-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmaskTaskAnalysisUtils.py
539 lines (450 loc) · 23.6 KB
/
maskTaskAnalysisUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 12 17:48:13 2021
@author: svc_ccg
"""
import os
import time
import h5py
import numpy as np
import pandas as pd
import scipy.signal
import scipy.ndimage
import scipy.optimize
import matplotlib
matplotlib.rcParams['pdf.fonttype']=42
import matplotlib.pyplot as plt
from numba import njit
import fileIO
def loadDatData(filePath,mode='r'):
totalChannels = 136
probeChannels = 128
data = np.memmap(filePath,dtype='int16',mode=mode)
data = np.reshape(data,(int(data.size/totalChannels),-1)).T
analogInData = {name: data[ch+probeChannels] for ch,name in enumerate(('vsync',
'photodiode',
'rotaryEncoder',
'cam1Exposure',
'cam2Exposure',
'led1',
'led2'))}
return data[:probeChannels],analogInData
def filterDatData(filePath,highpass=300,commonRef=True,ledArtifactDur=6):
t = time.perf_counter()
probeData,analogInData = loadDatData(filePath,mode='r+')
sampleRate = 30000
totalSamples = probeData.shape[1]
# mask led artifacts
if ledArtifactDur:
led1Onsets,led2Onsets = [np.array(findSignalEdges(analogInData[ch],edgeType='rising',thresh=5000,refractory=5)) for ch in ('led1','led2')]
ledOnsets = np.union1d(led1Onsets,led2Onsets).astype(int)
x = np.arange(ledArtifactDur)
for i in ledOnsets-1:
for ch in probeData:
if i < totalSamples-ledArtifactDur:
ch[i:i+ledArtifactDur] = np.interp(x,[0,ledArtifactDur],ch[[i,i+ledArtifactDur]])
else:
ch[i:] = ch[i]
print('masked '+str(len(ledOnsets))+' led arftifacts')
if highpass or commonRef:
if highpass:
Wn = highpass/(sampleRate/2) # cutoff freq normalized to nyquist
b,a = scipy.signal.butter(2,Wn,btype='highpass')
chunkSamples = int(15*sampleRate)
offset = 0
while offset < totalSamples:
d = probeData[:,offset:offset+chunkSamples]
# highpass filter
if highpass:
d[:,:] = scipy.signal.filtfilt(b,a,d,axis=1)
# common reference median filter
if commonRef:
d -= np.median(d,axis=0).astype(d.dtype)
print('filtered '+str(offset)+' of '+str(totalSamples)+' samples')
offset += chunkSamples
# flush results (overwrites existing data)
print('flushing to disk')
del(probeData)
del(analogInData)
print('completed in '+str(time.perf_counter()-t)+' s')
@njit
def findSignalEdges(signal,edgeType,thresh,refractory):
"""
signal: typically a large memmap array (loop through values rather than load all into memory)
edgeType: 'rising' or 'falling'
thresh: difference between current and previous value
refractory: samples after detected edge to ignore
"""
edges = []
lastVal = signal[0]
lastEdge = -refractory
for i in range(1,signal.size):
val = signal[i]
if i-lastEdge>refractory and ((edgeType=='rising' and val-lastVal>thresh) or (edgeType=='falling' and val-lastVal<thresh)):
edges.append(i)
lastEdge = i
lastVal = val
return edges
@njit
def findSpikes(data,negThresh,posThresh):
spikes = []
searchStart = 0
while searchStart < data.size:
spikeBegin,spikeEnd = findNextSpike(data[searchStart:],negThresh,posThresh)
if spikeBegin is None:
break
else:
spikes.append(searchStart+spikeBegin)
searchStart += spikeEnd
return spikes
@njit
def findNextSpike(data,negThresh,posThresh):
for i,v in enumerate(data.flat):
