-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_base.py
291 lines (237 loc) · 11.4 KB
/
train_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
This script trains all GMF, MLP, and NMF baselines for a single market
Provides three options for the use of another source market:
1. 'no_aug' : only use the target market train data, hence single market training (the src market will set to 'xx')
2. 'full_aug': fully uses the source market data for training
3. 'sel_aug' : only use portion of source market data covering target market's items
For data sampling:
a. 'equal' : equally sample data from both source and target markets, providing a balanced training
b. 'concate' : first concatenate the source and target training data, treat that a single training data
"""
import time
import pandas as pd
import argparse
import torch
from tqdm.autonotebook import tqdm
from xmrec.data.data import CentralIDBank, MAMLTaskGenerator, MetaMarketDataloaders
from xmrec.models.model import GMF, MLP, NeuMF
import os
import json
import sys
import pickle
from xmrec.utils.forec_utils import use_optimizer, test_model, set_seed, get_model_config, get_model_cid_dir, \
save_checkpoint, \
use_cuda
def create_arg_parser():
parser = argparse.ArgumentParser('NeuMF_Engine')
# Path Arguments
parser.add_argument('--num_epoch', type=int, default=25, help='number of epoches')
parser.add_argument('--batch_size', type=int, default=1024, help='batch size')
parser.add_argument('--num_neg', type=int, default=4, help='number of negatives to sample during training')
parser.add_argument('--cuda', action='store_true', help='use of cuda')
parser.add_argument('--seed', type=int, default=42, help='manual seed init')
# output arguments
parser.add_argument('--exp_name', help='name the experiment', type=str, required=True)
parser.add_argument('--exp_output', help='output results .json file', type=str, required=True)
# data arguments
parser.add_argument('--data_dir', help='dataset directory', type=str, default='DATA2/proc_data/')
parser.add_argument('--tgt_market', help='specify target market', type=str, required=True) # de_Electronics
parser.add_argument('--aug_src_market', help='which data to augment with', type=str, default='xx') # us_Electronics
# augmentation approaches
# aug_method:
parser.add_argument('--data_augment_method', required=True, help='how to augment data to target market', type=str,
choices=['no_aug', 'full_aug', 'sel_aug'])
# sampling_method: 'concat' 'equal'
parser.add_argument('--data_sampling_method', help='in augmentation how to sample data for training', type=str,
choices=['concat', 'equal'])
# MODEL selection
parser.add_argument('--model_selection', help='which nn model to train with', type=str, default="all",
choices=["gmf", "mlp", "nmf", "all"])
# during Hyperparam search, we don't need to save the model
parser.add_argument('--no_save', action="store_true", default=False,
help="disables persisting the final model if set")
parser.add_argument('--market_aware', action="store_true", default=False,
help="learns market embeddings in addition to user/item embeddings")
# cold start setup
parser.add_argument('--tgt_fraction', type=int, default=1, help='what fraction of data to use on target side')
parser.add_argument('--src_fraction', type=int, default=1, help='what fraction of data to use from source side')
return parser
def train_and_test_model(args, config, model, dataloaders, valid_dataloader, valid_qrel, test_dataloader,
test_qrel, cur_tgt=""):
opt = use_optimizer(model, config)
loss_func = torch.nn.BCELoss()
############
## Train
############
best_ndcg = 0.0
best_eval_res = {}
all_eval_res = {}
start_time = time.time()
mkt_idx = config["mkt_idx"]
for epoch in tqdm(range(args.num_epoch), desc="Train"):
model.train()
total_loss = 0
train_dl = dataloaders.get_train_dataloader("train", shuffle_datasets=True)
for train_user_ids, train_item_ids, train_targets, train_markets in tqdm(train_dl, desc=f"Epoch {epoch}",
leave=False):
train_markets = torch.LongTensor([mkt_idx[m] for m in train_markets])
if config['use_cuda'] is True:
train_user_ids = train_user_ids.cuda()
train_item_ids = train_item_ids.cuda()
train_targets = train_targets.cuda()
train_markets = train_markets.cuda()
opt.zero_grad()
ratings_pred = model(train_user_ids, train_item_ids, market_indices=train_markets)
loss = loss_func(ratings_pred.view(-1), train_targets)
loss.backward()
opt.step()
total_loss += loss.item()
all_eval_res["train_time"] = time.time() - start_time
############
## TEST
############
# if args.model_selection=='nmf':
print("evaluation")
valid_ov, valid_ind = test_model(model, config, valid_dataloader, valid_qrel)
cur_ndcg = valid_ov['ndcg_cut_10']
cur_recall = valid_ov['recall_10']
print(f'[pytrec_based] {cur_tgt} tgt_valid: \t NDCG@10: {cur_ndcg} \t R@10: {cur_recall}')
all_eval_res[f'valid'] = {
'agg': valid_ov,
'ind': valid_ind,
}
test_ov, test_ind = test_model(model, config, test_dataloader, test_qrel)
cur_ndcg = test_ov['ndcg_cut_10']
cur_recall = test_ov['recall_10']
print(f'[pytrec_based] {cur_tgt} tgt_test: \t NDCG@10: {cur_ndcg} \t R@10: {cur_recall} \n\n')
all_eval_res[f'test'] = {
'agg': test_ov,
'ind': test_ind,
}
print(f"evaluation complete: {(time.time() - start_time) / 60:.2f} minutes since start")
return model, all_eval_res
def get_data(args):
id_bank = CentralIDBank()
tgt_data_dir = os.path.join(args.data_dir, f'{args.tgt_market}_5core.txt')
print(f'loading {tgt_data_dir}')
tgt_ratings = pd.read_csv(tgt_data_dir, sep=' ')
tgt_task_generator = MAMLTaskGenerator(tgt_ratings, args.tgt_market, id_bank, item_thr=7,
sample_df=args.tgt_fraction)
aug_method = args.data_augment_method
if args.aug_src_market == 'us':
src_data_dir = os.path.join(args.data_dir, f'{args.aug_src_market}_10core.txt')
else:
src_data_dir = os.path.join(args.data_dir, f'{args.aug_src_market}_5core.txt')
if aug_method == 'no_aug':
src_task_generator = None
args.aug_src_market = 'xx'
elif aug_method == 'full_aug':
print(f'loading {src_data_dir}')
src_ratings = pd.read_csv(src_data_dir, sep=' ')
src_task_generator = MAMLTaskGenerator(src_ratings, args.aug_src_market, id_bank, item_thr=7,
sample_df=args.src_fraction)
elif aug_method == 'sel_aug':
print(f'loading {src_data_dir} with limiting to target data item pool...')
