-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathZacks_VGG_RNN.py
242 lines (196 loc) · 8.15 KB
/
Zacks_VGG_RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.tools import inspect_checkpoint as chkp
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
import numpy as np
import os
from os import listdir
from os.path import isfile, join, isdir
from random import shuffle, choice
from PIL import Image
import sys
import json
import collections
input_width = 224
input_height = 224
num_channels = 3
slim = tf.contrib.slim
n_hidden1 = 4096
n_hidden2 = 4096
feature_size = 4096
learnError = 0
n_epochs = 1
batch_size = 2
min_steps = batch_size
lr = 1e-8
def loadData(jsonData, inPath):
batchPaths = []
for vid in jsonData.keys():
# VIRAT format
dirName = '_'.join(vid.split('.')[0].split('_')[2:])
# Other dataset file name format
# dirName = '_'.join(vid.split('.')[0])
vidPath = join(inPath,dirName)
batchPaths = batchPaths + sorted([str(join(vidPath, f) + '/') for f in listdir(vidPath) if isdir(join(vidPath, f))])
return batchPaths
def loadMiniBatch(vidFilePath):
vidName = vidFilePath.split('/')[-3]
frameList = sorted([join(vidFilePath, f) for f in listdir(vidFilePath) if isfile(join(vidFilePath, f)) and f.endswith('.png')])
frameList = sorted(frameList, key=lambda x: int(x.split('/')[-1].split('.')[0]))
its = [iter(frameList), iter(frameList[1:])]
segments = zip(*its)
minibatch = []
for segment in segments:
im = []
numFrames = 0
for j, imFile in enumerate(segment):
img = Image.open(imFile)
img = img.resize((input_width, input_height), Image.ANTIALIAS)
im.append(np.array(img))
numFrames += 1
minibatch.append(np.stack(im))
return vidFilePath, minibatch
def broadcast(tensor, shape):
return tensor + tf.zeros(shape, dtype=tensor.dtype)
def RNNCell(W, B, inputs, state):
"""Most basic RNN: output = new_state = act(W * input + U * state + B)."""
one = constant_op.constant(1, dtype=dtypes.int32)
add = math_ops.add
multiply = math_ops.multiply
sigmoid = math_ops.sigmoid
activation = math_ops.tanh
gate_inputs = math_ops.matmul(array_ops.concat([inputs, state], 1), W)
gate_inputs = nn_ops.bias_add(gate_inputs, B)
output = sigmoid(gate_inputs)
return output, output
def lstm_cell(W, b, forget_bias, inputs, state):
one = constant_op.constant(1, dtype=dtypes.int32)
add = math_ops.add
multiply = math_ops.multiply
sigmoid = math_ops.sigmoid
activation = math_ops.sigmoid
# activation = math_ops.tanh
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=one)
gate_inputs = math_ops.matmul(array_ops.concat([inputs, h], 1), W)
gate_inputs = nn_ops.bias_add(gate_inputs, b)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=gate_inputs, num_or_size_splits=4, axis=one)
forget_bias_tensor = constant_op.constant(forget_bias, dtype=f.dtype)
new_c = add(multiply(c, sigmoid(add(f, forget_bias_tensor))), multiply(sigmoid(i), activation(j)))
new_h = multiply(activation(new_c), sigmoid(o))
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
jsonData = json.load(open(sys.argv[1]))
vidPath = sys.argv[2]
modelPath = sys.argv[3]
activeLearningInput = sys.argv[4]
if activeLearningInput == "1":
activeLearning = True
else:
activeLearning = False
batch = loadData(jsonData, vidPath)
inputs = tf.placeholder(tf.float32, (None, 224, 224, 3), name='inputs')
learning_rate = tf.placeholder(tf.float32, [])
is_training = tf.placeholder(tf.bool)
# Setup RNN
init_state1 = tf.placeholder(tf.float32, [1, n_hidden1])
W_RNN1 = vs.get_variable("W1", shape=[feature_size+n_hidden1, n_hidden1])
