-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaat.py
722 lines (572 loc) · 23.7 KB
/
aat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
"""
This file contains functions for targeting objects as part of the SAGA Survey's
AAT observations.
Note that priority levels 5 and 7 are only used if wise data is present
"""
from __future__ import print_function
import numpy as np
try:
import six
except ImportError:
from astropy.extern import six
from astropy import units as u
from astropy.coordinates import Angle
def prioritize_targets(targets, rvir=300*u.kpc, scheme='jun2014'):
rvkpc = rvir.to(u.kpc).value
pris = np.zeros(len(targets), dtype=int)
if scheme == 'jul2014':
g = targets['g']
r = targets['r']
i = targets['i']
w1 = targets['w1'] if 'w1' in targets.colnames else None
rkpc = targets['rhost_kpc']
pris[(g-r < 1.2) & (r-i < 0.7) & (r<21) & (rkpc < rvkpc)] = 1
pris[(g-r < 1.2) & (r-i < 0.7) & (r<20.5) & (rkpc < rvkpc)] = 2
pris[(g-r < 1.0) & (r-i < 0.5) & (r<20.5) & (rkpc > rvkpc)] = 3
#add priority level 5 and 7 *only* if WISE data are present
pris[(g-r < 1.0) & (r-i < 0.5) & (r<21) & (rkpc < rvkpc)] = 4
if w1 is not None:
pris[(r-w1<2.5) & (g-r < 1.0) & (r-i < 0.5) & (r<21) & (rkpc < rvkpc)] = 5
pris[(g-r < 1.0) & (r-i < 0.5) & (r<20.5) & (rkpc < rvkpc)] = 6
if w1 is not None:
pris[(r-w1<2.5) & (g-r < 1.0) & (r-i < 0.5) & (r<20.5) & (rkpc < rvkpc)] = 7
elif scheme == 'jun2015baseline':
sborder = np.argsort(targets['sb_petro_r'])
# now split into 2 based on SB-ile
pris[:] = 2
pris[sborder[:len(pris)//2]] = 1
#middle one for 3
#pris[sborder[:2*len(pris)//3]] = 2
pris[targets['rhost_kpc'] < rvkpc] += 2 # prefer close-in to outer
else:
raise ValueError('unrecognized scheme')
return pris
def produce_master_fld(host, utcobsdate, catalog, pris, guidestars,
fluxstars, skyradec, outfn=None, randomizeorder=True,
fluxpri=8, inclhost=True, manualtargetlines=[]):
"""
Priority of 1 to 9 (9 highest) means use, any other `pris` values skipped
`skyradec` can either be (ra, dec) or a string to be a filename that will
simply be pulled in wholesale.
`inclhost` can give the priority, if desired - defaults to 9
`manualtargetlines` is a list of lines (in string form) to add by hand
"""
lines = []
lines.append('LABEL ' + host.name + ' base catalog')
lines.append('UTDATE {yr} {mo:02} {day:02}'.format(yr=utcobsdate.year,
mo=utcobsdate.month,
day=utcobsdate.day))
censtr = host.coords.to_string('hmsdms', sep=' ', precision=2, alwayssign=True)[1:] # strips the leading '+'
lines.append('CENTRE ' + censtr)
lines.append('EQUINOX J2000.0')
#lines.append('WLEN1 3700')
#lines.append('WLEN2 8800')
lines.append('# End of Header')
lines.append('')
lines.append('# TargetName(unique for header) RA(h m s) Dec(d m s) TargetType(Program,Fiducial,Sky) Priority(9 is highest) Magnitude 0 TargetName')
if randomizeorder:
idxs = np.random.permutation(len(catalog))
else:
idxs = np.arange(len(catalog))
if inclhost:
if inclhost is True:
inclhost = 9
entry = []
entry.append(host.name.replace(' ', ''))
entry.append(host.coords.ra.to(u.hourangle).to_string(sep=' ', precision=2))
entry.append(host.coords.dec.to_string(sep=' ', alwayssign=True, precision=2))
entry.append('P')
entry.append(str(int(inclhost)))
entry.append('{0:0.2f}'.format(host.r + host.distmod))
entry.append('0')
entry.append('host galaxy')
lines.append(' '.join(entry))
