-
Notifications
You must be signed in to change notification settings - Fork 326
/
Copy pathevaluate.py
executable file
·42 lines (39 loc) · 1.68 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/usr/bin/env python
import json
from argparse import ArgumentParser
from tqdm import tqdm
from lib.dbengine import DBEngine
from lib.query import Query
from lib.common import count_lines
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('source_file', help='source file for the prediction')
parser.add_argument('db_file', help='source database for the prediction')
parser.add_argument('pred_file', help='predictions by the model')
parser.add_argument('--ordered', action='store_true', help='whether the exact match should consider the order of conditions')
args = parser.parse_args()
engine = DBEngine(args.db_file)
exact_match = []
with open(args.source_file) as fs, open(args.pred_file) as fp:
grades = []
for ls, lp in tqdm(zip(fs, fp), total=count_lines(args.source_file)):
eg = json.loads(ls)
ep = json.loads(lp)
qg = Query.from_dict(eg['sql'], ordered=args.ordered)
gold = engine.execute_query(eg['table_id'], qg, lower=True)
pred = ep.get('error', None)
qp = None
if not ep.get('error', None):
try:
qp = Query.from_dict(ep['query'], ordered=args.ordered)
pred = engine.execute_query(eg['table_id'], qp, lower=True)
except Exception as e:
pred = repr(e)
correct = pred == gold
match = qp == qg
grades.append(correct)
exact_match.append(match)
print(json.dumps({
'ex_accuracy': sum(grades) / len(grades),
'lf_accuracy': sum(exact_match) / len(exact_match),
}, indent=2))