soumith Chintala, Leon Bottou.
Wasserstein GAN.
<https://arxiv.org/abs/1701.07875>`_
'''
def _loss_plus(self, dout):
return -dout
def _loss_minus(self, dout):
return dout
class GeometricGanLoss(BaseGanLoss):
'''
Geometric GAN loss with SVM hyperplane defined as
.. math::
L^r_D &= \max(0, 1 - d) \\
L^f_D &= \max(0, 1 + d) \\
L^r_G &= d \\
L^f_G &= -d
in a generalized form described in `BaseGanLoss` documentation, but note that it's not symmetric.
References:
`Jae Hyun Lim, Jong Chul Ye.
Geometric GAN.
<https://arxiv.org/abs/1705.02894>`_
Note:
This is somestimes called as Hinge GAN.
'''
def _loss_plus(self, dout):
return F.relu(1. - dout)
def _loss_minus(self, dout):
return F.relu(1. + dout)
def _loss_gen_real(self, dout):
return dout
def _loss_gen_fake(self, dout):
return -1 * dout
class HingeGanLoss(GeometricGanLoss):
'''
An alias of `GeometricGanLoss`.
'''
pass
class SymmetricHingeGanLoss(BaseGanLoss):
'''
Symmetric hinge GAN loss defined as
.. math::
l^+ &= \max(0, 1 - d) \\
l^- &= \max(0, 1 + d)
in a generalized form described in `BaseGanLoss` documentation.
The loss function of RaHingeGAN can be created by passing this to `RelativisticAverageGanLoss`.
References:
`Alexia Jolicoeur-Martineau.
Relativistic Average GAN.
<https://arxiv.org/pdf/1807.00734.pdf>`_
'''
def _loss_plus(self, dout):
return F.relu(1. - dout)
def _loss_minus(self, dout):
return F.relu(1. + dout)
class RelativisticAverageGanLoss(object):
'''
Relativistic Average GAN (RaGAN) Loss.
Args:
gan_loss (BaseGanLoss): A GAN loss.
average (bool): If False, averaging is omitted. Hence it becomes Relativistic GAN.
References:
`Alexia Jolicoeur-Martineau.
Relativistic Average GAN.
<https://arxiv.org/pdf/1807.00734.pdf>`_
'''
def __init__(self, gan_loss, average=True):
import copy
assert isinstance(gan_loss, BaseGanLoss)
gan_loss = copy.copy(gan_loss)
# Relativistic GANs require generator loss for real
gan_loss.use_generator_loss_for_real(True)
self._gan_loss = gan_loss
self._average = average
def _average_func(self, d_values):
if not self._average:
return d_values
return F.mean(d_values, keepdims=True)
def __call__(self, d_r, d_f):
rel_d_r = d_r - self._average_func(d_f)
rel_d_f = d_f - self._average_func(d_r)
return self._gan_loss(rel_d_r, rel_d_f)