forked from liu3xing3long/CSNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·129 lines (112 loc) · 4.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Training script for CS-Net
"""
import os
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
import visdom
import numpy as np
from model.csnet import CSNet
from dataloader.drive import Data
from utils.train_metrics import metrics
from utils.visualize import init_visdom_line, update_lines
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
args = {
'root' : '',
'data_path' : 'dataset/DRIVE/',
'epochs' : 1000,
'lr' : 0.0001,
'snapshot' : 100,
'test_step' : 1,
'ckpt_path' : 'checkpoint/',
'batch_size': 8,
}
# # Visdom---------------------------------------------------------
X, Y = 0, 0.5 # for visdom
x_acc, y_acc = 0, 0
x_sen, y_sen = 0, 0
env, panel = init_visdom_line(X, Y, title='Train Loss', xlabel="iters", ylabel="loss")
env1, panel1 = init_visdom_line(x_acc, y_acc, title="Accuracy", xlabel="iters", ylabel="accuracy")
env2, panel2 = init_visdom_line(x_sen, y_sen, title="Sensitivity", xlabel="iters", ylabel="sensitivity")
# # ---------------------------------------------------------------
def save_ckpt(net, iter):
if not os.path.exists(args['ckpt_path']):
os.makedirs(args['ckpt_path'])
torch.save(net, args['ckpt_path'] + 'CS_Net_DRIVE_' + str(iter) + '.pkl')
print('--->saved model:{}<--- '.format(args['root'] + args['ckpt_path']))
# adjust learning rate (poly)
def adjust_lr(optimizer, base_lr, iter, max_iter, power=0.9):
lr = base_lr * (1 - float(iter) / max_iter) ** power
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train():
# set the channels to 3 when the format is RGB, otherwise 1.
net = CSNet(classes=1, channels=3).cuda()
net = nn.DataParallel(net, device_ids=[0, 1]).cuda()
optimizer = optim.Adam(net.parameters(), lr=args['lr'], weight_decay=0.0005)
critrion = nn.MSELoss().cuda()
# critrion = nn.CrossEntropyLoss().cuda()
print("---------------start training------------------")
# load train dataset
train_data = Data(args['data_path'], train=True)
batchs_data = DataLoader(train_data, batch_size=args['batch_size'], num_workers=2, shuffle=True)
iters = 1
accuracy = 0.
sensitivty = 0.
for epoch in range(args['epochs']):
net.train()
for idx, batch in enumerate(batchs_data):
image = batch[0].cuda()
label = batch[1].cuda()
optimizer.zero_grad()
pred = net(image)
# pred = pred.squeeze_(1)
loss = critrion(pred, label)
loss.backward()
optimizer.step()
acc, sen = metrics(pred, label, pred.shape[0])
print('[{0:d}:{1:d}] --- loss:{2:.10f}\tacc:{3:.4f}\tsen:{4:.4f}'.format(epoch + 1,
iters, loss.item(),
acc / pred.shape[0],
sen / pred.shape[0]))
iters += 1
# # ---------------------------------- visdom --------------------------------------------------
X, x_acc, x_sen = iters, iters, iters
Y, y_acc, y_sen = loss.item(), acc / pred.shape[0], sen / pred.shape[0]
update_lines(env, panel, X, Y)
update_lines(env1, panel1, x_acc, y_acc)
update_lines(env2, panel2, x_sen, y_sen)
# # --------------------------------------------------------------------------------------------
adjust_lr(optimizer, base_lr=args['lr'], iter=epoch, max_iter=args['epochs'], power=0.9)
if (epoch + 1) % args['snapshot'] == 0:
save_ckpt(net, epoch + 1)
# model eval
if (epoch + 1) % args['test_step'] == 0:
test_acc, test_sen = model_eval(net)
print("Average acc:{0:.4f}, average sen:{1:.4f}".format(test_acc, test_sen))
if (accuracy > test_acc) & (sensitivty > test_sen):
save_ckpt(net, epoch + 1 + 8888888)
accuracy = test_acc
sensitivty = test_sen
def model_eval(net):
print("Start testing model...")
test_data = Data(args['data_path'], train=False)
batchs_data = DataLoader(test_data, batch_size=1)
net.eval()
Acc, Sen = [], []
file_num = 0
for idx, batch in enumerate(batchs_data):
image = batch[0].float().cuda()
label = batch[1].float().cuda()
pred_val = net(image)
acc, sen = metrics(pred_val, label, pred_val.shape[0])
print("\t---\t test acc:{0:.4f} test sen:{1:.4f}".format(acc, sen))
Acc.append(acc)
Sen.append(sen)
file_num += 1
# for better view, add testing visdom here.
return np.mean(Acc), np.mean(Sen)
if __name__ == '__main__':
train()