Skip to content
s1dlx edited this page May 31, 2023 · 26 revisions

weighted_sum

$$M = (1 - \alpha)\times A + \alpha B$$

A B M
A-00000-1897848000-d7465e52e1-512x712 B-00001-1897848000-ec6f68ea63-512x712 weighted_sum-00002-1897848000-1dd5f6541e-512x712

add_difference

$$M = A + \alpha (B - C)$$

A B C M
A-00000-1897848000-d7465e52e1-512x712 B-00001-1897848000-ec6f68ea63-512x712 v15-00005-1897848000-e1441589a6-512x712 add_difference-00004-1897848000-644917aa08-512x712

weighted_subtraction

$$ M = \frac{(A - \alpha \times \beta \times B)}{(1 - \alpha \times \beta)} $$

A B M
A-00000-1897848000-d7465e52e1-512x712 B-00001-1897848000-ec6f68ea63-512x712 weighted_subtraction-00003-1897848000-62c7196409-512x712

sum_twice

$$M = (1-\beta)\left[(1 - \alpha) \times A + \alpha B \right]+\beta C$$

A B C M
A-00000-1897848000-d7465e52e1-512x712 B-00001-1897848000-ec6f68ea63-512x712 C-00006-1897848000-21c6d51e3e-512x712 sum_twice-00007-1897848000-c035585f1d-512x712

triple_sum

$$M = (1 - \alpha - \beta) \times A + \alpha B + \beta C$$

similarity_add_difference

$$ M=M(\alpha, A, B, C) $$

transmogrify_distribution

$$ M = M(A, B) $$

Clone this wiki locally