-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMilk_Quality_Prediction.py
501 lines (424 loc) · 17.4 KB
/
Milk_Quality_Prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
#!/usr/bin/env
# -*- coding: utf-8 -*-
__author__ = "Jhong, Dong-You"
# To import chinese font on Linus, MacOS, Windows
# For GUI, plot purpose
# import sys
class font_import(object):
def __init__(self):
import sys
if sys.platform.startswith("linux"):
# could be "linux", "linux2", "linux3", ...
self.font_linuxOS()
elif sys.platform == "darwin":
# MAC OS X
self.font_macOS()
elif sys.platform == "win32":
# Windows (either 32-bit or 64-bit)
self.font_winOS()
def font_linuxOS(self):
print("linux need font") # linux
print("Initiated font")
def font_macOS(self):
try:
import seaborn as sns
sns.set(font="Arial Unicode MS") # "DFKai-SB"
print("Initiated Seaborn font")
except:
print("Initiated Seaborn font failed")
try:
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
plt.rcParams['font.sans-serif'] = 'Arial Unicode MS'
plt.rcParams['axes.unicode_minus'] = False
print("Initiated matplotlib font")
except:
print("Initiated matplotlib font failed")
def font_winOS(self):
# Windows (either 32-bit or 64-bit)
try:
import seaborn as sns
sns.set(font="sans-serif") # "DFKai-SB"
print("Initiated Seaborn font ")
except:
print("Initiated Seaborn font failed")
try:
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Microsoft JhengHei']
plt.rcParams['axes.unicode_minus'] = False
print("Initiated matplotlib font")
except:
print("Initiated matplotlib font failed")
def Dataframe_save_XLSX(dataframe, filename='.xlsx'):
# Save the excelsheet
dataframe.to_excel(filename)
print('Save XLSX successfully!')
def Dataframe_read_Excel(filename='.xlsx'):
# Read the excelsheet
dataframe = pd.read_excel(filename, sheet_name=0)
print('Read XLSX successfully!')
return dataframe
def Dataframe_Info(dataframe):
# Data info
print("*** headers: \n", list(dataframe)) # The most efficient way to get df header list
print("*** type: ", type(dataframe))
print("*** dtypes: ", dataframe.dtypes)
print("*** shape: ", dataframe.shape)
print("*** columns: ", dataframe.columns)
print("*** index: ", dataframe.index)
print("*** info: ", dataframe.info)
print("*** describe: ", dataframe.describe)
# Exclude longitude and latitude outliers.
def Dataframe_outlier_exclude(dataframe, column, outlier_value=999999):
df_raw = dataframe
df_filtered = df_raw[
df_raw[column] != outlier_value
]
return df_filtered
# Show unique values of every column to check whether nan or outliers exist.
def Dataframe_show_unique_cell(dataframe):
print("*** Unique values of columns: ")
for col_name in list(dataframe):
print(col_name + ':', dataframe[col_name].unique())
# Replace string, including headers.
def Dataframe_replace_list_by_list(dataframe, target_word_list, replace_word_list):
# Replace special characters:
# df.columns = df.columns.str.replace('[ ,#,@,!,&,&,%,?,/,\,+,~,<,>]', '', regex=True)
for target_word, replace_word in zip(target_word_list, replace_word_list):
# print(type(target_word),type(replace_word))
dataframe.columns = dataframe.columns.str.replace(target_word, replace_word)
return dataframe
# Normalization: MinMaxScaler
def Dataframe_Norm_MinMaxScaler(X_data):
from sklearn import preprocessing
mmscaler = preprocessing.MinMaxScaler()
X_data_minmax = mmscaler.fit_transform(X_data) # Range: 0 to 1
print(X_data)
print(X_data_minmax)
return X_data_minmax
# Scatter plots
def Dataframe_Scatter_Plot(dataframe):
# Scatter plots
sns.scatterplot(x="pH", y="Temperature", hue="Grade", data=dataframe)
plt.show()
sns.scatterplot(x="pH", y="Turbidity", hue="Grade", data=dataframe)
plt.show()
sns.scatterplot(x="Temperature", y="Turbidity", hue="Grade", data=dataframe)