if v < negThresh:
for j,vi in enumerate(data[i:].flat):
if vi > posThresh:
return i,i+j
return None,None
def getPsth(spikes,startTimes,windowDur,binSize=0.01,avg=True):
bins = np.arange(0,windowDur+binSize,binSize)
counts = np.zeros((len(startTimes),bins.size-1))
for i,start in enumerate(startTimes):
counts[i] = np.histogram(spikes[(spikes>=start) & (spikes<=start+windowDur)]-start,bins)[0]
if avg:
counts = counts.mean(axis=0)
counts /= binSize
return counts, bins[:-1]+binSize/2
def getSdf(spikes,startTimes,windowDur,sampInt=0.001,filt='exponential',filtWidth=0.005,avg=True):
t = np.arange(0,windowDur+sampInt,sampInt)
counts = np.zeros((startTimes.size,t.size-1))
for i,start in enumerate(startTimes):
counts[i] = np.histogram(spikes[(spikes>=start) & (spikes<=start+windowDur)]-start,t)[0]
if filt in ('exp','exponential'):
filtPts = int(5*filtWidth/sampInt)
expFilt = np.zeros(filtPts*2)
expFilt[-filtPts:] = scipy.signal.exponential(filtPts,center=0,tau=filtWidth/sampInt,sym=False)
expFilt /= expFilt.sum()
sdf = scipy.ndimage.filters.convolve1d(counts,expFilt,axis=1)
else:
sdf = scipy.ndimage.filters.gaussian_filter1d(counts,filtWidth/sampInt,axis=1)
if avg:
sdf = sdf.mean(axis=0)
sdf /= sampInt
return sdf,t[:-1]
def getSyncData():
# get analog sync data acquired with NidaqRecorder
syncPath = fileIO.getFile('Select sync file',fileType='*.hdf5')
syncFile = h5py.File(syncPath,'r')
syncData = syncFile['AnalogInput']
syncSampleRate = syncData.attrs.get('sampleRate')
channelNames = syncData.attrs.get('channelNames')
vsync = syncData[:,channelNames=='vsync'][:,0]
photodiode = syncData[:,channelNames=='photodiode'][:,0]
led = syncData[:,channelNames=='led'][:,0]
syncTime = np.arange(1/syncSampleRate,(syncData.shape[0]+1)/syncSampleRate,1/syncSampleRate)
syncFile.close()
frameSamples = np.array(findSignalEdges(vsync,edgeType='falling',thresh=-0.5,refractory=2))
behavDataPath = fileIO.getFile('',fileType='*.hdf5')
behavData = h5py.File(behavDataPath,'r')
psychopyFrameIntervals = behavData['frameIntervals'][:]
frameRate = round(1/np.median(psychopyFrameIntervals))
assert(frameSamples.size==psychopyFrameIntervals.size+1)
ntrials = behavData['trialEndFrame'].size
stimStart = behavData['trialStimStartFrame'][:ntrials]
trialOpenLoopFrames = behavData['trialOpenLoopFrames'][:ntrials]
assert(np.unique(trialOpenLoopFrames).size==1)
openLoopFrames = trialOpenLoopFrames[0]
responseWindowFrames = behavData['maxResponseWaitFrames'][()]
optoOnset = behavData['trialOptoOnset'][:ntrials]
targetFrames = behavData['trialTargetFrames'][:ntrials]
maskFrames = behavData['trialMaskFrames'][:ntrials]
maskOnset = behavData['trialMaskOnset'][:ntrials]
behavData.close()
optoOnsetToPlot = 0
opto = optoOnset==optoOnsetToPlot
stimDur = []
for st in stimStart:
stimDur.append(psychopyFrameIntervals[st+1:st+3].sum())
stimDur = np.array(stimDur)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
samples = np.arange(frameSamples[0]-100,frameSamples[0]+201)
t = (samples-frameSamples[0])/syncSampleRate
ax.plot(t,vsync[samples],color='k',label='vsync')
ax.plot(t,photodiode[samples],color='0.5',label='photodiode')
for side in ('right','top'):
ax.spines[side].set_visible(False)
ax.tick_params(direction='out',top=False,right=False)
