forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfalling-squares.py
186 lines (164 loc) · 5.67 KB
/
falling-squares.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Time: O(n^2), could be improved to O(nlogn) in cpp by ordered map (bst)
# Space: O(n)
import bisect
class Solution(object):
def fallingSquares(self, positions):
result = []
pos = [-1]
heights = [0]
maxH = 0
for left, side in positions:
l = bisect.bisect_right(pos, left)
r = bisect.bisect_left(pos, left+side)
high = max(heights[l-1:r] or [0]) + side
pos[l:r] = [left, left+side] # Time: O(n)
heights[l:r] = [high, heights[r-1]] # Time: O(n)
maxH = max(maxH, high)
result.append(maxH)
return result
class SegmentTree(object):
def __init__(self, N, update_fn, query_fn):
self.N = N
self.H = 1
while (1 << self.H) < N:
self.H += 1
self.update_fn = update_fn
self.query_fn = query_fn
self.tree = [0] * (2 * N)
self.lazy = [0] * N
def __apply(self, x, val):
self.tree[x] = self.update_fn(self.tree[x], val)
if x < self.N:
self.lazy[x] = self.update_fn(self.lazy[x], val)
def __pull(self, x):
while x > 1:
x /= 2
self.tree[x] = self.query_fn(self.tree[x*2], self.tree[x*2 + 1])
self.tree[x] = self.update_fn(self.tree[x], self.lazy[x])
def __push(self, x):
for h in xrange(self.H, 0, -1):
y = x >> h
if self.lazy[y]:
self.__apply(y*2, self.lazy[y])
self.__apply(y*2 + 1, self.lazy[y])
self.lazy[y] = 0
def update(self, L, R, h):
L += self.N
R += self.N
L0, R0 = L, R
while L <= R:
if L & 1:
self.__apply(L, h)
L += 1
if R & 1 == 0:
self.__apply(R, h)
R -= 1
L /= 2
R /= 2
self.__pull(L0)
self.__pull(R0)
def query(self, L, R):
L += self.N
R += self.N
self.__push(L)
self.__push(R)
result = 0
while L <= R:
if L & 1:
result = self.query_fn(result, self.tree[L])
L += 1
if R & 1 == 0:
result = self.query_fn(result, self.tree[R])
R -= 1
L /= 2
R /= 2
return result
# Time: O(nlogn)
# Space: O(n)
# Segment Tree solution.
class Solution2(object):
def fallingSquares(self, positions):
index = set()
for left, size in positions:
index.add(left)
index.add(left+size-1)
index = sorted(list(index))
tree = SegmentTree(len(index), max, max)
max_height = 0
result = []
for left, size in positions:
L, R = bisect.bisect_left(index, left), bisect.bisect_left(index, left+size-1)
h = tree.query(L, R) + size
tree.update(L, R, h)
max_height = max(max_height, h)
result.append(max_height)
return result
# Time: O(n * sqrt(n))
# Space: O(n)
class Solution3(object):
def fallingSquares(self, positions):
def query(heights, left, right, B, blocks, blocks_read):
result = 0
while left % B and left <= right:
result = max(result, heights[left], blocks[left//B])
left += 1
while right % B != B-1 and left <= right:
result = max(result, heights[right], blocks[right//B])
right -= 1
while left <= right:
result = max(result, blocks[left//B], blocks_read[left//B])
left += B
return result
def update(heights, left, right, B, blocks, blocks_read, h):
while left % B and left <= right:
heights[left] = max(heights[left], h)
blocks_read[left//B] = max(blocks_read[left//B], h)
left += 1
while right % B != B-1 and left <= right:
heights[right] = max(heights[right], h)
blocks_read[right//B] = max(blocks_read[right//B], h)
right -= 1
while left <= right:
blocks[left//B] = max(blocks[left//B], h)
left += B
index = set()
for left, size in positions:
index.add(left)
index.add(left+size-1)
index = sorted(list(index))
W = len(index)
B = int(W**.5)
heights = [0] * W
blocks = [0] * (B+2)
blocks_read = [0] * (B+2)
max_height = 0
result = []
for left, size in positions:
L, R = bisect.bisect_left(index, left), bisect.bisect_left(index, left+size-1)
h = query(heights, L, R, B, blocks, blocks_read) + size
update(heights, L, R, B, blocks, blocks_read, h)
max_height = max(max_height, h)
result.append(max_height)
return result
# Time: O(n^2)
# Space: O(n)
class Solution4(object):
def fallingSquares(self, positions):
"""
:type positions: List[List[int]]
:rtype: List[int]
"""
heights = [0] * len(positions)
for i in xrange(len(positions)):
left_i, size_i = positions[i]
right_i = left_i + size_i
heights[i] += size_i
for j in xrange(i+1, len(positions)):
left_j, size_j = positions[j]
right_j = left_j + size_j
if left_j < right_i and left_i < right_j: # intersect
heights[j] = max(heights[j], heights[i])
result = []
for height in heights:
result.append(max(result[-1], height) if result else height)
return result