-
Notifications
You must be signed in to change notification settings - Fork 1
/
Basic Combinatorics - Spring, Home Assignment 2.tex
279 lines (271 loc) · 11.6 KB
/
Basic Combinatorics - Spring, Home Assignment 2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
\documentclass[12pt]{article}
\usepackage{lingmacros}
\usepackage{tree-dvips}
\usepackage[english]{babel}
\usepackage{amsthm}
\usepackage{hyperref}
\usepackage{amsmath}
\newtheorem*{claim*}{claim}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{claim}[theorem]{claim}
\newtheorem*{theorem*}{Theorem}
\usepackage{dsfont}
\newcommand{\ndiv}{\hspace{-4pt}\not|\hspace{2pt}}
\begin{document}
\begin{center}
\section*{Basic Combinatorics - Spring, Home Assignment 2}
\end{center}
\subsection*{Problem 1.}
\begin{claim*}\textbf{1} For any $1 \leq k \leq n$ and $0 < x < 1$\[\binom{n}{k} x ^ k \leq (1 + x) ^ n \leq e ^ {xn}\]
\end{claim*}
\begin{proof}
First lets notice that for $\forall x,k$ $x^k>0$.now using the newton binomial we can get the following
\[
(1 + x) ^ n=\sum^n_{i=0}\binom{n}{i}x^i=\binom{n}{0}x^0+\binom{n}{1}x^1+\dots \underbrace{\binom{n}{k}x^k}_{\text{part of the sum}}+\binom{n}{k+1}x^{k+1}+\dots
\binom{n}{n}x^n
\]
because each one of the sum's element is non negtive
the following hold
\[ \binom{n}{k}x^k \leq (1 + x) ^ n
\]
using Bernoulli's Inequality, for $\forall n \in N $ and $x>0$
\[0< 1+x\leq\left(1+\frac{x}{n}\right)^n\xrightarrow [n\to\infty]{} e^x
\]
we can raise both side in power of n and we will get the complete formula
\[\binom{n}{k} x ^ k \leq (1 + x) ^ n \leq e ^ {xn}\]
\end{proof}
\begin{claim*}\textbf{2} For any $1 \leq k \leq n$ and $0 < x < 1$\[\ \binom{n}{k} \leq (\frac{en}{k})^k\]
\end{claim*}
\begin{proof}
if k=n we Instantly get using the result of claim 1.
\[1=\binom{n}{n} \leq (\frac{en}{n})^n=e^n\]
now for $k<n$ and using above inequality lets set $0<x=\frac{k}{n}<1$
\[\binom{n}{k} (\frac{k}{n} )^ k \leq e ^ {\frac{k}{n}n}
\Rightarrow \binom{n}{k}\leq (\frac{n}{k} )^ ke^k=(\frac{en}{k} )^ k
\]
\end{proof}
\begin{claim*}\textbf{3} For any $1 \leq k \leq n$ and $0 < x < 1$
\[\ \sum_{i=0}^k\binom{n}{i} \leq (\frac{en}{k})^k\]
\end{claim*}
\begin{proof}
using the same way as above and claim 1 lets \\$k<n$ set $0<x=\frac{k}{n}<1$
\[\sum^n_{i=1}\binom{n}{i}(\frac{k}{n})^i\leq(1+\frac{k}{n})^n =\sum^n_{i=0}\binom{n}{i}(\frac{k}{n})^i \leq e^{n\frac{k}{n}}=e^k
\]
divide by $(\frac{k}{n})^k$
\[
\ \sum^n_{i=0}\binom{n}{i} \leq \sum^n_{i=1}\binom{n}{i}(\frac{k}{n})^{i-k}\leq e^k(\frac{n}{k})^{-k}=(\frac{en}{k})^k
\]
the first inequality holds because for $i \leq k$ we get $i-k<0$
\end{proof}
\subsection*{Problem 2.}
\begin{theorem*}
For all n $\geq$2, $nlogn-n<log(n!)<nlogn$
i.e $\ln(n!)=\Theta (nln(n))$
\end{theorem*}
\begin{proof}
First we note that $\ln(n!)=\sum ^n_klnk$ and using Riemann sum approximation, and the fact that ln is a non-decreasing function on $[1,\infty )$ ,for all $x\in [k,k+1)$ Integrating we get
\[
\ln(k) \leq ln(x) \leq \ln(k+1)
\]
\[
\int_k^{k+1} \ln(k) dx \leq \int_k^{k+1} \ln(x) dx \leq \int_k^{k+1} \ln(k+1) dx .