ax.set_xlabel('Time from first frame (s)')
ax.legend()
plt.tight_layout()
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ind = frameSamples[stimStart[np.where(opto)[0][0]]]
samples = np.arange(ind-1500,ind+3001)
t = (samples-ind)/syncSampleRate
ax.plot(t,vsync[samples],color='k',label='vsync')
ax.plot(t,photodiode[samples],color='0.5',label='photodiode')
ax.plot(t,led[samples],color='b',label='led')
for side in ('right','top'):
ax.spines[side].set_visible(False)
ax.tick_params(direction='out',top=False,right=False)
ax.set_xlim([-0.005,0.01])
ax.set_xlabel('Time from trial start (s)')
ax.legend()
plt.tight_layout()
def fitCurve(func,x,y,initGuess=None,bounds=None):
return scipy.optimize.curve_fit(func,x,y,p0=initGuess,bounds=bounds)[0]
def calcLogisticDistrib(x,a,b,m,s):
# a: amplitude, b: offset, m: x at 50% max y, s: scale
return a * (1 / (1 + np.exp(-(x - m) / s))) + b
def inverseLogistic(y,a,b,m,s):
return m - s * np.log((a / (y - b)) - 1)
def calcWeibullDistrib(x,a,b,j,k):
# a: amplitude, b: offset, j: shape, k: scale
return a * (1 - np.exp(-(x / j) ** k)) + b
def inverseWeibull(y,a,b,j,k):
return j * (-np.log(1 - ((y - b) / a))) ** (1/k)
class MaskTaskData():
def __init__(self):
self.behav = False
self.rf = False
self.ephys = False
self.frameDisplayLag = 2
self.earlyMoveFrames = 15
def loadBehavData(self,filePath=None):
if filePath is None:
self.behavDataPath = fileIO.getFile('Select behavior data file',fileType='*.hdf5')
else:
self.behavDataPath = filePath
if len(self.behavDataPath)==0:
return
self.behav = True
print('\n'+self.behavDataPath)
behavData = h5py.File(self.behavDataPath,'r')
self.rigName = behavData['rigName'].asstr()[()]
self.behavFrameIntervals = behavData['frameIntervals'][:]
self.frameRate = round(1/np.median(self.behavFrameIntervals))
if self.ephys and self.behavFrameIntervals.size+1>self.frameSamples.size:
self.ntrials = np.sum(behavData['trialEndFrame'][:]<self.frameSamples.size)
else:
self.ntrials = behavData['trialEndFrame'].size
self.pixelsPerDeg = behavData['pixelsPerDeg'][()]
self.quiescentFrames = behavData['quiescentFrames'][()]
self.trialOpenLoopFrames = behavData['trialOpenLoopFrames'][:self.ntrials]
assert(np.unique(self.trialOpenLoopFrames).size==1)
self.openLoopFrames = self.trialOpenLoopFrames[0]
self.responseWindowFrames = behavData['maxResponseWaitFrames'][()]
self.wheelGain = behavData['wheelGain'][()]
self.wheelRadius = behavData['wheelRadius'][()]
self.wheelRewardDistance = behavData['wheelRewardDistance'][()]
self.maxQuiescentMoveDist = behavData['maxQuiescentMoveDist'][()]
self.deltaWheelPos = behavData['deltaWheelPos'][()]
self.trialType = behavData['trialType'].asstr()[:self.ntrials]
self.trialStartFrame = behavData['trialStartFrame'][:self.ntrials]
self.trialEndFrame = behavData['trialEndFrame'][:self.ntrials]
self.stimStart = behavData['trialStimStartFrame'][:self.ntrials]
self.targetPos = behavData['trialTargetPos'][:self.ntrials]
self.targetContrast = behavData['trialTargetContrast'][:self.ntrials]
self.targetFrames = behavData['trialTargetFrames'][:self.ntrials]
self.maskContrast = behavData['trialMaskContrast'][:self.ntrials]
self.maskFrames = behavData['trialMaskFrames'][:self.ntrials]
