-
Notifications
You must be signed in to change notification settings - Fork 80
/
compute_joint_acc.py
82 lines (64 loc) · 2.65 KB
/
compute_joint_acc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import json
from sklearn.metrics import f1_score, accuracy_score
import ipdb
import sys
import numpy as np
from utils.Constants import SLOT_VALS
from utils.dst import ignore_none, default_cleaning, IGNORE_TURNS_TYPE2
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--eval_file', default=str,
help='evaluate file name (json)')
parser.add_argument('--default_cleaning', action='store_true',
help='use default cleaning from multiwoz')
parser.add_argument('--type2_cleaning', action='store_true',
help='use type 2 cleaning, refer to [https://arxiv.org/abs/2005.00796]')
data = json.load(open(args.eval_file, 'r'))
num_turns = 0
joint_acc = 0
clean_tokens = ['<|endoftext|>']
for dial in data:
dialogue_pred = data[dial]['generated_turn_belief']
dialogue_target = data[dial]['target_turn_belief']
model_context = data[dial]['model_context']
for turn_id, (turn_target, turn_pred, turn_context) in enumerate(
zip(dialogue_target, dialogue_pred, model_context)):
# clean
for bs in turn_pred:
if bs in clean_tokens + ['', ' '] or bs.split()[-1] == 'none':
turn_pred.remove(bs)
new_turn_pred = []
for bs in turn_pred:
for tok in clean_tokens:
bs = bs.replace(tok, '').strip()
new_turn_pred.append(bs)
turn_pred = new_turn_pred
turn_pred, turn_target = ignore_none(turn_pred, turn_target)
# MultiWOZ default cleaning
if args.default_cleaning:
turn_pred, turn_target = default_cleaning(turn_pred, turn_target)
join_flag = False
if set(turn_target) == set(turn_pred):
joint_acc += 1
join_flag = True
elif args.type2_cleaning: # check for possible Type 2 noisy annotations
flag = True
for bs in turn_target:
if bs not in turn_pred:
flag = False
break
if flag:
for bs in turn_pred:
if bs not in dialogue_target_final:
flag = False
break
if flag: # model prediction might be correct if found in Type 2 list of noisy annotations
dial_name = dial.split('.')[0]
if dial_name in IGNORE_TURNS_TYPE2 and turn_id in IGNORE_TURNS_TYPE2[dial_name]: # ignore these turns
pass
else:
joint_acc += 1
join_flag = True
num_turns += 1
joint_acc /= num_turns
print('joint accuracy: {}'.format(joint_acc))