-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval.py
163 lines (131 loc) · 6.44 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import csv
import json
import os
import shutil
import warnings
import hydra
import torch
from peft import PeftModel
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from metrics import get_all_evals, get_dataloader, get_eval_results
from utils import get_model_identifiers_from_yaml
warnings.filterwarnings('ignore')
def model_eval(cfg, task_id, unlearn_times, model, tokenizer, save_dir, curr_forget_path, eval_unlearn_step=None):
eval_unlearn_step = 'last' if eval_unlearn_step == None else eval_unlearn_step
aggregated_eval_logs = {}
for i, (folder, split, question_key, answer_key, eval_task, base_answer_key, perturbed_answer_key) in enumerate(
zip(cfg.eval.data_path, cfg.eval.split_list, cfg.eval.question_key, cfg.eval.answer_key, cfg.eval.eval_task,
cfg.eval.base_answer_key, cfg.eval.perturbed_answer_key)):
if eval_task == 'eval_log_forget':
# load forge data from processed task data
folder = curr_forget_path
split = "forget_perturbed"
os.makedirs(save_dir, exist_ok=True)
save_filename = os.path.join(save_dir, f"{eval_task}.json")
if os.path.exists(save_filename):
print(
f"Skipping {eval_task} because {save_filename} already exists")
eval_logs = json.load(open(save_filename, 'r'))
else:
eval_dataloader, base_eval_dataloader, perturb_dataloader = get_dataloader(
cfg.eval, eval_task, tokenizer, folder, split, question_key, answer_key, base_answer_key,
perturbed_answer_key)
eval_logs = get_all_evals(cfg.eval, model, tokenizer, folder, split, eval_task, eval_dataloader,
base_eval_dataloader, perturb_dataloader, True)
with open(save_filename, "w") as f:
json.dump(eval_logs, f, indent=4)
aggregated_eval_logs[f'{eval_task}.json'] = eval_logs
aggregated_eval_log_filename = os.path.join(
save_dir, "eval_log_aggregated.json")
with open(aggregated_eval_log_filename, "w") as f:
# pretty write json to f
json.dump(aggregated_eval_logs, f, indent=4)
eval_results = get_eval_results(aggregated_eval_logs)
aaggregate_stat = {**eval_results}
print(aaggregate_stat)
aaggregate_stat['split'] = cfg.split
aaggregate_stat['forget_loss'] = cfg.forget_loss
aaggregate_stat['forget_coeff'] = cfg.forget_coeff
aaggregate_stat['regularization_coeff'] = cfg.regularization_coeff
aaggregate_stat['learning_rate'] = cfg.lr
aaggregate_stat['epochs'] = cfg.num_epochs
aaggregate_stat['fix_ref_model'] = cfg.fix_ref_model
aaggregate_stat['mask'] = cfg.mask
aaggregate_stat['unlearn_step'] = eval_unlearn_step
aaggregate_stat['task_id'] = task_id
aaggregate_stat['unlearn_times'] = unlearn_times
with open(os.path.join(save_dir, "unlearning_results.txt"), 'w') as txtfile:
for key, value in aaggregate_stat.items():
txtfile.write(f"{key}: {value}\n")
save_file = os.path.join(save_dir, "unlearning_results.csv")
with open(save_file, 'a') as f:
w = csv.DictWriter(f, aaggregate_stat.keys())
w.writeheader()
w.writerow(aaggregate_stat)
all_task_save_file = os.path.join(cfg.save_dir, "all_unlearning_results.csv")
if not os.path.exists(all_task_save_file) or os.path.getsize(all_task_save_file) == 0:
with open(all_task_save_file, 'a') as f:
w = csv.DictWriter(f, aaggregate_stat.keys())
w.writeheader()
w.writerow(aaggregate_stat)
else:
with open(all_task_save_file, 'a') as f:
w = csv.DictWriter(f, aaggregate_stat.keys())
w.writerow(aaggregate_stat)
return eval_results
@hydra.main(version_base=None, config_path="config", config_name="forget")
def main(cfg):
if os.environ.get('LOCAL_RANK') is not None:
local_rank = int(os.environ.get('LOCAL_RANK', '0'))
device_map = {'': local_rank}
model_cfg = get_model_identifiers_from_yaml(cfg.model_family)
model_id = model_cfg["hf_key"]
task_list = os.getenv('TASK_LIST').split(',')
task_list = [int(i) for i in task_list]
cfg.save_dir = os.path.join(cfg.save_dir, os.getenv('TASK_LIST').replace(',', '-'))
unlearn_times = task_list.index(cfg.task_id) + 1
curr_save_dir = os.path.join(cfg.save_dir, f"unlearn_times_{unlearn_times}")
curr_data_path = os.path.join(curr_save_dir, "task_data")
curr_checkpoint_dir = os.path.join(curr_save_dir, f"checkpoint-{cfg.eval_unlearn_step}")
if cfg.eval_unlearn_step == 0:
curr_checkpoint_dir = cfg.model_path
else:
if not os.path.exists(curr_checkpoint_dir):
print(f'{curr_checkpoint_dir} does not exist.')
exit()
curr_eval_dir = os.path.join(curr_save_dir, f'eval_results-{cfg.eval_unlearn_step}')
if os.path.exists(os.path.join(curr_eval_dir, 'aggregate_stat.csv')):
print(f'{curr_eval_dir} already evaluated.')
exit()
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
config = AutoConfig.from_pretrained(model_id)
if cfg.use_LoRA:
model = AutoModelForCausalLM.from_pretrained(
cfg.model_path,
config=config,
attn_implementation='flash_attention_2',
torch_dtype=torch.bfloat16,
device_map=device_map
)
model = PeftModel.from_pretrained(model, curr_checkpoint_dir)
model = model.merge_and_unload()
else:
model = AutoModelForCausalLM.from_pretrained(
curr_checkpoint_dir,
config=config,
attn_implementation='flash_attention_2',
torch_dtype=torch.bfloat16,
device_map=device_map
)
model = model.eval()
eval_results = model_eval(cfg, cfg.task_id, unlearn_times, model, tokenizer, curr_eval_dir, curr_data_path,
cfg.eval_unlearn_step)
print('After Unlearn Task %d, Unlearn Step %s, Model Uility %.6f, Forget Efficacy %.6f' %
(cfg.task_id, cfg.eval_unlearn_step, eval_results['Model Utility'], eval_results['Forget Efficacy']))
if unlearn_times == len(task_list) and not cfg.save_checkpoint:
# last unlearning tasks and do not save checkpoints
if (os.path.exists(curr_checkpoint_dir)) and (cfg.eval_unlearn_step != 0):
shutil.rmtree(curr_checkpoint_dir)
if __name__ == "__main__":
main()