-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
38 lines (31 loc) · 1.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import torch.nn as nn
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_size=64, fc2_size=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1_size = fc1_size
self.fc2_size = fc2_size
self.fc1 = torch.nn.Sequential(
torch.nn.Linear(state_size, fc1_size),
torch.nn.ReLU()
)
self.fc2 = torch.nn.Sequential(
torch.nn.Linear(fc1_size, fc2_size),
torch.nn.ReLU()
)
self.fc3 = torch.nn.Linear(fc2_size, action_size)
def forward(self, state):
"""Build a network that maps state -> action values."""
action = self.fc1(state)
action = self.fc2(action)
action = self.fc3(action)
return action