\]
Summing for k between 1 and n-1, we get
\[
\sum_{k=1}^{n-1} \ln(k) \leq \sum_{k=1}^{n-1} \int_k^{k+1} ln(x) dx = \int_1^{n} \ln(x) dx \leq \sum_{k=1}^{n-1} \ln(k+1) = \sum_{k=2}^{n} \ln(k)
\]
adding ln(1),ln(n)\[
\int_1^{n} \ln(x) dx + \ln(1)+ln(n) \leq \sum_{k=1}^{n-1} \ln(k) +\dfrac{ln(n)}{2}-\ln(1) \leq \int_1^{n} \ln(x) dx + \ln(n).
\]
hence for
\[
\int_1^{n} \ln x dx = x\ln x -x|^n_1 = n\ln n - n +1
\]
we get
\[
n\ln(n) +\dfrac{ln(n)}{2} - n + 1 \leq \sum_{k=1}^{n} \ln k \leq n\ln -n + \dfrac{3\ln(n)}{2} + 1
\]
\end{proof}
using the theorem above lets add to the of power e
\[\exp(n\ln n - n + 1+\dfrac{\ln(n)}{2}) \leq \exp(\ln(n!))\leq \exp(\dfrac{3\ln(n)}{2}+n\ln n - n + 1)
\]
\[
\\
\Leftrightarrow n!=\Theta(\sqrt{n}e(\frac{n}{e})^n)
\]
\subsection*{Problem 3.}
\subsubsection*{(3.1)} Let q(n) denote the number of ordered sets of positive integers whose sum is n, lets define $Q$ such that $Q$ is sequence size n of 1's .
\[
Q: {1\nabla 1\nabla1\nabla1 \nabla \dots \nabla 1}
\]
in total we looking at n times 1 and n-1 $\nabla$. now lets say we have 2 operators
$\lbrace + , |\rbrace$ we can replace each time $\nabla$ with ine of them, if we choose the $+$ we "merge" both of the sums, but if we choose $|$ we "slice" the set.hence the sum of $Q$ will always stay n
and each unique decision of choosen operator in order will give us unique ordered sets of positive, we can choose 2 operators total n-1 times, hence the number of ordered sets is
\[
q(n)=2^{n-1}
\]
\subsubsection*{(3.2)}
using the group $Q$ define above, to find all the ordered sets size k hows sum is n, we can say that now we must replace k-1 of $\nabla$ with $|$, witch leaves us with total of k sets, and all the rest $\nabla$ will get the $+$ operator immediately.
in total we have k-1 of $|$ to rplace k-1 operator of $\nabla$ from total $n-1\nabla$ ,and by suuming all the option over k sizes of group we get.
\[
\sum_{k=1}^{n-1} \binom{n-1}{k-1}=\sum_{k=0}^{n} \binom{n-1}{k}=2^{n-1}=q(n)
\]
\subsection*{Problem 4.}
Let p(n) denote the number of unordered sets of positive integers whose sum is n.
lets define $p_k(n)$ to be number of unordered sets of size k of positive integers whose sum is n.\\
using the result of problem 3 we know that for ordered set size k we have $\binom{n-1}{k-1}$ option.if we looking at k different element we will have total of.
\[
p_k(n)=\dfrac{\binom{n-1}{k-1}}{k!}
\]
but we might have some repeat numbers so its will be at most
\[
p_k(n)\geq \dfrac{\binom{n-1}{k-1}}{k!}
\]
since we define q(n) s.t $p(n)=\sum_k p_k(n)$ the following hold.
