-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
224 lines (201 loc) · 9.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import argparse
from os.path import join as opj
import datetime
from importlib import import_module
from omegaconf import OmegaConf
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from torch.utils.data import DataLoader, ConcatDataset
from cldm.logger import ImageLogger
from cldm.model import create_model, load_state_dict
from utils import save_args
WORKERS = 2
def build_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config_name", type=str, default=None)
parser.add_argument("--data_root_dir", type=str, default="./DATA/zalando-hd-resized")
parser.add_argument("--category", type=str, default=None, choices=["upper", "lower_body", "dresses"])
parser.add_argument("--vae_load_path", type=str, default="./ckpts/VITONHD_VAE_finetuning.ckpt")
parser.add_argument("--batch_size", "-bs", type=int, default=4)
parser.add_argument("--transform_size", default=None, nargs="+", choices=["crop", "hflip", "shiftscale", "shiftscale2", "shiftscale3", "resize"])
parser.add_argument("--transform_color", default=None, nargs="+", choices=["hsv", "bright_contrast", "colorjitter", "resize"])
parser.add_argument("--use_atv_loss", action="store_true")
parser.add_argument("--valid_epoch_freq", type=int, default=20)
parser.add_argument("--save_every_n_epochs", type=int, default=1)
parser.add_argument("--max_epochs", type=int, default=1000)
parser.add_argument("--save_root_dir", type=str, default="./logs")
parser.add_argument("--save_name", type=str, default="dummy")
parser.add_argument("--use_validation", action="store_false")
parser.add_argument("--resume_path", type=str, default=None)
parser.add_argument("--accum_iter", type=int, default=1)
parser.add_argument("--img_H", type=int, default=512)
parser.add_argument("--img_W", type=int, default=384)
parser.add_argument("--logger_freq", type=int, default=1000)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--sd_unlocked", action="store_true")
parser.add_argument("--all_unlocked", action="store_true")
parser.add_argument("--only_mid_control", action="store_true")
parser.add_argument("--precision", type=int, default=16)
parser.add_argument("--num_sanity_val_steps", type=int, default=0)
parser.add_argument("--pbe_train_mode", action="store_true")
parser.add_argument("--lambda_simple", type=float, default=1.0)
parser.add_argument("--control_scales", nargs="+", type=float, default=None)
parser.add_argument("--imageclip_trainable", action="store_false")
parser.add_argument("--no_strict_load", action="store_true")
args = parser.parse_args()
args.config_path = opj("./configs", f"{args.config_name}.yaml")
args.n_gpus = len(os.environ["CUDA_VISIBLE_DEVICES"].split(","))
args.devices = [i for i in range(args.n_gpus)]
args.strategy = "auto"
args.sd_locked = not args.sd_unlocked
args.no_validation = not args.use_validation
args.valid_real_dir = opj(args.data_root_dir, "test", "image")
args.save_dir = opj(args.save_root_dir, f"{datetime.datetime.now().strftime('%Y%m%d')}_" + args.save_name)
args.img_save_dir = opj(args.save_dir, "images")
args.model_save_dir = opj(args.save_dir, "models")
args.tb_save_dir = opj(args.save_dir, "tb")
args.valid_img_save_dir = opj(args.save_dir, "validation_sampled_images")
args.args_save_path = opj(args.save_dir, "args.json")
args.config_save_path = opj(args.save_dir, "config.yaml")
os.makedirs(args.img_save_dir, exist_ok=True)
os.makedirs(args.model_save_dir, exist_ok=True)
os.makedirs(args.tb_save_dir, exist_ok=True)
os.makedirs(args.valid_img_save_dir, exist_ok=True)
return args
def build_config(args, config_path=None):
if config_path is None:
config_path = args.config_path
config = OmegaConf.load(config_path)
config.model.params.setdefault("use_VAEdownsample", False)
config.model.params.setdefault("use_imageCLIP", False)
config.model.params.setdefault("use_lastzc", False)
config.model.params.setdefault("use_pbe_weight", False)
if args is not None:
for k, v in vars(args).items():