plt.show()
sns.scatterplot(x="Temperature", y="Fat", hue="Grade", data=dataframe)
plt.show()
sns.scatterplot(x="Temperature", y="Odor", hue="Grade", data=dataframe)
plt.show()
sns.scatterplot(x="Taste", y="Fat", hue="Grade", data=dataframe)
plt.show()
sns.scatterplot(x="Odor", y="Turbidity", hue="Grade", data=dataframe)
plt.show()
sns.scatterplot(x="Odor", y="Fat", hue="Grade", data=dataframe)
plt.show()
sns.scatterplot(x="Fat", y="Turbidity", hue="Grade", data=dataframe)
plt.show()
# Correlation plots, methods:{‘pearson’, ‘kendall’, ‘spearman’}
def Dataframe_Correlation_Plot(dataframe):
# Methods:{‘pearson’, ‘kendall’, ‘spearman’}
corr_pearson = dataframe.corr(method='pearson')
corr_kendall = dataframe.corr(method='kendall')
corr_spearman = dataframe.corr(method='spearman')
# Corr: Pearson
sns.heatmap(corr_pearson, cmap="YlGnBu")
plt.title('Pearson Correlation', fontsize=10)
plt.xticks(fontsize=7, rotation=30)
plt.yticks(fontsize=7, rotation=30)
# plt.xlabel(fontsize=10, rotation=45)
# plt.ylabel(fontsize=10, rotation=45)
plt.show()
# Corr: Kendall
sns.heatmap(corr_kendall, cmap="YlGnBu")
plt.title('Kendall Correlation', fontsize=10)
plt.xticks(fontsize=7, rotation=30)
plt.yticks(fontsize=7, rotation=30)
# plt.xlabel(fontsize=10, rotation=45)
# plt.ylabel(fontsize=10, rotation=45)
plt.show()
# Corr: Spearman
sns.heatmap(corr_spearman, cmap="YlGnBu")
plt.title('Spearman Correlation', fontsize=10)
plt.xticks(fontsize=7, rotation=30)
plt.yticks(fontsize=7, rotation=30)
# plt.xlabel(fontsize=10, rotation=45)
# plt.ylabel(fontsize=10, rotation=45)
plt.show()
# Sns pair plots
def Dataframe_Pair_Plot(dataframe):
sns.set_style('whitegrid')
sns.pairplot(dataframe, hue='Grade', height=2)
plt.show()
# Histogram plots
def Dataframe_Hist_Plot(dataframe, title='Unique Value Count'):
import matplotlib.pyplot as plt
dataframe.hist()
plt.suptitle(title)
plt.tight_layout()
plt.show()
def ML_Split_Data(dataframe, label_col='', test_size=0.1):
from sklearn.model_selection import train_test_split
# feature data are columns without label(class) column
# For exclude many columns, df.loc[:, ~df.columns.isin(['rebounds', 'assists'])]
feature_data = dataframe.iloc[:, dataframe.columns != label_col]
labels = dataframe[label_col].to_numpy() # df.to_numpy() == df.values
# Test samples: test_size * 100% of the data
train_x, test_x, train_y, test_y = train_test_split(feature_data, labels, test_size=test_size)
return train_x, test_x, train_y, test_y
def ML_Random_Forest(dataframe, label_col='', plot=True):
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import export_graphviz
from sklearn import tree
# Split data
train_x, test_x, train_y, test_y = ML_Split_Data(dataframe, label_col)
# Random Forest
features = list(dataframe)[0:7]
category = dataframe[label_col].unique()
# Convert to string type items in a list
category = list(map(str, category))
rf = RandomForestClassifier(n_estimators=100,
random_state=2,
max_depth=7)
rf.fit(train_x, train_y)
prediction = rf.predict(test_x)
rfScore = rf.score(test_x, test_y)
print("Random Forest predict answer:", prediction, " Accuracy:", rfScore)
if plot is True:
export_graphviz(rf.estimators_[2], out_file='Random_Forest.dot',
feature_names=features,
class_names=category,
rounded=True, proportion=False,
precision=2, filled=True)
fig, axes = plt.subplots(nrows=1, ncols=5, figsize=(100, 50))
for index in range(0, 5):
tree.plot_tree(rf.estimators_[index],
feature_names=features,
class_names=category,
filled=True,
ax=axes[index],
# Display maximum
# max_depth=4,
fontsize=8)
axes[index].set_title('Estimator: ' + str(index), fontsize=20)
fig.savefig('Random_Forest1.png', dpi=200, format='png')
print('Random Forest Figure saved.')
