-
Notifications
You must be signed in to change notification settings - Fork 0
/
1layerNN.py
263 lines (189 loc) · 6.7 KB
/
1layerNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.preprocessing import normalize
import sklearn
import sklearn.datasets
import sklearn.linear_model
%matplotlib inline
np.random.seed(1)
#load dataset
dataset = pd.read_csv("/Users/samar/Documents/pythonwd/special-potato/AXISBANK.csv")
#Clean dataset
#adding t1 value or the next day value
dataset["t1"] = dataset["4. close"].shift(-1)
#removing last NaN - because nobody likes naan!
dataset = dataset[0:(dataset.shape[0]-1)]
#adding p1 as change between t1 and t0
dataset["p1"] = (dataset["t1"] - dataset["4. close"])
#changing p1 to 1 if change was +ve and 0 if - ve
dataset["p1"] = np.where(dataset["p1"] > 0, 1,0)
#cleaning out dates and dataframe
X = dataset[["1. open","2. high", "3. low" ,"4. close", "5. volume"]]
def normalize(df):
G = preprocessing.StandardScaler().fit(df)
ndf_mean = df- G.mean_
ndf = ndf_mean/G.var_
return ndf
X = normalize(X)
split = (int(X.shape[0]*(2/3)))
train_set_x = X[:split]
train_set_x = train_set_x.transpose()
train_set_x = train_set_x.values
test_set_x = X[split:]
test_set_x = test_set_x.transpose()
test_set_x = test_set_x.values
# similarly making y matrix with (1, m) size
Y = dataset[["p1"]]
train_set_y = Y[:split]
train_set_y = train_set_y.transpose()
train_set_y = train_set_y.values
test_set_y = Y[split:]
test_set_y = test_set_y.transpose()
test_set_y = test_set_y.values
np.shape(test_set_y)
train_set_y2 = column_or_1d(train_set_y, warn=True)
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(train_set_x.T, train_set_y.T);
# Print accuracy
LR_predictions = clf.predict(test_set_x.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(test_set_y, LR_predictions) + np.dot(1 - test_set_y,1 - LR_predictions)) / float(test_set_y.size) * 100) +
'% ' + "(percentage of correctly labelled datapoints)")
X = train_set_x
Y = train_set_y
def sigmoid(z):
s = 1 / (1 + np.exp(-z))
return s
#layer size function
#X -- input dataset of shape (input size, number of examples)
#Y -- labels of shape (output size, number of examples)
def layer_sizes(X,Y,H= 4):
#size of input layer
n_x = X.shape[0]
#siz of output layer
n_y = Y.shape[0]
#size of hidden layer
n_h= H
return(n_x,n_h,n_y)
#layer_sizes(train_set_x,test_set_y)
#initializing wiehts with random
def initialize_parameters(n_x,n_h,n_y):
#W1 -- weight matrix of shape (wieghts of layer, wieghts of input)
#b1 -- bias vector of shape (n_h, 1)
#W2 -- weight matrix of shape (n_y, n_h)
#b2 -- bias vector of shape (n_y, 1)
#random initialize wieghts
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros((n_h,1))
W2 = np.random.randn(n_y,n_h) * 0.01
b2 = np.zeros((n_y,1))
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
n_x, n_h, n_y = layer_sizes(train_set_x,test_set_y)
parameters = initialize_parameters(n_x,n_h,n_y)
def forward_propagation(X, parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
#parameter in
Z1 = np.dot(W1,X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2,A1) + b2
A2 = sigmoid(Z2)
assert(A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2}
return A2, cache
A2, cache = forward_propagation(train_set_x, parameters)
def compute_cost(A2,Y, parameters):
m = Y.shape[1]
#number of examples
W1 = parameters["W1"]
W2 = parameters["W2"]
#wieghts in mofu!
logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
cost = - np.sum(logprobs) / m
#calculate cost
cost = np.squeeze(cost)
assert(isinstance(cost, float))
# make sure dimension of cost are right
return cost
compute_cost(A2,train_set_y, parameters)
def backward_propagation(parameters, cache, X, Y):
m = X.shape[1]
#number of examples
W1 = parameters["W1"]
W2 = parameters["W2"]
#get wieghts
A1 = cache["A1"]
A2 = cache["A2"]
#get predictions
dZ2 = A2 - Y
dW2 = (1 / m) * np.dot(dZ2, A1.T)
db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
dW1 = (1 / m) * np.dot(dZ1, X.T)
db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
grads = backward_propagation(parameters, cache, train_set_x, train_set_y)
def update_parameters(parameters, grads, learning_rate=1.2):
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
update_parameters(parameters, grads, learning_rate=1.2)
def nn_model(X, Y, n_h, num_iterations=10000, print_cost=True):
np.random.seed(5)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
for i in range(0, num_iterations):
A2, cache = forward_propagation(X, parameters)
compute_cost(A2,Y, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads, learning_rate=1.2)
if i % 100 == 0:
print ("Cost after iteration %i: %f" % (i, cost))
return parameters
parameters = nn_model(train_set_x,train_set_y,8)
def predict(parameters, X):
A2, cache = forward_propagation(X, parameters)
predictions = np.round(A2)
return predictions
predictions = predict(parameters, train_set_x)
print("predictions mean = " + str(np.mean(predictions)))
# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(test_set_x, train_set_y, n_h = 10, num_iterations=10000, print_cost=True)
predictions = predict(parameters, train_set_x)
print ('Accuracy: %d' % float((np.dot(train_set_y, predictions.T) + np.dot(1 - train_set_y, 1 - predictions.T)) / float(train_set_y.size) * 100) + '%')
np.size(predictions)