src_ratings = pd.read_csv(src_data_dir, sep=' ')
aug_items_allowed = tgt_task_generator.item_pool_ids
src_task_generator = MAMLTaskGenerator(src_ratings, args.aug_src_market, id_bank, item_thr=7,
items_allow=aug_items_allowed)
else:
raise ValueError(aug_method)
sampling_method = args.data_sampling_method # 'concat' 'equal'
# 0. only use the target market train data
if aug_method == "no_aug":
task_gen_all = {
0: tgt_task_generator,
}
markets = [args.tgt_market]
elif sampling_method in {"equal", "concat"}:
task_gen_all = {
0: tgt_task_generator,
1: src_task_generator
}
markets = [args.tgt_market, args.aug_src_market]
else:
raise ValueError(sampling_method)
dataloaders = MetaMarketDataloaders(task_gen_all,
sampling_method=sampling_method,
num_train_negatives=args.num_neg,
batch_size=args.batch_size,
shuffle=True,
num_workers=0)
return id_bank, markets, tgt_task_generator, dataloaders
if __name__ == "__main__":
parser = create_arg_parser()
args = parser.parse_args()
set_seed(args)
id_bank, markets, tgt_task_generator, dataloaders = get_data(args)
print('preparing valid data...')
tgt_valid_dataloader = dataloaders.get_valid_dataloader(0, "valid")
print("preparing qrel")
tgt_valid_qrel = tgt_task_generator.get_validation_qrel(split='valid')
print("preparing test data")
tgt_test_dataloader = dataloaders.get_valid_dataloader(0, "test")
print("preparing qrel")
tgt_test_qrel = tgt_task_generator.get_validation_qrel(split='test')
############
## Model Prepare
############
if args.model_selection == "all":
models = ['gmf', 'mlp', 'nmf']
else:
models = [args.model_selection]
results = {}
for cur_model_selection in models:
sys.stdout.flush()
args.model_selection = cur_model_selection
config = get_model_config(args.model_selection)
config['batch_size'] = args.batch_size
config['optimizer'] = 'adam'
config['use_cuda'] = args.cuda
config['market_aware'] = args.market_aware
config['device_id'] = 0
config['save_trained'] = False if args.no_save else True
config['load_pretrained'] = True
config['num_users'] = int(id_bank.last_user_index + 1)
config['num_items'] = int(id_bank.last_item_index + 1)
config['num_markets'] = len(markets)
config['mkt_idx'] = {m: i for (i, m) in enumerate(sorted(markets))}
if args.model_selection == 'gmf':
print('model is GMF!')
model = GMF(config)
elif args.model_selection == 'nmf':
print('model is NeuMF!')
model = NeuMF(config)
if config['load_pretrained']:
print('loading pretrained gmf and mlp...')
model.load_pretrain_weights(args)
else: # default is MLP
print('model is MLP!')
model = MLP(config)
if config['load_pretrained']:
print('loading pretrained gmf...')
model.load_pretrain_weights(args)
if config['use_cuda'] is True:
use_cuda(True, config['device_id'])
model.cuda()
print(model)
sys.stdout.flush()
model, cur_model_results = train_and_test_model(args, config, model, dataloaders, tgt_valid_dataloader,
tgt_valid_qrel, tgt_test_dataloader, tgt_test_qrel)
# if args.model_selection=='nmf':
results[args.model_selection] = cur_model_results
############
## SAVE the model and idbank
############
if config['save_trained']:
model_dir, cid_filename = get_model_cid_dir(args, args.model_selection)
save_checkpoint(model, model_dir)
with open(cid_filename, 'wb') as centralid_file:
pickle.dump(id_bank, centralid_file)
if len(os.path.dirname(args.exp_output)) > 0:
os.makedirs(os.path.dirname(args.exp_output), exist_ok=True)
# writing the results into a file
results['args'] = vars(args)
with open(args.exp_output, 'w') as outfile:
json.dump(results, outfile)
print('Experiment finished success!')