self.maskOnset = behavData['trialMaskOnset'][:self.ntrials]
self.rewardDir = behavData['trialRewardDir'][:self.ntrials]
self.response = behavData['trialResponse'][:self.ntrials]
self.responseDir = behavData['trialResponseDir'][:self.ntrials]
self.responseFrame = behavData['trialResponseFrame'][:self.ntrials]
self.optoChan = behavData['trialOptoChan'][:self.ntrials]
self.optoOnset = behavData['trialOptoOnset'][:self.ntrials]
if 'keyPressFrames' in behavData:
self.keyPressFrames = behavData['keyPressFrames'][:]
if len(self.keyPressFrames) > 0:
self.keysPressed = behavData['keysPressed'].asstr()[:]
if 'showVisibilityRating' in behavData and behavData['showVisibilityRating'][()]:
self.visRating = behavData['visRating'].asstr()[:self.ntrials]
self.visRatingScore = np.zeros(self.visRating.size)
self.visRatingScore[['1' in v for v in self.visRating]] = -1
self.visRatingScore[['3' in v for v in self.visRating]] = 1
self.visRatingStartFrame = behavData['visRatingStartFrame'][:self.ntrials]
self.visRatingEndFrame = behavData['visRatingEndFrame'][:self.ntrials]
self.useContrastStaircase = behavData['useContrastStaircase'][()] if 'useContrastStaircase' in behavData else False
behavData.close()
self.findLongFrameTrials()
self.findEngagedTrials()
self.getWheelPos()
self.findEarlyMoveTrials()
self.calcReactionTime()
def findLongFrameTrials(self):
self.longFrameTrials = np.zeros(self.ntrials,dtype=bool)
self.targetDur = np.full(self.ntrials,np.nan)
self.maskOnsetDur = self.targetDur.copy()
self.optoOnsetDur = self.targetDur.copy()
tol = 0.5/self.frameRate
for i,s in enumerate(self.stimStart):
if self.trialType[i] in ('targetOnly','targetOnlyOpto','mask','maskOpto'):
self.targetDur[i] = self.behavFrameIntervals[s:s+self.targetFrames[i]].sum()
if self.targetDur[i] > self.targetFrames[i]/self.frameRate+tol:
self.longFrameTrials[i] = True
if self.trialType[i] in ('mask','maskOpto'):
self.maskOnsetDur[i] = self.behavFrameIntervals[s:s+self.maskOnset[i]].sum()
if self.maskOnsetDur[i] > self.maskOnset[i]/self.frameRate+tol:
self.longFrameTrials[i] = True
if not np.isnan(self.optoOnset[i]):
self.optoOnsetDur[i] = self.behavFrameIntervals[s:s+int(self.optoOnset[i])].sum()
if self.optoOnsetDur[i] > self.optoOnset[i]/self.frameRate+tol:
self.longFrameTrials[i] = True
print(str(round(100*np.sum(self.behavFrameIntervals > 1/self.frameRate+tol)/self.behavFrameIntervals.size,2))+' % frames long')
print(str(self.longFrameTrials.sum())+' / '+str(self.ntrials)+' trials had long frames')
def findEngagedTrials(self,engagedThresh=10):
self.engaged = np.ones(self.ntrials,dtype=bool)
trials = (self.trialType!='catch') & np.isnan(self.optoOnset)
for i in range(self.ntrials):
r = self.responseDir[:i+1][trials[:i+1]]
if len(r)>engagedThresh:
if all(np.isnan(r[-engagedThresh:])):
self.engaged[i] = False
print(str(self.engaged.sum())+' / '+str(self.ntrials)+' trials engaged')
def getWheelPos(self,preFrames=0,postFrames=0):
deltaWheel = np.zeros((self.ntrials,preFrames+self.openLoopFrames+self.responseWindowFrames+postFrames))
for i,s in enumerate(self.stimStart):
d = self.deltaWheelPos[s-preFrames:s-preFrames+self.openLoopFrames+self.responseWindowFrames+postFrames]
deltaWheel[i,:len(d)] = d
self.wheelPos = np.cumsum(deltaWheel,axis=1)