plt.show()
else:
pass
return rfScore
def ML_Decision_Tree(dataframe, label_col='', plot=True):
from sklearn import tree
# Split data
train_x, test_x, train_y, test_y = ML_Split_Data(dataframe, label_col)
# Decision Tree
features = list(dataframe)[0:7]
category = dataframe[label_col].unique()
category = list(map(str, category))
clf = tree.DecisionTreeClassifier(criterion='gini', max_depth=3)
clf = clf.fit(train_x, train_y)
prediction = clf.predict(test_x)
clfScore = clf.score(test_x, test_y)
print("Decision Tree predict answer:", prediction, " Accuracy:", clfScore)
# Plot
if plot is True:
tree.export_graphviz(clf, out_file='Decision_Tree.dot', feature_names=features)
fig = plt.figure(figsize=(7, 7))
tree.plot_tree(clf,
feature_names=features,
class_names=category,
filled=True)
fig.savefig("Decision_Tree1.png", dpi=200, format='png')
print('Decision Tree Figure saved.')
plt.show()
else:
pass
return clfScore
# Need to input label column name, because KMeans has to exclude it.
def ML_KMeans(dataframe, label_col):
from sklearn.cluster import KMeans
from sklearn import metrics
# Split data
train_x, test_x, train_y, test_y = ML_Split_Data(dataframe, label_col)
# KMeans 演算法
kmeans = KMeans(n_clusters=3)
kmeans.fit(train_x)
y_predict = kmeans.predict(test_x)
kmeans_score = metrics.accuracy_score(test_y, kmeans.predict(test_x))
kmeans_homogeneity_score = metrics.homogeneity_score(test_y, kmeans.predict(test_x))
print("KMeans predict answer:", y_predict, " Accuracy:", kmeans_score)
print("KMeans predict answer:", y_predict, " Fixed Accuracy:", kmeans_homogeneity_score)
return kmeans_homogeneity_score
def ML_KNN(dataframe, label_col, neighbors=5, p=1):
from sklearn.neighbors import KNeighborsClassifier # pip3 install -U scikit-learn
# Split data
train_x, test_x, train_y, test_y = ML_Split_Data(dataframe, label_col)
# KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=neighbors, p=p) # 3 5 9
knn.fit(train_x, train_y)
knnPredict = knn.predict(test_x)
knnScore = knn.score(test_x, test_y)
print("KNN predict answer:", knnPredict, " Accuracy:", knnScore)
print("Actual Answer:", test_y)
return knnScore
"""
# Convert to numpy array without index and header
X = dataframe.to_numpy(dtype='float32')
X = ML_PCA(X, 2)
"""
def ML_PCA(X, to_dimension=2):
from sklearn.decomposition import PCA
pca = PCA(n_components=to_dimension)
X_dimension_reduced = pca.fit_transform(X)
return X_dimension_reduced
"""
X: 2 dimensions only, two features.
# Convert to numpy array without index and header
X = dataframe.to_numpy(dtype='float32')
y = dataframe[label_col].to_numpy(dtype='int')
ML_Decision_Region_mlxtend(X, y, rf)
"""
def ML_Decision_Region_mlxtend(X, y, classifier):
# y must be an integer array
from mlxtend.plotting import plot_decision_regions
plot_decision_regions(X=X, y=y, clf=classifier)
# To One-Hot encode label column
def AI_Encode_One_Hot(train_y, test_y, category):
import tensorflow as tf
train_y_2 = tf.keras.utils.to_categorical(train_y, num_classes=category)
test_y_2 = tf.keras.utils.to_categorical(test_y, num_classes=category)
return train_y_2, test_y_2
# Tensorflow Keras, Multilayer Perceptron
def AI_MLP_Keras(dataframe, label_column='', hidden_layers=1):
import tensorflow as tf
import numpy as np
df_data = dataframe.iloc[:, dataframe.columns != label_column]
df_label = dataframe[label_column]
# Category: 10 classes in label column
category = df_label.count()
# Split data
train_x, test_x, train_y, test_y = ML_Split_Data(dataframe, label_column)
# To One-Hot encode label column
train_y_2, test_y_2 = AI_Encode_One_Hot(train_y, test_y, category)
# Dimension: How many columns each row
dim = len(list(df_data))
# Build up model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(units=50,
activation=tf.nn.relu,
input_dim=dim))
# Hidden layers
for hidden_layer in range(hidden_layers):
model.add(tf.keras.layers.Dense(units=100,
activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(units=category,
activation=tf.nn.softmax))
model.compile(optimizer='adam',
# This loss is specific for OneHot encoding purpose
loss=tf.keras.losses.categorical_crossentropy,
metrics=['accuracy'])
model.fit(train_x, train_y_2, # Before One-Hot encoding, use train_y instead.