if pris is None:
pris = prioritize_targets(catalog)
elif isinstance(pris, six.string_types):
pris = prioritize_targets(catalog, scheme=pris)
skippedbadpri = 0
extranotes = 'extra_aat_notes' in catalog.colnames
f2magnm = 'FIBER2MAG_R' if 'FIBER2MAG_R' in catalog.colnames else 'fiber2mag_r'
for ci, pri in zip(catalog[idxs], pris[idxs]):
if not 1 <= pri <= 9:
skippedbadpri += 1
continue
entry = []
entry.append(str(ci['objID']))
entry.append(Angle(ci['ra'], u.deg).to(u.hourangle).to_string(sep=' ', precision=2))
entry.append(Angle(ci['dec'], u.deg).to_string(sep=' ', alwayssign=True, precision=2))
entry.append('P')
entry.append(str(pri))
entry.append('{0:0.2f}'.format(ci[f2magnm]))
entry.append('0')
entry.append('magcol=fiber2mag_r, model_r={0:.2f}'.format(ci['r']))
if extranotes:
entry[-1] = entry[-1] + ci['extra_aat_notes']
lines.append(' '.join(entry))
if skippedbadpri > 0:
print('skipped', skippedbadpri, 'objects for priorities not in 1-9')
#add any manually-added targets
entry.extend(manualtargetlines)
lines.append('\n#Flux stars')
if randomizeorder:
idxs = np.random.permutation(len(fluxstars))
else:
idxs = np.arange(len(fluxstars))
for idx, fxs in enumerate(fluxstars[idxs]):
entry = []
entry.append('Flux' + str(idx))
entry.append(Angle(fxs['ra'], u.deg).to(u.hourangle).to_string(sep=' ', precision=2))
entry.append(Angle(fxs['dec'], u.deg).to_string(sep=' ', alwayssign=True, precision=2))
entry.append('P')
entry.append(str(int(fluxpri)))
entry.append('{0:0.2f}'.format(fxs['r']))
entry.append('0')
entry.append('id=' + str(fxs['objID']))
lines.append(' '.join(entry))
lines.append('\n#Guide stars')
if randomizeorder:
idxs = np.random.permutation(len(guidestars))
else:
idxs = np.arange(len(guidestars))
for idx, g in enumerate(guidestars[idxs]):
entry = []
entry.append('Guide' + str(idx))
entry.append(Angle(g['ra'], u.deg).to(u.hourangle).to_string(sep=' ', precision=2))
entry.append(Angle(g['dec'], u.deg).to_string(sep=' ', alwayssign=True, precision=2))
entry.append('F')
entry.append('9')
entry.append('{0:0.2f}'.format(g['r']))
entry.append('0')
entry.append('id=' + str(g['objID']))
lines.append(' '.join(entry))
lines.append('\n#Sky positions')
if isinstance(skyradec, six.string_types):
with open(skyradec, 'r') as f:
lines.extend(f.read().split('\n'))
else:
if randomizeorder:
idxs = np.random.permutation(len(skyradec[0]))
else:
idxs = np.arange(len(skyradec[0]))
skyradeczip = np.array(zip(*skyradec))
for idx, (ra, dec) in enumerate(skyradeczip[idxs]):
entry = []
entry.append('Sky' + str(idx))
entry.append(Angle(ra, u.deg).to(u.hourangle).to_string(sep=' ', precision=2))
entry.append(Angle(dec, u.deg).to_string(sep=' ', alwayssign=True, precision=2))
entry.append('S')
entry.append('9')
entry.append('20.00')
entry.append('0')
entry.append('sky')
lines.append(' '.join(entry))
if outfn is not None:
with open(outfn, 'w') as f:
for l in lines:
f.write(l)
f.write('\n')
return lines
zlogcolnames = 'name,ra,dec,mag,z,sn,zqual,idx,sat?,star,unknown'.split(',')
def subsample_from_master_fld(masterfn, outfn, nperpri, nguides='all',
nflux='all', nsky='all', utcobsdate=None,
fieldname=None, listorem=None, dontrempri=None,
zlogfns=None, zltabkeepfunc=lambda entry: entry['zqual'] < 3,
guidemags='all'):
"""
Selects from the master .fld and creates a smaller .fld file for consumption
by configure.
