-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10.py
904 lines (736 loc) · 33.5 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Builds the CIFAR-10 network.
Summary of available functions:
# Compute input images and labels for training. If you would like to run
# evaluations, use inputs() instead.
inputs, labels = distorted_inputs()
# Compute inference on the model inputs to make a prediction.
predictions = inference(inputs)
# Compute the total loss of the prediction with respect to the labels.
loss = loss(predictions, labels)
# Create a graph to run one step of training with respect to the loss.
train_op = train(loss, global_step)
"""
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
import sys
import tarfile
from six.moves import urllib
import tensorflow as tf
import cifar10_input
FLAGS = tf.app.flags.FLAGS
# Basic model parameters.
tf.app.flags.DEFINE_integer('batch_size', 64,
"""Number of images to process in a batch.""")
tf.app.flags.DEFINE_string('data_dir', 'tmp/cifar10_data',
"""Path to the CIFAR-10 data directory.""")
tf.app.flags.DEFINE_boolean('use_fp16', False,
"""Train the model using fp16.""")
# Global constants describing the CIFAR-10 data set.
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.001 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.1 # Initial learning rate.
# If a model is trained with multiple GPUs, prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'
DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measures the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity',
tf.nn.zero_fraction(x))
def _variable_on_cpu(name, shape, initializer):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
with tf.device('/cpu:0'):
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
return var
def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
var = _variable_on_cpu(
name,
shape,
tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def distorted_inputs():
"""Construct distorted input for CIFAR training using the Reader ops.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
batch_size=FLAGS.batch_size)
if FLAGS.use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
def inputs(eval_data):
"""Construct input for CIFAR evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
images, labels = cifar10_input.inputs(eval_data=eval_data,
data_dir=data_dir,
batch_size=FLAGS.batch_size)
if FLAGS.use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
def alexnet(image, keepprob=0.5):
# 定义卷积层1,卷积核大小,偏置量等各项参数参考下面的程序代码,下同。
with tf.name_scope("conv1") as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 3, 64], dtype=tf.float32, stddev=1e-1, name="weights"))
conv = tf.nn.conv2d(image, kernel, [1, 1, 1, 1], padding="SAME")
biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[64]), trainable=True, name="biases")
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
pass
# LRN层
lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001/9, beta=0.75, name="lrn1")
# 最大池化层
pool1 = tf.nn.max_pool(lrn1, ksize=[1,3,3,1], strides=[1,2,2,1],padding="VALID", name="pool1")
# 定义卷积层2
with tf.name_scope("conv2") as scope:
kernel = tf.Variable(tf.truncated_normal([3,3,64,192], dtype=tf.float32, stddev=1e-1, name="weights"))
conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding="SAME")
biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[192]), trainable=True, name="biases")
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope)
pass
# LRN层
lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name="lrn2")
# 最大池化层
pool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding="VALID", name="pool2")
# 定义卷积层3
with tf.name_scope("conv3") as scope:
kernel = tf.Variable(tf.truncated_normal([3,3,192,384], dtype=tf.float32, stddev=1e-1, name="weights"))
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding="SAME")
biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[384]), trainable=True, name="biases")
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
pass
# 定义卷积层4
with tf.name_scope("conv4") as scope:
kernel = tf.Variable(tf.truncated_normal([3,3,384,256], dtype=tf.float32, stddev=1e-1, name="weights"))
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding="SAME")
biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[256]), trainable=True, name="biases")
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias, name=scope)
pass
# 定义卷积层5
with tf.name_scope("conv5") as scope:
kernel = tf.Variable(tf.truncated_normal([3,3,256,256], dtype=tf.float32, stddev=1e-1, name="weights"))
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding="SAME")
biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[256]), trainable=True, name="biases")
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias, name=scope)
pass
# 最大池化层
pool5 = tf.nn.max_pool(conv5, ksize=[1,3,3,1], strides=[1,2,2,1], padding="VALID", name="pool5")
# 全连接层
flatten = tf.reshape(pool5, [-1, 2*2*256])
weight1 = tf.Variable(tf.truncated_normal([2*2*256, 1024], mean=0, stddev=0.01))
fc1 = tf.nn.sigmoid(tf.matmul(flatten, weight1))
dropout1 = tf.nn.dropout(fc1, keepprob)
weight2 = tf.Variable(tf.truncated_normal([1024, 1024], mean=0, stddev=0.01))
fc2 = tf.nn.sigmoid(tf.matmul(dropout1, weight2))
dropout2 = tf.nn.dropout(fc2, keepprob)
weight3 = tf.Variable(tf.truncated_normal([1024, 10], mean=0, stddev=0.01))
fc3 = tf.nn.sigmoid(tf.matmul(dropout2, weight3))
return fc3
def inference(images):
"""Build the CIFAR-10 model.