epochs=2000,
batch_size=500)
# Test
score = model.evaluate(test_x, test_y_2) # Before One-Hot encoding, use test_y_2 instead.
print("score:", score)
predict = model.predict(test_x)
# print("predict:",predict)
# print("Ans:",np.argmax(predict[0]),np.argmax(predict[1]),np.argmax(predict[2]),np.argmax(predict[3]))
print("y_answer:", np.argmax(predict, axis=-1))
print("y_test", test_y[:])
return score
# Model file: filename_json.jason
# Weights file: filename_h5.h5
def AI_Save_Model_and_Weights(model, filename_json, filename_h5):
# Save model .jason
with open(filename_json + ".json", "w") as json_file:
json_file.write(model.to_json())
# Save Weights
model.save_weights(filename_h5 + ".h5")
if __name__ == '__main__':
# Ignore Tensorflow warning
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import pandas as pd
import matplotlib as mpl
mpl.use("TKAgg")
import matplotlib.pyplot as plt
import seaborn as sns
font_import()
df = pd.read_csv(filepath_or_buffer='milknew.csv')
Dataframe_Info(df)
df.rename(columns={'Temprature': 'Temperature', 'Fat ': 'Fat'}, inplace=True)
# Label encoding
df['Grade'] = df['Grade'].map({'high': 3, 'medium': 2, 'low': 1})
Dataframe_show_unique_cell(df)
# Normalization, using MinMaxScaler
import pandas as pd
from sklearn import preprocessing
df_raw_data = df.iloc[:, :7] # Without label column
print("*** Before Normalization: \n", df_raw_data)
data_numpy = df_raw_data.values # returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
data_scaled_numpy = min_max_scaler.fit_transform(data_numpy)
df_norm_data = pd.DataFrame(data_scaled_numpy)
print("*** After Normalization: \n", df_norm_data)
df2 = df_norm_data
df2 = pd.concat([df2, df['Grade']], axis=1) # Create a new dataframe with norm values
# Machine Learning
# Train and test
# Train Scores before Normalization
run_times = 5
scoreRF = []
scoreDT = []
scoreKM = []
scoreKNN = []
for run_ime in range(run_times):
scoreRF.append(100 * ML_Random_Forest(df, 'Grade', plot=False))
scoreDT.append(100 * ML_Decision_Tree(df, 'Grade', plot=False))
scoreKM.append(100 * ML_KMeans(df, 'Grade'))
scoreKNN.append(100 * ML_KNN(df, 'Grade', neighbors=5, p=1))
print('scoreRF: \n', scoreRF)
print('scoreDT: \n', scoreDT)
print('scoreKM: \n', scoreKM)
print('scoreKNN: \n', scoreKNN)
score_list = [scoreRF, scoreDT, scoreKM, scoreKNN]
score_labels = ['Random Forest', 'Decision Tree', 'KMeans', 'KNeighborsClassifier']
for scores, label in zip(score_list, score_labels):
plt.plot(scores, label=label)
plt.xlabel('Run Time(count)')
plt.ylabel('Score(%)')
plt.legend()
plt.title('Train Scores before Normalization')
plt.show()
# Train Scores after Normalization
run_times = 5
scoreRF = []
scoreDT = []
scoreKM = []
scoreKNN = []
for run_ime in range(run_times):
scoreRF.append(100 * ML_Random_Forest(df2, 'Grade', plot=False))
scoreDT.append(100 * ML_Decision_Tree(df2, 'Grade', plot=False))
scoreKM.append(100 * ML_KMeans(df2, 'Grade'))
scoreKNN.append(100 * ML_KNN(df2, 'Grade', neighbors=5, p=1))
print('scoreRF: \n', scoreRF)
print('scoreDT: \n', scoreDT)
print('scoreKM: \n', scoreKM)
print('scoreKNN: \n', scoreKNN)
score_list = [scoreRF, scoreDT, scoreKM, scoreKNN]
score_labels = ['Random Forest', 'Decision Tree', 'KMeans', 'KNeighborsClassifier']
for scores, label in zip(score_list, score_labels):
plt.plot(scores, label=label)
plt.xlabel('Run Time(count)')
plt.ylabel('Score(%)')
plt.legend()
plt.title('Train Scores after Normalization')
plt.show()
# MLP
print('Train Scores before Normalization')
AI_MLP_Keras(df, 'Grade', hidden_layers=3)
print('Train Scores after Normalization')
AI_MLP_Keras(df2, 'Grade', hidden_layers=3)