nperpri maps pri numbers to the number to do (any missing are
treated as 0). 'all'
`listorem` should be a list of ".lis" files of allocations as output by
configure (or None)
`dontrempri` is the priority to include even if it's in one of the remove
lists.
`zlogfns` should be a list of zlog files *which must match the corresponding
.lis file* or None to not use the zlog file.
`zltabkeepfunc` is a function that takes an entry in the zltab and returns
True if the object should be *kept* even if its in listorem. (ignored if
`zlogfns` is None).
`guidemags` can be 'all' or a 2-tuple
"""
from astropy.table import Table
inhdr = True
if fieldname is None:
fieldname = 'subsampled'
if nperpri == 'all':
nperpri = {}
for i in range(10):
nperpri[i] = np.inf
skydone = fluxdone = guidesdone = 0
pridone = dict([(i, 0) for i in range(10) if i != 0])
pritotal = dict([(i, 0) for i in range(10) if i != 0])
priall = dict([(i, 0) for i in range(10) if i != 0])
namestoskip = []
if listorem:
if zlogfns and len(zlogfns) != len(listorem):
raise ValueError('zlogfns and listorem do not match!')
for i, lis in enumerate(listorem):
prentslen = len(namestoskip)
listab = load_lis_file(lis)[0]
if zlogfns:
zlogtab = Table.read(zlogfns[0], format='ascii', names=zlogcolnames)
zlogfibnums = []
for nm in zlogtab['name']:
if nm == 'noid':
zlogfibnums.append(-1)
else:
zlogfibnums.append(int(nm.split('_')[-1]))
else:
zlogtab = None
keptfibers = []
for entry in listab:
nm = entry['ids']
fibnum = entry['fibnums']
if not (nm.startswith('Flux') or nm.startswith('Guide') or nm.startswith('Sky')):
if zlogtab is not None:
fibmatch = zlogfibnums == fibnum
if np.sum(fibmatch) == 0:
msg = 'Could not find a match in the zlog for fiber #{0}!'
print(msg.format(fibnum))
zlentry = None
elif np.sum(fibmatch) > 1:
msg = 'Found {0} zlog matches for fiber #{1}. Using first one'
print(msg.format(np.sum(fibmatch), fibnum))
zlentry = zlogtab[fibmatch][0]
else:
zlentry = zlogtab[fibmatch][0]
if zlentry is not None and zltabkeepfunc(zlentry):
keptfibers.append(fibnum)
continue
namestoskip.append(nm)
print('Kept the following fibers in due to zltabkeepfunc:', keptfibers)
print('Found', len(namestoskip) - prentslen, 'objects to remove in', lis)
with open(masterfn) as fr:
with open(outfn, 'w') as fw:
for l in fr:
if inhdr:
if l.startswith('LABEL'):
fw.write(l.replace('base catalog', fieldname).replace('master catalog', fieldname))
elif l.startswith('UTDATE'):
if utcobsdate is None:
fw.write(l)
else:
s = 'UTDATE {yr} {mo:02} {day:02}\n'
fw.write(s.format(yr=utcobsdate.year,
mo=utcobsdate.month,
day=utcobsdate.day))
else:
fw.write(l)
if l.startswith('# End of Header'):
inhdr = False
else: # not in header
lst = l.strip()
if lst == '' or lst.startswith('#'):
fw.write(l)
#elif l.startswith('Guide'):
elif 'guide' in l.lower():
if nguides == 'all' or (guidesdone < nguides):
if guidemags != 'all':
mag = float(l.split()[9])
if not (guidemags[0] < mag < guidemags[1]):
continue # outside of the valid mag range
fw.write(l)