Args:
images: Images returned from distorted_inputs() or inputs().
Returns:
Logits.
"""
# We instantiate all variables using tf.get_variable() instead of
# tf.Variable() in order to share variables across multiple GPU training runs.
# If we only ran this model on a single GPU, we could simplify this function
# by replacing all instances of tf.get_variable() with tf.Variable().
#
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 3, 64],
stddev=5e-2,
wd=None)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1')
# conv2
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 64, 64],
stddev=5e-2,
wd=None)
conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv2)
# norm2
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
# pool2
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
reshape = tf.reshape(pool2, [images.get_shape().as_list()[0], -1])
dim = reshape.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, 384],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
_activation_summary(local3)
# local4
with tf.variable_scope('local4') as scope:
weights = _variable_with_weight_decay('weights', shape=[384, 192],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
_activation_summary(local4)
# linear layer(WX + b),
# We don't apply softmax here because
# tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
# and performs the softmax internally for efficiency.
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
stddev=1/192.0, wd=None)
biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear
def conv2d(_x, _w, _b):
return tf.nn.bias_add(tf.nn.conv2d(_x, _w, [1, 1, 1, 1], padding='SAME'), _b)
def max_pool(_x, f):
return tf.nn.max_pool(_x, [1, f, f, 1], [1, 1, 1, 1], padding='SAME')
def lrn(_x):
return tf.nn.lrn(_x, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
def init_w(namespace, shape, wd, stddev, reuse=False):
with tf.variable_scope(namespace, reuse=reuse):
initializer = tf.truncated_normal_initializer(dtype=tf.float32, stddev=stddev)
w = tf.get_variable("w", shape=shape, initializer=initializer)
if wd:
weight_decay = tf.multiply(tf.nn.l2_loss(w), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return w
def init_b(namespace, shape, reuse=False):
with tf.variable_scope(namespace, reuse=reuse):
initializer = tf.constant_initializer(0.0)
b = tf.get_variable("b", shape=shape, initializer=initializer)
return b
def batch_normal(xs, out_size):
axis = list(range(len(xs.get_shape()) - 1))
n_mean, n_var = tf.nn.moments(xs, axes=axis)
scale = tf.Variable(tf.ones([out_size]))
shift = tf.Variable(tf.zeros([out_size]))
epsilon = 0.001
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([n_mean, n_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(n_mean), tf.identity(n_var)
mean, var = mean_var_with_update()
bn = tf.nn.batch_normalization(xs, mean, var, shift, scale, epsilon)
return bn
def alexnet_cifar(images, reuse=False):
'''Build the network model and return logits'''
# conv1
w1 = init_w("conv1", [3, 3, 3, 24], None, 0.01, reuse)
bw1 = init_b("conv1", [24], reuse)
conv1 = conv2d(images, w1, bw1)
bn1 = batch_normal(conv1, 24)
c_output1 = tf.nn.relu(bn1)
pool1 = max_pool(c_output1, 2)
# conv2
w2 = init_w("conv2", [3, 3, 24, 96], None, 0.01, reuse)
bw2 = init_b("conv2", [96], reuse)
conv2 = conv2d(pool1, w2, bw2)
bn2 = batch_normal(conv2, 96)
c_output2 = tf.nn.relu(bn2)
pool2 = max_pool(c_output2, 2)
