forked from JayYangSS/TrafficSign_LightDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataRead.cpp
93 lines (79 loc) · 2.66 KB
/
dataRead.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include "traffic.h"
/************************************************************************/
/* Jayn 2015.11.4
/* @param XMLName:the training XML file name(with path) */
/************************************************************************/
int HOGTrainingTrafficSign(const String path,HOGDescriptor &hog,int num_folder,int imgWidth,int imgHeight,String XMLName)
{
stringstream SS_folder;
String img_num,txt_path,folder,img_path;
vector<float> pixelVector;
vector<float> descriptors;//记录HOG特征向量
Mat img,sampleFeatureMat,sampleLabelMat;
float ClassId=0;
int sampleNum=0;
MySVM svm;
//calculate the number of samples
for (int j=0;j<num_folder;j++)
{
//get the folder name
SS_folder.clear();
SS_folder<<j;
SS_folder>>folder;
txt_path=path+"\\"+folder+"\\description.txt";
ifstream txt(txt_path);
if (!txt)
{
cout<<"can't open the txt file!"<<endl;
exit(1);
}
//count the number of samples
while(getline(txt,img_path))sampleNum++;
}
//folder ID loop
int count_img=0;//第count_img个样本
for(int j=0;j<num_folder;j++)
{
//get the folder name
SS_folder.clear();
SS_folder<<j;
SS_folder>>folder;
txt_path=path+"\\"+folder+"\\description.txt";
ifstream txt(txt_path);
if (!txt)
{
cout<<"can't open the txt file!"<<endl;
exit(1);
}
while(getline(txt,img_path))
{
//read image
img=imread(img_path);
Mat resizedImg(imgHeight,imgWidth,CV_8UC3) ;
resize(img,resizedImg,resizedImg.size());
//calculate the HOG feature,set it into descriptors
hog.compute(resizedImg,descriptors,Size(8,8));
cout<<"HOG Descriptor size:"<<descriptors.size()<<endl;
int DescriptorDim= descriptors.size();
//if it is the first time,initialize the size of Mat
if( 0 == count_img)
{
sampleFeatureMat = Mat::zeros(sampleNum, DescriptorDim, CV_32FC1);
sampleLabelMat = Mat::zeros(sampleNum, 1, CV_32FC1);
}
for(int i=0; i<DescriptorDim; i++)
sampleFeatureMat.at<float>(count_img,i) = descriptors[i];//第count_img个样本的特征向量中的第i个元素
sampleLabelMat.at<float>(count_img,0) =j;//第j个文件夹的样本的标签设置为j
count_img++;
}
}
cout<<"sample number:"<<count_img<<endl;
CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON);
//SVM参数:SVM类型为C_SVC;线性核函数;松弛因子C=0.01
CvSVMParams param(CvSVM::C_SVC, CvSVM::LINEAR, 0, 1, 0, 0.01, 0, 0, 0, criteria);
cout<<"开始训练SVM分类器"<<endl;
svm.train_auto(sampleFeatureMat, sampleLabelMat, Mat(), Mat(), param);//训练分类器
cout<<"训练完成"<<endl;
svm.save(XMLName.c_str());//将训练好的SVM模型保存为xml文件
return sampleNum;
}