self.wheelPos *= self.wheelRadius
def findEarlyMoveTrials(self,earlyMoveThresh=None):
if earlyMoveThresh is None:
earlyMoveThresh = self.maxQuiescentMoveDist
self.earlyMove = np.any(self.wheelPos[:,:self.earlyMoveFrames]>earlyMoveThresh,axis=1)
print(str(self.earlyMove.sum())+' / '+str(self.ntrials)+' trials early move')
def calcReactionTime(self,moveInitThresh=0.2):
self.reactionTime = np.full(self.ntrials,np.nan)
self.movementVelocity = np.full(self.ntrials,np.nan)
if self.rigName == 'human':
for i,(s,r) in enumerate(zip(self.stimStart+self.frameDisplayLag,self.responseFrame)):
self.reactionTime[i] = self.behavFrameIntervals[s+1:r].sum()*1000
if hasattr(self,'visRating'):
self.visRatingReactionTime = np.full(self.ntrials,np.nan)
for i,(s,r) in enumerate(zip(self.visRatingStartFrame+self.frameDisplayLag,self.visRatingEndFrame)):
self.visRatingReactionTime[i] = self.behavFrameIntervals[s+1:r].sum()*1000
else:
wp = self.wheelPos-self.wheelPos[:,self.earlyMoveFrames][:,None]
wp[:,:self.earlyMoveFrames] = 0
for i,(w,s) in enumerate(zip(wp,self.stimStart+self.frameDisplayLag)):
frameIntervals = self.behavFrameIntervals[s:s+w.size]
frameIntervals[0] = 0
t = np.cumsum(frameIntervals)
t *= 1000
tinterp = np.arange(t[-1])
winterp = np.interp(tinterp,t,np.absolute(w[:t.size]))
respInd = np.where(winterp>=self.wheelRewardDistance)[0]
if len(respInd)>0:
belowThresh = np.where(winterp[:respInd[0]]<moveInitThresh)[0]
if len(belowThresh)>0:
initInd = belowThresh[-1]+1
self.reactionTime[i] = tinterp[initInd]
self.movementVelocity[i] = 1000*(self.wheelRewardDistance-moveInitThresh)/(tinterp[respInd[0]]-tinterp[initInd])
def loadRFData(self,filePath=None):
if filePath is None:
self.rfDataPath = fileIO.getFile('Select rf mapping data file',fileType='*.hdf5')
else:
self.rfDataPath = filePath
if len(self.rfDataPath)==0:
return
self.rf = True
rfData = h5py.File(self.rfDataPath,'r')
self.rfFrameIntervals = rfData['frameIntervals'][:]
if not self.behav:
self.frameRate = round(1/np.median(self.rfFrameIntervals))
if 'stimStartFrame' in rfData:
self.rfStimStart = rfData['stimStartFrame'][:-1]
else:
trialStartFrame = np.concatenate(([0],np.cumsum(rfData['preFrames']+rfData['trialStimFrames'][:-1]+rfData['postFrames'])))
self.rfStimStart = trialStartFrame+rfData['preFrames']
self.rfStimStart += self.frameSamples.size-(self.rfFrameIntervals.size+1)
rfTrials = self.rfStimStart.size
self.rfStimPos = rfData['trialGratingCenter'][:rfTrials]
self.rfStimContrast = rfData['trialGratingContrast'][:rfTrials]
self.rfOris = rfData['gratingOri'][:rfTrials]
self.rfStimOri = rfData['trialGratingOri'][:rfTrials]
self.rfStimFrames = rfData['trialStimFrames'][:rfTrials]
def loadEphysData(self,led=False):
self.datFilePath = fileIO.getFile('Select probe dat file',fileType='*.dat')
if len(self.datFilePath)==0:
return
self.ephys = True
probeData,analogInData = loadDatData(self.datFilePath)
self.sampleRate = 30000
self.totalSamples = probeData.shape[1]
self.frameSamples = np.array(findSignalEdges(analogInData['vsync'],edgeType='falling',thresh=-5000,refractory=2))
if led:
self.led1Onsets,self.led2Onsets = [np.array(findSignalEdges(analogInData[ch],edgeType='rising',thresh=5000,refractory=5)) for ch in ('led1','led2')]