# conv3
w3 = init_w("conv3", [3, 3, 96, 192], None, 0.01, reuse)
bw3 = init_b("conv3", [192], reuse)
conv3 = conv2d(pool2, w3, bw3)
bn3 = batch_normal(conv3, 192)
c_output3 = tf.nn.relu(bn3)
# conv4
w4 = init_w("conv4", [3, 3, 192, 192], None, 0.01, reuse)
bw4 = init_b("conv4", [192], reuse)
conv4 = conv2d(conv3, w4, bw4)
bn4 = batch_normal(conv4, 192)
c_output4 = tf.nn.relu(bn4)
# conv5
w5 = init_w("conv5", [3, 3, 192, 96], None, 0.01, reuse)
bw5 = init_b("conv5", [96], reuse)
conv5 = conv2d(conv4, w5, bw5)
bn5 = batch_normal(conv5, 96)
c_output5 = tf.nn.relu(bn5)
pool5 = max_pool(c_output5, 2)
print(c_output5.shape)
# FC1
wfc1 = init_w("fc1", [96 * 24 * 24, 1024], None, 1e-2, reuse)
bfc1 = init_b("fc1", [1024], reuse)
shape = pool5.get_shape()
reshape = tf.reshape(pool5, [-1, shape[1].value * shape[2].value * shape[3].value])
w_x1 = tf.matmul(reshape, wfc1) + bfc1
bn6 = batch_normal(w_x1, 1024)
fc1 = tf.nn.relu(bn6)
# FC2
wfc2 = init_w("fc2", [1024, 1024], None, 1e-2, reuse)
bfc2 = init_b("fc2", [1024], reuse)
w_x2 = tf.matmul(fc1, wfc2) + bfc2
bn7 = batch_normal(w_x2, 1024)
fc2 = tf.nn.relu(bn7)
# FC3
wfc3 = init_w("fc3", [1024, 10], None, 1e-2, reuse)
bfc3 = init_b("fc3", [10], reuse)
softmax_linear = tf.add(tf.matmul(fc2, wfc3), bfc3)
return softmax_linear
def alexnet_cifar_attention(images, reuse=False):
'''Build the network model and return logits'''
# conv1
w1 = init_w("conv1", [3, 3, 3, 24], None, 0.01, reuse)
bw1 = init_b("conv1", [24], reuse)
conv1 = conv2d(images, w1, bw1)
bn1 = batch_normal(conv1, 24)
c_output1 = tf.nn.relu(bn1)
pool1 = max_pool(c_output1, 2)
# conv2
w2 = init_w("conv2", [3, 3, 24, 96], None, 0.01, reuse)
bw2 = init_b("conv2", [96], reuse)
conv2 = conv2d(pool1, w2, bw2)
bn2 = batch_normal(conv2, 96)
c_output2 = tf.nn.relu(bn2)
pool2 = max_pool(c_output2, 2)
# conv3
w3 = init_w("conv3", [3, 3, 96, 192], None, 0.01, reuse)
bw3 = init_b("conv3", [192], reuse)
conv3 = conv2d(pool2, w3, bw3)
bn3 = batch_normal(conv3, 192)
c_output3 = tf.nn.relu(bn3)
# conv4
w4 = init_w("conv4", [3, 3, 192, 192], None, 0.01, reuse)
bw4 = init_b("conv4", [192], reuse)
conv4 = conv2d(conv3, w4, bw4)
bn4 = batch_normal(conv4, 192)
c_output4 = tf.nn.relu(bn4)
# conv5
w5 = init_w("conv5", [3, 3, 192, 96], None, 0.01, reuse)
bw5 = init_b("conv5", [96], reuse)
conv5 = conv2d(conv4, w5, bw5)
bn5 = batch_normal(conv5, 96)
c_output5 = tf.nn.relu(bn5)
pool5 = max_pool(c_output5, 2)
#attention
w_1 = init_w("conv_1", [1, 1, 96, 48], None, 0.01, reuse)
b_1 = init_b("conv_1", [48], reuse)
conv_1 = conv2d(pool5, w_1, b_1)
c_output_1 = tf.nn.relu(conv_1)
w_2 = init_w("conv_2", [1, 1, 48, 24], None, 0.01, reuse)
b_2 = init_b("conv_2", [24], reuse)
conv_2 = conv2d(c_output_1, w_2, b_2)
c_output_2 = tf.nn.relu(conv_2)
w_3 = init_w("conv_3", [1, 1, 24, 2], None, 0.01, reuse)
b_3 = init_b("conv_3", [2], reuse)
c_output_3 = conv2d(c_output_2, w_3, b_3)
# x = pool5.reshape(pool5.size(0), pool5.size(3), -1, 1)
x=tf.reshape(pool5,[pool5.shape[0], pool5.shape[3], -1, 1])
y=c_output_3
y = tf.reshape(y, [x.shape[0]*2, -1])
y = tf.nn.softmax(y)
# y = y.view(x.size(0), 2, -1, 1)
y = tf.reshape(y, [x.shape[0], 2, -1, 1])
feature_list = []
for i in range(2):
y_mask = tf.slice(y,begin=[0,i,0,0],size=[x.shape[0],1,x.shape[2],1])
y_mask = y_mask * x
# y_mask = torch.sum(y_mask, 2, keepdim=True)
feature_list.append(y_mask)
feature_list.append(x)