guidesdone += 1
#elif l.startswith('Flux'):
elif 'flux' in l.lower():
if nflux == 'all' or (fluxdone < nflux):
fw.write(l)
fluxdone += 1
#elif l.startswith('Sky'):
elif 'sky' in l.lower():
if nsky == 'all' or (skydone < nsky):
fw.write(l)
skydone += 1
else: # program target
ls = l.split()
pri = int(ls[8])
priall[pri] += 1
#skip *unless* dontrrempri == pri
if ls[0] in namestoskip:
del namestoskip[namestoskip.index(ls[0])]
if dontrempri != pri:
continue
ntodo = nperpri.get(pri, 0)
if pridone[pri] < nperpri.get(pri, 0):
fw.write(l)
pridone[pri] += 1
pritotal[pri] += 1
if len(namestoskip) > 0:
print('Had', len(namestoskip), 'unmatched list file objects:\n', namestoskip)
pritotalperc = {pri: None if priall[pri]==0 else 100.*pritotal[pri]/priall[pri] for pri in pritotal}
msg = 'Total remaining in each priority ({0} fluxes, {1} guides, and {2} skies not included):\n{3}\n{4}%'
print(msg.format(fluxdone, guidesdone, skydone, pritotal, pritotalperc))
return pritotal
def imagelist_fld_targets(fldlinesorfn, ttype='all', **kwargs):
from targeting import sampled_imagelist
if isinstance(fldlinesorfn, six.string_types):
with open(fldlinesorfn) as f:
fldlines = f.read().split('\n')
else:
fldlines = fldlinesorfn
prognum = -1
if ttype.startswith('prog'):
if ttype[4:] == '':
prognum = int(ttype[4:])
else:
prognum = 0
ras = []
decs = []
names = []
for l in fldlines:
if l.startswith('#') or l.startswith('*') or l.strip() == '':
continue
ls = l.split()
if len(ls) > 9:
if (ttype == 'all' or
(ttype == 'sky' and ls[7] == 'S') or
(ttype == 'guide' and ls[7] == 'F') or
(ttype == 'flux' and ls[7] == 'P' and ls[0].startswith('Flux')) or
(prognum>-1 and ls[7] == 'P' and not ls[0].startswith('Flux') and (prognum==0 or prognum==int(ls[8])))
):
ras.append(Angle(ls[1]+'h'+ls[2]+'m'+ls[3]+'s').deg)
decs.append(Angle(ls[4]+'d'+ls[5]+'m'+ls[6]+'s').deg)
names.append(ls[0])
kwargs['names'] = names
return sampled_imagelist(ras, decs, **kwargs)
def select_guide_stars_usnob(host, faintlimit=13.5, brightlimit=12., randomize=True):
"""
Selects candidate FOP stars from USNO-B
Parameters
----------
host : NSAHost
faintlimit : number
brightlimit : number
randomize : bool
Randomize the order of the catalog and the very end
Returns
-------
cat : table
The USNO-B catalog with the selection applied
"""
cat = host.get_usnob_catalog()
mag = cat['R2']
magcuts = (brightlimit < mag) & (mag < faintlimit)
# only take things with *both* R mags
bothRs = (cat['R1'] != 0) & (cat['R2'] != 0)
res = cat[bothRs & magcuts]
if randomize:
res = res[np.random.permutation(len(res))]
return res
def select_guide_stars_sdss(cat, magrng=(12.5, 14)):
msk = cat['type'] == 6 #type==6 means star
magrng = min(*magrng), max(*magrng)
msk = msk & (magrng[0] < cat['r']) & (cat['r'] < magrng[1])
return cat[msk]
def select_sky_positions(host, nsky=250, sdsscat=None, usnocat=None,
nearnesslimitarcsec=15, outfn=None, rad=None):
"""
Produces sky positions uniformly covering a circle centered at the host,
with radius given by `environsarcmin`.