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
samples = np.arange(self.frameSamples[0]-1500,self.frameSamples[0]+3001)
t = (samples-self.frameSamples[0])/self.sampleRate
ax.plot(t,analogInData['vsync'][samples],color='k',label='vsync')
ax.plot(t,analogInData['photodiode'][samples],color='0.5',label='photodiode')
for side in ('right','top'):
ax.spines[side].set_visible(False)
ax.tick_params(direction='out',top=False,right=False)
ax.set_xlabel('Time from first frame (s)')
ax.legend()
plt.tight_layout()
def loadKilosortData(self,dirPath=None):
if dirPath is None:
self.kilosortDirPath = fileIO.getDir('Select directory containing kilosort data')
else:
self.kilosortDirPath = dirPath
if len(self.kilosortDirPath)==0:
return
kilosortData = {key: np.load(os.path.join(self.kilosortDirPath,key+'.npy')) for key in ('spike_clusters',
'spike_times',
'templates',
'spike_templates',
'channel_positions',
'amplitudes')}
clusterIDs = pd.read_csv(os.path.join(self.kilosortDirPath,'cluster_KSLabel.tsv'),sep='\t')
unitIDs = np.unique(kilosortData['spike_clusters'])
self.units = {}
for u in unitIDs:
uind = np.where(kilosortData['spike_clusters']==u)[0]
u = str(u)
self.units[u] = {}
self.units[u]['label'] = clusterIDs[clusterIDs['cluster_id']==int(u)]['KSLabel'].tolist()[0]
self.units[u]['samples'] = kilosortData['spike_times'][uind].flatten()
#choose 1000 spikes with replacement, then average their templates together
chosen_spikes = np.random.choice(uind,1000)
chosen_templates = kilosortData['spike_templates'][chosen_spikes].flatten()
self.units[u]['template'] = np.mean(kilosortData['templates'][chosen_templates],axis=0)
peakChan = np.unravel_index(np.argmin(self.units[u]['template']),self.units[u]['template'].shape)[1]
self.units[u]['peakChan'] = peakChan
self.units[u]['position'] = kilosortData['channel_positions'][peakChan]
self.units[u]['amplitudes'] = kilosortData['amplitudes'][uind]
template = self.units[u]['template'][:,peakChan]
if any(np.isnan(template)):
self.units[u]['peakToTrough'] = np.nan
else:
peakInd = np.argmin(template)
self.units[u]['peakToTrough'] = np.argmax(template[peakInd:])/(self.sampleRate/1000)
self.sortedUnits = np.array(list(self.units.keys()))[np.argsort([self.units[u]['peakChan'] for u in self.units])]
self.findIsiViolations()
self.getGoodUnits()
def findIsiViolations(self,minIsi=0,refracPeriod=0.0015):
totalTime = self.totalSamples/self.sampleRate
for u in self.units:
spikeTimes = self.units[u]['samples']/self.sampleRate
duplicateSpikes = np.where(np.diff(spikeTimes)<=minIsi)[0]+1
spikeTimes = np.delete(spikeTimes,duplicateSpikes)
isis = np.diff(spikeTimes)
numSpikes = len(spikeTimes)
numViolations = sum(isis<refracPeriod)
violationTime = 2*numSpikes*(refracPeriod-minIsi)
violationRate = numViolations/violationTime
totalRate = numSpikes/totalTime
self.units[u]['fpRate'] = violationRate/totalRate
def getGoodUnits(self,fpThresh=0.5,minRate=0.1):
self.goodUnits = [u for u in self.sortedUnits if self.units[u]['label']!='noise' and self.units[u]['fpRate']<fpThresh and len(self.units[u]['samples'])/(self.totalSamples/self.sampleRate)>minRate]
def saveToHdf5(self,filePath=None):
fileIO.objToHDF5(self,filePath)
def loadFromHdf5(self,filePath=None):
fileIO.hdf5ToObj(self,filePath)