y_feature_concat = tf.concat(feature_list, 1)
y_feature_concat = tf.squeeze(y_feature_concat)
# y_feature_concat = y_feature_concat.view(x.size(0), 768 * 6 * 6)
y_feature_concat = tf.reshape(y_feature_concat, [x.shape[0],288*24*24])
# print(y_feature_concat.size())
# FC1
wfc1 = init_w("fc1", [288 * 24 * 24, 1024], None, 1e-2, reuse)
bfc1 = init_b("fc1", [1024], reuse)
w_x1 = tf.matmul(y_feature_concat, wfc1) + bfc1
bn6 = batch_normal(w_x1, 1024)
fc1 = tf.nn.relu(bn6)
# FC2
wfc2 = init_w("fc2", [1024, 1024], None, 1e-2, reuse)
bfc2 = init_b("fc2", [1024], reuse)
w_x2 = tf.matmul(fc1, wfc2) + bfc2
bn7 = batch_normal(w_x2, 1024)
fc2 = tf.nn.relu(bn7)
# FC3
wfc3 = init_w("fc3", [1024, 10], None, 1e-2, reuse)
bfc3 = init_b("fc3", [10], reuse)
softmax_linear = tf.add(tf.matmul(fc2, wfc3), bfc3)
return softmax_linear
def alexnet_cifar_FC(images, reuse=False):
'''Build the network model and return logits'''
# conv1
w1 = init_w("conv1", [3, 3, 3, 24], None, 0.01, reuse)
bw1 = init_b("conv1", [24], reuse)
conv1 = conv2d(images, w1, bw1)
bn1 = batch_normal(conv1, 24)
c_output1 = tf.nn.relu(bn1)
pool1 = max_pool(c_output1, 2)
# conv2
w2 = init_w("conv2", [3, 3, 24, 96], None, 0.01, reuse)
bw2 = init_b("conv2", [96], reuse)
conv2 = conv2d(pool1, w2, bw2)
bn2 = batch_normal(conv2, 96)
c_output2 = tf.nn.relu(bn2)
pool2 = max_pool(c_output2, 2)
# conv3
w3 = init_w("conv3", [3, 3, 96, 192], None, 0.01, reuse)
bw3 = init_b("conv3", [192], reuse)
conv3 = conv2d(pool2, w3, bw3)
bn3 = batch_normal(conv3, 192)
c_output3 = tf.nn.relu(bn3)
# conv4
w4 = init_w("conv4", [3, 3, 192, 192], None, 0.01, reuse)
bw4 = init_b("conv4", [192], reuse)
conv4 = conv2d(conv3, w4, bw4)
bn4 = batch_normal(conv4, 192)
c_output4 = tf.nn.relu(bn4)
# conv5
w5 = init_w("conv5", [3, 3, 192, 96], None, 0.01, reuse)
bw5 = init_b("conv5", [96], reuse)
conv5 = conv2d(conv4, w5, bw5)
bn5 = batch_normal(conv5, 96)
c_output5 = tf.nn.relu(bn5)
pool5 = max_pool(c_output5, 2)
w6 = init_w("conv6", [3, 3, 96, 48], None, 0.01, reuse)
bw6 = init_b("conv6", [48], reuse)
conv6=tf.nn.bias_add(tf.nn.conv2d(pool5, w6, [1, 2, 2, 1], padding='VALID'),bw6)
w7 = init_w("conv7", [11, 11, 48, 10], None, 0.01, reuse)
bw7 = init_b("conv7", [10], reuse)
conv7 = tf.nn.bias_add(tf.nn.conv2d(conv6, w7, [1, 2, 2, 1], padding='VALID'),bw7)
w8 = init_w("conv8", [1, 1, 10, 10], None, 0.01, reuse)
bw8 = init_b("conv8", [10], reuse)
net = tf.nn.bias_add(tf.nn.conv2d(conv7, w8, [1, 1, 1, 1], padding='VALID'),bw8)
logits = tf.squeeze(net, [1,2], name='logits')
logits=tf.nn.softmax(logits)
return logits
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def identity_block(X_input, kernel_size, in_filter, out_filters, stage, block, training):
# defining name basis
block_name = 'res' + str(stage) + block
f1, f2, f3 = out_filters
with tf.variable_scope(block_name):
X_shortcut = X_input
#first
W_conv1 = weight_variable([1, 1, in_filter, f1])
X = tf.nn.conv2d(X_input, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
X = tf.layers.batch_normalization(X, axis=3, training=training)
X = tf.nn.relu(X)
#second
W_conv2 = weight_variable([kernel_size, kernel_size, f1, f2])
X = tf.nn.conv2d(X, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
X = tf.layers.batch_normalization(X, axis=3, training=training)
X = tf.nn.relu(X)
#third
W_conv3 = weight_variable([1, 1, f2, f3])
X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1, 1], padding='VALID')