Parameters
----------
host : NSAHost
The host to make sky
nsky : int
Number of sky positions to generate
sdsscat : Table or None
The SDSS catalog for this host or None to use `get_sdss_catalog`
usnocat : Table or None
The USNO catalog for this host or None to use `get_usnob_catalog`
nearnesslimitarcsec : float or Quantity
How close a position has to be to a catalog entry to get eliminated
outfn : None or str
If given, a file to save the sky positions out suitable for use in an
AAT fld file
rad : angle quantity or None
radius from host out to make sky positions. If None, will use host
`environsarcmin`.
Returns
-------
ra : array
dec : array
"""
from scipy.spatial import cKDTree
if sdsscat is None:
sdsscat = host.get_sdss_catalog()
if usnocat is None:
usnocat = host.get_usnob_catalog()
if not isinstance(nearnesslimitarcsec, u.Quantity):
nearnesslimitarcsec = nearnesslimitarcsec * u.arcsec
neardeg = nearnesslimitarcsec.to(u.deg).value
skdt = cKDTree(np.array([sdsscat['ra'], sdsscat['dec']]).T)
if usnocat is not False:
ukdt = cKDTree(np.array([usnocat['RA'], usnocat['DEC']]).T)
if rad is None:
raddeg = host.environsarcmin / 60.
else:
raddeg = rad.to(u.degree).value
ras = np.array([])
decs = np.array([])
i = -1
while len(ras) < nsky:
i += 1
rs = raddeg * 2 * np.arccos(np.random.rand(nsky)) / np.pi
thetas = 2 * np.pi * np.random.rand(nsky)
ra = host.ra + rs * np.sin(thetas)
dec = host.dec + rs * np.cos(thetas)
dsdss = skdt.query(np.array([ra, dec]).T)[0]
dusno = None if usnocat is False else ukdt.query(np.array([ra, dec]).T)[0]
msk = (dsdss > neardeg)
if dusno is not None:
msk = msk & (dusno > neardeg)
ras = np.append(ras, ra[msk])
decs = np.append(decs, dec[msk])
if i > 100:
raise ValueError('Could not produce {nsky} sky positions after {i} iterations!'.format(nsky=nsky, i=i))
if outfn:
with open(outfn, 'w') as f:
for idx, (ra, dec) in enumerate(zip(ras[:nsky], decs[:nsky])):
entry = []
entry.append('Sky' + str(idx))
entry.append(Angle(ra, u.deg).to(u.hourangle).to_string(sep=' ', precision=2))
entry.append(Angle(dec, u.deg).to_string(sep=' ', alwayssign=True, precision=2))
entry.append('S')
entry.append('9')
entry.append('20.00')
entry.append('0')
entry.append('sky')
f.write(' '.join(entry))
f.write('\n')
return ras[:nsky], decs[:nsky]
def select_flux_stars(cat, magrng=(17, 17.7), extcorr=False, fluxfnout=None, onlyoutside=None):
"""
Identifies flux calibration stars by choosing ~F stars based on color cuts.
Uses the SDSS criteria for specphot standards:
0.1 < (g-r) < 0.4
their specphot stars are 16 < g < 17.1 and "reddening standards" are
17.1 < g < 18.5
`onlyoutside`, if not None, specifies that they should only be further from
the given distance from the host. Should be an astropy quantity.
