-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
237 lines (207 loc) · 8.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import sys
import time
import math
import torch
import torch.nn as nn
import model
import pickle
import torch.optim as optim
from torch.autograd import Variable, profiler
from data import Dictionary, DataIter
from decoder import SMDecoder, ClassBasedSMDecoder, NCEDecoder
def arg_parse():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='./data/penn',
help='location of the data corpus')
parser.add_argument('--emsize', type=int, default=300,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=300,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=1,
help='number of layers')
parser.add_argument('--lr', type=float, default=1,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=50,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=128, metavar='N',
help='batch size')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='params/tmp/model.pt',
help='path to save the final model')
parser.add_argument('--cont', action='store_true')
parser.add_argument('--decoder', type=str, default='sm')
parser.add_argument('--nce_nsample', type=int, default=10)
args = parser.parse_args()
print('{:=^30}'.format('all args'))
for arg in vars(args):
print(' '.join(map(str, (arg, getattr(args, arg)))))
return args
###############################################################################
# Training code
###############################################################################
class Trainer(object):
def __init__(self, model, args,
train_iter, valid_iter, test_iter=None,
max_epochs=50,):
self.model = model
self.train_iter = train_iter
self.valid_iter = valid_iter
self.test_iter = test_iter
self.max_epochs = max_epochs
self.args = args
def __train(self, lr, epoch):
self.model.train()
total_loss = 0
start_time = time.time()
optim = torch.optim.SGD(self.model.parameters(), lr = lr, momentum=.9)
for batch, data in enumerate(self.train_iter):
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
optim.zero_grad()
loss = self.model.loss(data)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(self.model.parameters(), self.args.clip)
optim.step()
total_loss += loss.data
if batch % self.args.log_interval == 0 and batch > 0:
cur_loss = total_loss.item() / self.args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(self.train_iter), lr,
elapsed * 1000 / self.args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
sys.stdout.flush()
def train(self):
# Loop over epochs.
lr = self.args.lr
best_val_loss = None
if self.args.cont:
with open(self.args.save, 'rb') as f:
self.model = torch.load(f)
# At any point you can hit Ctrl + C to break out of training early.
try:
for epoch in range(1, self.max_epochs+1):
epoch_start_time = time.time()
self.__train(lr, epoch)
val_loss = self.evaluate(self.valid_iter)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s '.format(epoch, (time.time() - epoch_start_time),))
print('-' * 89)
# Save the model if the validation loss is the best we've seen so far.
if not best_val_loss or val_loss < best_val_loss:
with open(self.args.save, 'wb') as f:
torch.save(self.model, f)
best_val_loss = val_loss
else:
# Anneal the learning rate if no improvement has been seen in the validation dataset.
with open(self.args.save, 'rb') as f:
self.model = torch.load(f)
lr /= 4.0
if lr < 0.01:
break
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
with open(self.args.save, 'rb') as f:
self.model = torch.load(f)
if not self.test_iter is None:
self.evaluate(self.test_iter, 'test')
def evaluate(self, data_source, prefix='valid'):
# Turn on evaluation mode which disables dropout.
self.model.eval()
total_loss = 0
for data in data_source:
loss = self.model.loss(data)
total_loss += loss.data
ave_loss = total_loss.item() / len(data_source)
print('| {0} loss {1:5.2f} | {0} ppl {2:8.2f}'.format(prefix, ave_loss, math.exp(ave_loss)))
return ave_loss
if __name__ == '__main__':
# Set the random seed manually for reproducibility.
args = arg_parse()
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
corpus_path = args.data + '/'
dictionary = Dictionary(corpus_path + 'vocab.c.txt')
eval_batch_size = 10
train_iter = DataIter(
corpus_path + 'train.txt',
args.batch_size,
dictionary = dictionary,
cuda = args.cuda,
training = True,
)
valid_iter = DataIter(
corpus_path + 'valid.txt',
eval_batch_size,
dictionary = dictionary,
cuda = args.cuda,
)
test_iter = DataIter(
corpus_path + 'test.txt',
eval_batch_size,
dictionary = dictionary,
cuda = args.cuda,
)
###############################################################################
# Build the model
###############################################################################
ntoken = len(dictionary)
if args.decoder == 'sm':
decoder = SMDecoder(
nhid = args.nhid,
ntoken = ntoken
)
elif args.decoder == 'cls':
decoder = ClassBasedSMDecoder(
nhid = args.nhid,
ncls = dictionary.ncls,
word2cls = dictionary.word2cls,
class_chunks = list(dictionary.get_class_chunks()),
)
elif args.decoder == 'nce':
decoder = NCEDecoder(
nhid = args.nhid,
ntoken = ntoken,
noise_dist = train_iter.get_unigram_dist(),
nsample = args.nce_nsample,
)
model = model.RNNModel(
ntoken = ntoken,
ninp = args.emsize,
nhid = args.nhid,
nlayers = args.nlayers,
decoder = decoder,
dropout = args.dropout,
)
if args.cuda:
model.cuda()
trainer = Trainer(
model = model,
train_iter = train_iter,
valid_iter = valid_iter,
test_iter = test_iter,
max_epochs = args.epochs,
args = args
)
trainer.train()