X = tf.layers.batch_normalization(X, axis=3, training=training)
#final step
add = tf.add(X, X_shortcut)
add_result = tf.nn.relu(add)
return add_result
def convolutional_block( X_input, kernel_size, in_filter,
out_filters, stage, block, training, stride=2):
# defining name basis
block_name = 'res' + str(stage) + block
with tf.variable_scope(block_name):
f1, f2, f3 = out_filters
x_shortcut = X_input
# first
W_conv1 = weight_variable([1, 1, in_filter, f1])
X = tf.nn.conv2d(X_input, W_conv1, strides=[1, stride, stride, 1], padding='VALID')
X = tf.layers.batch_normalization(X, axis=3, training=training)
X = tf.nn.relu(X)
# second
W_conv2 = weight_variable([kernel_size, kernel_size, f1, f2])
X = tf.nn.conv2d(X, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
X = tf.layers.batch_normalization(X, axis=3, training=training)
X = tf.nn.relu(X)
# third
W_conv3 = weight_variable([1, 1, f2, f3])
X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1, 1], padding='VALID')
X = tf.layers.batch_normalization(X, axis=3, training=training)
# shortcut path
W_shortcut = weight_variable([1, 1, in_filter, f3])
x_shortcut = tf.nn.conv2d(x_shortcut, W_shortcut, strides=[1, stride, stride, 1], padding='VALID')
# final
add = tf.add(x_shortcut, X)
add_result = tf.nn.relu(add)
return add_result
def resnet_50(x_input, classes=10,is_training=True):
"""
Implementation of the popular ResNet50 the following architecture:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
-> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER
Arguments:
Returns:
"""
x = tf.pad(x_input, tf.constant([[0, 0], [3, 3, ], [3, 3], [0, 0]]), "CONSTANT")
with tf.variable_scope('reference'):
training =is_training
# stage 1
w_conv1 = weight_variable([7, 7, 3, 64])
x = tf.nn.conv2d(x, w_conv1, strides=[1, 2, 2, 1], padding='VALID')
x = tf.layers.batch_normalization(x, axis=3, training=training)
x = tf.nn.relu(x)
x = tf.nn.max_pool(x, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='VALID')
assert (x.get_shape() == (x.get_shape()[0], 15, 15, 64))
# stage 2
x = convolutional_block(x, 3, 64, [64, 64, 256], 2, 'a', training, stride=1)
x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='b', training=training)
x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='c', training=training)
# stage 3
x = convolutional_block(x, 3, 256, [128, 128, 512], 3, 'a', training)
x = identity_block(x, 3, 512, [128, 128, 512], 3, 'b', training=training)
x = identity_block(x, 3, 512, [128, 128, 512], 3, 'c', training=training)
x = identity_block(x, 3, 512, [128, 128, 512], 3, 'd', training=training)
# stage 4
x = convolutional_block(x, 3, 512, [256, 256, 1024], 4, 'a', training)
x = identity_block(x, 3, 1024, [256, 256, 1024], 4, 'b', training=training)
x = identity_block(x, 3, 1024, [256, 256, 1024], 4, 'c', training=training)
x = identity_block(x, 3, 1024, [256, 256, 1024], 4, 'd', training=training)
x = identity_block(x, 3, 1024, [256, 256, 1024], 4, 'e', training=training)
x =identity_block(x, 3, 1024, [256, 256, 1024], 4, 'f', training=training)
# stage 5
x = convolutional_block(x, 3, 1024, [512, 512, 2048], 5, 'a', training)
x = identity_block(x, 3, 2048, [512, 512, 2048], 5, 'b', training=training)
x = identity_block(x, 3, 2048, [512, 512, 2048], 5, 'c', training=training)
print(x.shape)
x = tf.nn.avg_pool(x, [1, 2, 2, 1], strides=[1, 1, 1, 1], padding='VALID')
flatten = tf.layers.flatten(x)