"""
from astropy.units import degree, kpc
from astropy.table import Table
starmsk = cat['type'] == 6 #type==6 means star
cat = cat[starmsk]
u = cat['u']
g = cat['g']
r = cat['r']
if extcorr:
u = u - cat['Au']
g = g - cat['Ag']
r = r - cat['Ar']
umg = u - g
gmr = g - r
#msk = (0.1 < gmr) & (gmr < 0.4) #old version
std_color = (0.6 < umg) & (umg < 1.2)
std_color = std_color & (0.0 < gmr) & (gmr < 0.6)
std_color = std_color & (gmr > 0.75 * umg - 0.45)
sp_std = std_color & (15.5 < g) & (g < 17.0)
red_std = std_color & (17 < g) & (g < 18.5)
minmag = min(*magrng)
maxmag = max(*magrng)
msk = (sp_std|red_std) & (minmag < r)& (r < maxmag)
if onlyoutside:
if onlyoutside.unit.is_equivalent(degree):
msk = msk & ((degree * cat['rhost']) > onlyoutside)
elif onlyoutside.unit.is_equivalent(kpc):
msk = msk & ((kpc * cat['rhost_kpc']) > onlyoutside)
else:
raise ValueError('onlyoutside is not an angle or length')
if fluxfnout:
names = 'RA DEC u_psf g_psf r_psf i_psf z_psf extinction_r'.split()
dat = [cat[msk]['ra'],
cat[msk]['dec'],
cat[msk]['psf_u'],
cat[msk]['psf_g'],
cat[msk]['psf_r'],
cat[msk]['psf_i'],
cat[msk]['psf_z'],
cat[msk]['Ar']
]
tab = Table(data=dat, names=names)
with open(fluxfnout, 'w') as f:
#f.write('#RA DEC u_psf g_psf r_psf i_psf z_psf extinction_r')
tab.write(f, format='ascii.commented_header')
return cat[msk]
def load_lis_file(fn):
from astropy.coordinates import SkyCoord
from astropy import table
info = []
comments = []
fibnums = []
ids = []
ras = []
decs = []
codes = []
pris = []
mags = []
with open(fn) as f:
for l in f:
if l.startswith('*'):
l = l[1:] # strip the *
ls = l.split()
if len(ls) < 5:
continue # initial lines
if ls[1] == 'Parked':
continue
data = ls[:14]
comments.append(' '.join(ls[14:]))
fibnums.append(int(data[0]))
ids.append(data[1])
ras.append(':'.join(data[2:5]))
decs.append(':'.join(data[5:8]))
codes.append(data[8])
pris.append(int(data[9]))
mags.append(float(data[10]))
else:
info.append(l.strip())
names = 'fibnums,ids,ras,decs,codes,pris,mags,comments'.split(',')
lcs = locals()
tab = table.Table(names=names, data=[lcs[nm] for nm in names])
sc = SkyCoord(ras, decs, unit=(u.hourangle, u.degree))
return tab, sc, '\n'.join(info)
def load_fld(fn):
from astropy.coordinates import SkyCoord
from astropy import table
header = []
comment = []
name = []
ra = []
dec = []
code = []
pri = []
mag = []
inheader = True
with open(fn) as f:
for l in f:
if inheader:
if l.startswith('# End of Header'):
inheader = False
else:
header.append(l.strip())
elif not l.startswith('#'):
if l.strip() == '':
continue
ls = l.split()
if len(ls) < 5:
continue # initial lines
if ls[1] == 'Parked':
continue
data = ls[:11]
comment.append(' '.join(ls[11:]))
name.append(data[0])
ra.append(':'.join(data[1:4]))
dec.append(':'.join(data[4:7]))
code.append(data[7])
pri.append(int(data[8]))
mag.append(float(data[9]))
names = 'name,ra,dec,code,pri,mag,comment'.split(',')
tab = table.Table(names=names, data=[locals()[nm] for nm in names])
sc = SkyCoord(ra, dec, unit=(u.hourangle, u.degree))
return tab, sc, '\n'.join(header)