config.model.params.setdefault(k, v)
if not config.model.params.get("validation_config", None):
config.model.params.validation_config = OmegaConf.create()
config.model.params.validation_config.ddim_steps = config.model.params.validation_config.get("ddim_steps", 50)
config.model.params.validation_config.eta = config.model.params.validation_config.get("eta", 0.0)
config.model.params.validation_config.scale = config.model.params.validation_config.get("scale", 1.0)
if args is not None:
config.model.params.unet_config.params.use_atv_loss = args.use_atv_loss
config.model.params.validation_config.img_save_dir = args.valid_img_save_dir
config.model.params.validation_config.real_dir = args.valid_real_dir
if args.use_atv_loss:
config.model.params.use_attn_mask = True
return config
def main_worker(args):
import torch
torch.cuda.empty_cache()
import gc
gc.collect()
config = build_config(args)
OmegaConf.save(config, args.config_save_path)
model = create_model(args.config_path, config=config).cpu()
if args.resume_path is not None:
if not args.no_strict_load:
model.load_state_dict(load_state_dict(args.resume_path, location="cpu"))
else:
model.load_state_dict(load_state_dict(args.resume_path, location="cpu"), strict=False)
elif config.resume_path is not None:
if not args.no_strict_load:
model.load_state_dict(load_state_dict(config.resume_path, location="cpu"))
else:
model.load_state_dict(load_state_dict(config.resume_path, location="cpu"), strict=False)
# finetuned vae load
if args.vae_load_path is not None:
state_dict = load_state_dict(args.vae_load_path, location="cpu")
new_state_dict = {}
for k, v in state_dict.items():
if "loss." not in k:
new_state_dict[k] = v.clone()
model.first_stage_model.load_state_dict(new_state_dict)
model.learning_rate = args.learning_rate
model.sd_locked = args.sd_locked
model.only_mid_control = args.only_mid_control
train_dataset = getattr(import_module("dataset"), config.dataset_name)(
data_root_dir=args.data_root_dir,
img_H=args.img_H,
img_W=args.img_W,
transform_size=args.transform_size,
transform_color=args.transform_color,
)
valid_paired_dataset = getattr(import_module("dataset"), config.dataset_name)(
data_root_dir=args.data_root_dir,
img_H=args.img_H,
img_W=args.img_W,
is_test=True,
is_paired=True,
is_sorted=True,
)
valid_unpaired_dataset = getattr(import_module("dataset"), config.dataset_name)(
data_root_dir=args.data_root_dir,
img_H=args.img_H,
img_W=args.img_W,
is_test=True,
is_paired=False,
is_sorted=True,
)
train_dataloader = DataLoader(
train_dataset,
num_workers=WORKERS,
batch_size=max(args.batch_size//args.n_gpus, 1),
shuffle=True,
pin_memory=True
)
valid_paired_dataloader = DataLoader(
valid_paired_dataset,
num_workers=WORKERS,
batch_size=max(args.batch_size//args.n_gpus, 1),
shuffle=False,
pin_memory=True
)
valid_unpaired_dataloader = DataLoader(
valid_unpaired_dataset,
num_workers=WORKERS,
batch_size=max(args.batch_size//args.n_gpus, 1),
shuffle=False,
pin_memory=True
)
#### trainer >>>>
img_logger = ImageLogger(
batch_frequency=args.logger_freq,
save_dir=args.img_save_dir,
log_images_kwargs=config.get("log_images_kwargs", None)
)
tb_logger = TensorBoardLogger(args.tb_save_dir)
cp_callback = ModelCheckpoint(
dirpath=args.model_save_dir,
filename="[Train]_[{epoch}]_[{train_loss_epoch:.04f}]",
save_top_k=-1,
every_n_epochs=args.save_every_n_epochs,
save_last=False,
save_on_train_epoch_end=True
)
trainer = pl.Trainer(
precision=args.precision,
callbacks=[img_logger, cp_callback],
logger=tb_logger,
devices=1,
accelerator="gpu",
strategy="ddp",
max_epochs=args.max_epochs,
accumulate_grad_batches=args.accum_iter,
check_val_every_n_epoch=args.valid_epoch_freq,
num_sanity_val_steps=args.num_sanity_val_steps
)
#### trainer <<<<
if not args.no_validation:
trainer.fit(model, train_dataloader, [valid_paired_dataloader, valid_unpaired_dataloader])
else:
trainer.fit(model, train_dataloader)
if __name__ == "__main__":
args = build_args()
print(args)
save_args(args, args.args_save_path)
main_worker(args)
print("Done")