\[
p(n)=\sum_k p_k(n)\geq
{\max}_{1 \geq k \geq n} \dfrac{\binom{n-1}{k-1}}{k!}
\]
\begin{claim*}
there is an absolute constant $c>0$ for which $p(n) \geq e^{c\sqrt{n}}$
\end{claim*}
\begin{proof}
\[
p(n)=\geq
{\max}_{1 \geq k \geq n} \dfrac{\binom{n-1}{k-1}}{k!}
\geq \dfrac{\binom{n-1}{k-1}}{k!}
=\frac{1}{k!}\frac{k}{n}\binom{n}{k}
\]
using (*)$\binom{n}{k} \geq (\frac{n}{k})^k$ (**)$k!\geq ek(\frac{n}{k})^k$,
\[
\frac{1}{k!}\frac{k}{n}\binom{n}{k}
\geq \underbrace{\frac{1}{ek(\frac{n}{k})^k}}_{**}\text{ }
\underbrace{(\frac{n}{k})^k}_{*}
\frac{k}{n}
\]
for $k=\sqrt{n}$
\[
\frac{1}{e\sqrt{n}(\frac{n}{\sqrt{n}})^{\sqrt{n}}}
(\frac{n}{\sqrt{n}})^{\sqrt{n}}
\frac{\sqrt{n}}{n}=\frac{e^{\sqrt{n}}}{en}=\frac{e^{\sqrt{n}}}{e^{1+ \ln (n)}}
\]
using the detention of limit ,for some $1> \epsilon >0$
\[
\frac{1+\ln (n)}{\sqrt{n}}\text{ }\overrightarrow{n\rightarrow \infty}
\text{ }0\Rightarrow \frac{1+\ln (n)}{\sqrt{n}} < \epsilon \Rightarrow 1+\ln (n) > \epsilon \sqrt{n} \]
hence for $c=1-\epsilon $ ,$c>0$
\[
\frac{e^{\sqrt{n}}}{e^{1+ \ln (n)}}\leq \frac{e^{\sqrt{n}}}{e^{\epsilon \sqrt{n}}}=e^{\sqrt{n}}-e^{\epsilon \sqrt{n}}=e^{c\sqrt{n}}
\]
\end{proof}
\subsection*{Problem 5.}
Let $\pi (m, n)$ denote the set of prime numbers in the interval [$m,n$].
\subsubsection*{(5.1)}
we can see the following $[m,2m]$
\[
\{m+1,m+2,...,2m\}
\]
now lets partition it to prime and and non prime element s.t
\[
\{m+1,m+2,...,2m\} \setminus \pi(m+1,2m)= c(m+1,2m)
\]
\[
n \in c(m+1,2m) \leftrightarrow \{ n\in [m,2m] \vee n \text{ is not prime} \}
\]
now lets look at $\binom{2m}{m}$
\[
\binom{2m}{m}=\frac{2m(2m-1)...(m+1)}{m!}=\frac{1}{m!} \left(\prod\limits_{p\in \pi(m+1,2m)}p\right) \left(\prod\limits_{n\in c(m+1,2m)}n\right)\]
since for any $m+1 \geq p \geq 2m , p\in \pi(m+1,2m)$\\
i claim when $p>m$ thus
\[
m! \ndiv \left(\prod\limits_{p\in \pi(m+1,2m)}p\right)
\]
and we get
\[\binom{2m}{m}=\underbrace{ \dfrac{\left(\prod\limits_{n\in c(m+1,2m)}n\right)}{m!}}_{\geq 1}\left(\prod\limits_{p\in \pi(m+1,2m)}p\right)
\geq \left(\prod\limits_{p\in \pi(m+1,2m)}p\right)
\]
\subsubsection*{(5.2)}
first lets notice that
\[
4^{n}=2^{2n}=(1+1)^{2n}=\sum^{2n}_{k=0}\binom{2n}{k} > \binom{2n}{n},\]
\[
\text{and }2\cdot 2^{2n+1} > \binom{2n+1}{n}
\Rightarrow \binom{2n+1}{n} \leq 2^{2n}
\]
since its apper twice in the binomial coefficient,
so both at scenario (even,odd) using the floor will give us bound for the given binom
\[
\left(\prod\limits_{p\in \pi(\lfloor m/2 \rfloor +1,2m)}p\right)\leq \binom{m}{\lfloor m/2 \rfloor} \leq 2^m
\]
now lets use the floor function we can notice that
\[\lfloor \lceil m/2^{2k} \rceil/2^k \rfloor =\lfloor m /2^{3k}\rfloor \]
hence for $2m,m,m/2$
\[
\left(\prod\limits_{p\in \pi(\lfloor m/4 \rfloor +1,\lceil m/2 \rceil )}p\right)\left(\prod\limits_{p\in \pi(\lceil m/2 \rceil+1,m)}p\right)\leq \binom{m}{\lfloor m/2 \rfloor}\binom{\lceil m/2 \rceil}{\lfloor m/4 \rfloor}\leq 2^m2^{\lfloor m/2 \rfloor}
\]
we can apply it for all m,$\lceil m/2 \rceil,\lceil m/4 \rceil $...