x = tf.layers.dense(flatten, units=50, activation=tf.nn.relu)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
with tf.name_scope('dropout'):
keep_prob = 0.5
x = tf.nn.dropout(x, keep_prob)
logits = tf.layers.dense(x, units=10, activation=tf.nn.softmax)
return logits
def loss(logits, labels):
"""Add L2Loss to all the trainable variables.
Add summary for "Loss" and "Loss/avg".
Args:
logits: Logits from inference().
labels: Labels from distorted_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float.
"""
# Calculate the average cross entropy loss across the batch.
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
# logits=tf.nn.softmax(logits)
predictions=tf.argmax(logits,axis=1)
acc= tf.reduce_mean(tf.to_float(tf.equal(predictions,labels)))
tf.add_to_collection('losses', cross_entropy_mean)
tf.summary.scalar('train_acc', acc)
# The total loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
return tf.add_n(tf.get_collection('losses'), name='total_loss'),acc
def my_accuracy(logits, labels):
labels = tf.cast(labels, tf.int64)
predictions = tf.argmax(logits, axis=1)
acc = tf.reduce_mean(tf.to_float(tf.equal(predictions, labels)))
return acc
def _add_loss_summaries(total_loss):
"""Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.summary.scalar(l.op.name + ' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op
def train(total_loss, global_step):
"""Train CIFAR-10 model.
Create an optimizer and apply to all trainable variables. Add moving
average for all trainable variables.
Args:
total_loss: Total loss from loss().
global_step: Integer Variable counting the number of training steps
processed.
Returns:
train_op: op for training.
"""
# Variables that affect learning rate.
num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
global_step,
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)
tf.summary.scalar('learning_rate', lr)
tf.add_to_collection('learning_rate', lr)
# Generate moving averages of all losses and associated summaries.
loss_averages_op = _add_loss_summaries(total_loss)
# Compute gradients.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies([loss_averages_op]):
with tf.control_dependencies(update_ops):
opt = tf.train.GradientDescentOptimizer(lr)
grads = opt.compute_gradients(total_loss)
# Apply gradients.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
# Add histograms for gradients.
for grad, var in grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step)
with tf.control_dependencies([apply_gradient_op]):
variables_averages_op = variable_averages.apply(tf.trainable_variables())
return variables_averages_op
def read_and_decode(filename):
# 根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
# 返回文件名和文件
features = tf.parse_single_example(serialized_example,
features={'label': tf.FixedLenFeature([], tf.int64),
'image': tf.FixedLenFeature([], tf.string),})
img = tf.decode_raw(features['image'], tf.uint8)
img = tf.reshape(img, [32, 32, 3])
img = tf.random_crop(img, [24, 24, 3])
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
label = tf.cast(features['label'], tf.int32)
return img, label
def maybe_download_and_extract():
"""Download and extract the tarball from Alex's website."""
dest_directory = FLAGS.data_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-bin')
if not os.path.exists(extracted_dir_path):
tarfile.open(filepath, 'r:gz').extractall(dest_directory)