b_RNN1 = vs.get_variable("b1", shape=[n_hidden1], initializer=init_ops.zeros_initializer(dtype=tf.float32))
curr_state1 = init_state1
# Setup LSTM
#init_state1 = tf.placeholder(tf.float32, [1, 2*n_hidden1])
#W_lstm1 = vs.get_variable("W1", shape=[feature_size + n_hidden1, 4*n_hidden1])
#b_lstm1 = vs.get_variable("b1", shape=[4*n_hidden1], initializer=init_ops.zeros_initializer(dtype=tf.float32))
#curr_state1 = broadcast(init_state1, [tf.shape(xs)[0], 2*n_hidden1])
W_fc1 = tf.Variable(tf.truncated_normal([n_hidden1, feature_size], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[feature_size]))
scope = 'vgg_16'
fc_conv_padding = 'VALID'
dropout_keep_prob=0.8
r, g, b = tf.split(axis=3, num_or_size_splits=3, value=inputs * 255.0)
VGG_MEAN = [103.939, 116.779, 123.68]
VGG_inputs = tf.concat(values=[b - VGG_MEAN[0], g - VGG_MEAN[1], r - VGG_MEAN[2]], axis=3)
with tf.variable_scope(scope, 'vgg_16', [VGG_inputs]) as sc:
end_points_collection = sc.original_name_scope + '_end_points'
# Collect outputs for conv2d, fully_connected and max_pool2d.
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
outputs_collections=end_points_collection):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [2, 2], scope='pool5')
# Use conv2d instead of fully_connected layers.
net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6')
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='dropout6')
net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
vgg16_Features = tf.reshape(net, (-1,4096))
# Convert end_points_collection into a end_point dict.
end_points = slim.utils.convert_collection_to_dict(end_points_collection)
RNN_inputs = tf.reshape(vgg16_Features[0,:], (-1, feature_size))
h_1, curr_state1 = RNNCell(W_RNN1, b_RNN1, RNN_inputs, curr_state1)
fc1 = tf.matmul(h_1, W_fc1) + b_fc1
print(fc1[0,:].shape, vgg16_Features[1,:].shape)
sseLoss1 = tf.square(tf.subtract(fc1[0,:], vgg16_Features[1,:]))
mask = tf.greater(sseLoss1, learnError * tf.ones_like(sseLoss1))
sseLoss1 = tf.multiply(sseLoss1, tf.cast(mask, tf.float32))
sseLoss = tf.reduce_mean(sseLoss1)
# Optimization
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(sseLoss)
#####################
### Training loop ###
#####################
init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="vgg_16"))
with tf.Session() as sess:
# Initialize parameters
sess.run(init)
saver.restore(sess, "./vgg_16.ckpt")
saver = tf.train.Saver(max_to_keep=0)
avgPredError = 1.0
### In case of interruption, load parameters from the last iteration (ex: 29)
#saver.restore(sess, './model_stacked_lstm_29')
### And update the loop to account for the previous iterations
#for i in range(29,n_epochs):
step = 0
new_state = np.random.uniform(-0.5,high=0.5,size=(1,n_hidden1))
for i in range(n_epochs):
# Run 1 epoch
loss = []
shuffle(batch)
for miniBatchPath in batch:
new_state = np.random.uniform(-0.5,high=0.5,size=(1,n_hidden1))
avgPredError = 0
vidName, minibatches = loadMiniBatch(miniBatchPath)
segCount = 0
predError = collections.deque(maxlen=30)
print('Video:', vidName)
for x_train in minibatches:
segCount += 1
ret = sess.run([train_op, sseLoss, sseLoss1, curr_state1, fc1], feed_dict = {inputs: x_train, is_training: True, init_state1: new_state, learning_rate:lr})
new_state = ret[3]
if activeLearning:
if ret[1]/avgPredError > 1.5:
lr = 1e-8
#print('Gating n_steps=', segCount, avgPredError, ret[1])
else:
#print('NOT Gating n_steps=', segCount, avgPredError, ret[1])
lr = 1e-10
predError.append(ret[1])
avgPredError = np.mean(predError)
path = modelPath + str(i+1)
save_path = saver.save(sess, path)