\begin{align}
\left(\prod\limits_{p\in \pi(1,m)}p\right)= \left(\prod\limits_{p\in \pi(0+1,1)}p\right)\cdots \left(\prod\limits_{p\in \pi(\lceil m/2 \rceil+1,m)}p\right) \leq
\\
{m \choose {\lfloor m/2 \rfloor}}{{\lceil m/2 \rceil} \choose {\lfloor m/4 \rfloor}}{{\lceil m/4 \rceil} \choose {\lfloor m/8 \rfloor}}\cdots \leq 2^m\cdot 2^{{\lfloor m/2 \rfloor}} \cdot 2^{{\lfloor m/4 \rfloor}} \cdots
\end{align}
\[ \leq 2^{m + {\lfloor m/2 \rfloor} + {\lfloor m/4 \rfloor} + \cdots } \leq 2^{m(1 + 1/2 + 1/4 + \cdots) } \leq 2^{2m} = 4^m
\]
\subsubsection*{(5.3)}
using line (1),(2) we sow above
\[ \log\left(\prod\limits_{p\in \pi(1,n)}p\right)< \log(4^m) \Rightarrow O(2n\log 2)
\]
\[
\log\left(\prod\limits_{p\in \pi(1,n)}p\right)= \sum_{ I=(\lceil2i/i\rceil+1,i)i\in \pi(1,n)}\log\left(\prod\limits_{I}p\right)
\leq \sum_{ I(\lceil2i/i\rceil+1,i)i\in \pi(1,n)}
\log\underbrace{{i \choose {\lfloor i/2 \rfloor}}}_{2^n\leq \binom{n}{2n}}
\]
since $2^n\leq \binom{n}{2n}$ and the result from sector 5.1 we can bound the following.
\[
\prod_{ I=(\lceil2i/i\rceil+1,i)i\in \pi(1,n)}{{i \choose {\lfloor i/2 \rfloor}}} <
\left(\prod\limits_{p\in \pi(1,n)}p\right)\leq (4^n) \]
log both sides
\[
\log(\prod_{ I=(\lceil2i/i\rceil+1,i)i\in \pi(1,n)} \binom{i}{2i}) \leq |\pi(1,n)|\log(2^{\lg(n)\log2}) < \log(4^n)
\]
and we finality get\[ |\pi(1,n)|\lg(n)\log2 < 2n\log2 \Leftrightarrow |\pi(1,n)|=O(\dfrac{n}{\log(n)})
\]
\subsection*{Problem 6.}
\begin{claim*}
Every tournament $T$ of order $|V|=2^k$ contains an undominated set of size $\leq k$.
\end{claim*}
\begin{proof}
the base case of the induction is trivial for $k=1,2$
lets assume the hypothesis hold for some for $2^k$, now lets look at $\hat{T}$ of order $|V|=2^{k+1}$ lets look at the avarge $\text{deg}_{out}$ i.e
\[
\frac{|E|}{|V|} = \dfrac{2^{k+1}(2^{k+1}-1)}{2*2^{k+1}}=2^k-\dfrac{1}{2}
\]
hence exist some $v \in |V|$ such that $v_{\text{deg}_{out}}\geq 2^k \Rightarrow v_{\text{deg}_{in}} < 2^k$. now lets choose
some $2^k = |S|,\lbrace S:S \subseteq V \rbrace$ such that $v$ dominated by any $v_s\in S$.
lets apply our induction assumption on sub-tournament $S$,
since exist $\hat{S} \subseteq S$
size $ | \hat{S} | \leq k$ that not dominated by any other vertex$\Rightarrow |\hat{S}\cup{v}|\leq k+1$ sub-set size $k+1$ that not dominated in $|T|=2^{k+1}$
\end{proof}
now lets look at some random tournament $T$ that any $e\in |E|$ have the same probability to be in each direction \[
\Pr (e: u \rightarrow v)=
\Pr (e: v \rightarrow u)=1/2
\]
$\Rightarrow$ the probability that v is dominates on some u is $1/2$
\\ $\Rightarrow$ the probability v is dominates on $S\subseteq V$ size $k$ is $1/2^k$
\\$\Rightarrow$ the probebilty that e dominated by some $|S|=k$ is $(1-1/2^k)$
\\$\Rightarrow$ the probebilty that $|T/S|=n-k$ dominated by some $|S|=k$
\\is $(1-1/2^k)^{n-k}$
\\the expected number of group size k can bound from above with $n \choose k$, hence when n holds
\[
\binom{n}{k}(1-1/2^k)^{n-k} <1
\]
then there is an n-vertex tournament so that every set of k vertices is dominated.\\
now lets use the property proved in Q(1) and we can bound the following for any $k\geq 2$
\[
\binom{n}{k}(1-1/2^k)^{n-k} \leq
\underbrace{e^{-\frac{(n-k)}{2^k}}}_{Q1 \text{ and }1-k
\leq e^k} \underbrace{\left(\dfrac{en}{k}\right)^k}_{\leq \binom{n}{k}}<1
\]
hence for $n>k+2^k\cdot k^2$ the following hold .
\end{document}