-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_model.py
101 lines (84 loc) · 2.65 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import pathlib
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
# configurations
DATASET_PATH = "./dataset/"
OUTPUT_MODEL_PATH = 'saved_model/my_model'
OUTPUT_WEIGHTS_PATH = 'saved_weight/my_checkpoint'
EPOCHS = 10
BATCH_SIZE = 32
IMG_HEIGHT = 180
IMG_WIDTH = 180
# read data
data_dir = pathlib.Path(DATASET_PATH)
image_count = len(list(data_dir.glob('*/*.jpg')))
print(f'number of images: {image_count}')
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(IMG_HEIGHT, IMG_WIDTH),
batch_size=BATCH_SIZE)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(IMG_HEIGHT, IMG_WIDTH),
batch_size=BATCH_SIZE)
# class names equals to relevant directory name
class_names = train_ds.class_names
# load all data to ram to improve access speed
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
# create model
num_classes = 2
model = Sequential([
layers.experimental.preprocessing.Rescaling(1./255, input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.summary()
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=EPOCHS
)
# save weights
model.save_weights(OUTPUT_WEIGHTS_PATH)
# save models
#model.save(OUTPUT_MODEL_PATH)
# plot
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(EPOCHS)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()