-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10_train.py
221 lines (188 loc) · 8.54 KB
/
cifar10_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A binary to train CIFAR-10 using a single GPU.
Accuracy:
cifar10_train.py achieves ~86% accuracy after 100K steps (256 epochs of
data) as judged by cifar10_eval.py.
Speed: With batch_size 128.
System | Step Time (sec/batch) | Accuracy
------------------------------------------------------------------
1 Tesla K20m | 0.35-0.60 | ~86% at 60K steps (5 hours)
1 Tesla K40m | 0.25-0.35 | ~86% at 100K steps (4 hours)
Usage:
Please see the tutorial and website for how to download the CIFAR-10
data set, compile the program and trainvn the model.
http://tensorflow.org/tutorials/deep_cnn/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import time
from datasets import dataset_factory
from datasets.utils import *
import tensorflow as tf
slim = tf.contrib.slim
from preprocessing import preprocessing_factory
import numpy as np
import resnet_my
import cifar10
import cifar10_eval
import cifar10_model
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('train_dir', 'tmp/cifar10_tra',
"""Directory where to write event logs """
"""and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps',50000,
"""Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""")
tf.app.flags.DEFINE_integer('log_frequency', 100,
"""How often to log results to the console.""")
def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default():
global_step = tf.train.get_or_create_global_step()
# Get images and labels for CIFAR-10.
# Force input pipeline to CPU:0 to avoid operations sometimes ending up on
# GPU and resulting in a slow down.
with tf.device('/cpu:0'):
dataset = dataset_factory.get_dataset(
"color", "train", "D:/colors")
examples_per_shard = 1024
min_queue_examples = examples_per_shard * 50
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
num_readers=8,
common_queue_capacity=min_queue_examples + 3 * 12,
common_queue_min=min_queue_examples)
[image, label] = provider.get(['image', 'label'])
# image,label=set(image,label_1,label_2,FLAGS.coarse,fw[FLAGS.coarse])
preprocessing_name = "color" # or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=True)
image = image_preprocessing_fn(image, 24, 24)
images, labels = tf.train.shuffle_batch(
[image, label],
batch_size=12,
num_threads=4,
capacity=2 * 4 * 12,min_after_dequeue=48)
# labels = slim.one_hot_encoding(labels, 10)
batch_queue = slim.prefetch_queue.prefetch_queue(
[images, labels], capacity=16 * 1,
num_threads=4)
images, labels = batch_queue.dequeue()
# with tf.device('/cpu:0'):
# img, label = cifar10.read_and_decode("tmp/cifar10_newdata/train.tfrecords")
# img_batch, label_batch = tf.train.shuffle_batch([img, label],
# batch_size=128, capacity=2000,
# min_after_dequeue=1000)
# Build a Graph that computes the logits predictions from the
# inference model.
logits = cifar10.inference(images)
# logits=cifar10.resnet_50(images, classes=10,is_training=True)
# model = cifar10_model.ResNetCifar10(
# 44,
# is_training=True,
# batch_norm_decay=0.997,
# batch_norm_epsilon=1e-5,
# data_format='channels_last')
# logits = model.forward_pass(images, input_data_format='channels_last')
# logits=cifar10.resnet_50(images)
# logits=cifar10.resnet_50(images)
# Calculate loss and acc.
loss,accuracy= cifar10.loss(logits, labels)
# Build a Graph that trains the model with one batch of examples and
# updates the model parameters.
train_op = cifar10.train(loss, global_step)
##### validation step
# with tf.device('/cpu:0'):
# eval_images, eval_labels = cifar10.inputs(eval_data="test")
# # eval_logits = cifar10.alexnet_cifar_FC(eval_images, True)
#
# eval_logits = model.forward_pass(eval_images, input_data_format='channels_last')
# top_k_op = cifar10.my_accuracy(eval_logits, eval_labels)
class _LoggerHook(tf.train.SessionRunHook):
"""Logs loss,runtime and accuracy."""
def begin(self):
self._step = -1
self._start_time = time.time()
def before_run(self, run_context):
self._step += 1
return tf.train.SessionRunArgs([loss,accuracy,logits,labels]) # Asks for loss value.
def after_run(self, run_context, run_values):
if self._step % FLAGS.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
loss_value,acc_value,logitss,labless= run_values.results
x=np.argmax(logits)
examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
sec_per_batch = float(duration / FLAGS.log_frequency)
format_str = ('%s: step %d, loss = %.2f, batch_accuracy=%.4f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), self._step, loss_value,acc_value,
examples_per_sec, sec_per_batch))
config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)
config.gpu_options.allow_growth = True
add_global= global_step.assign_add(1)
# saver = tf.train.Saver()
var_list = tf.trainable_variables()
g_list = tf.global_variables()
bn_moving_vars = [g for g in g_list if 'moving_mean' in g.name]
bn_moving_vars += [g for g in g_list if 'moving_variance' in g.name]
var_list += bn_moving_vars
with tf.train.MonitoredTrainingSession(
save_checkpoint_secs=60,
checkpoint_dir=FLAGS.train_dir,
hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
tf.train.NanTensorHook(loss),
tf.train.SummarySaverHook(save_steps=1000,output_dir=FLAGS.train_dir,summary_op= tf.summary.merge_all()),
_LoggerHook()],
config=config) as mon_sess:
f = open("result.txt", 'a+')
while not mon_sess.should_stop():
mon_sess.run(train_op)
step = mon_sess.run(add_global)
if step % 1000 == 0:
lr = mon_sess.run(tf.get_collection('learning_rate'))
f.write("step %d-----------------------------" % step)
f.write("lr>>%.5f " % lr[0])
# print("%d learning rate: %f" % (step, lr[0]))
# eval_acc = 0.0
# true_count = 0 # Counts the number of correct predictions.
# total_sample_count = 10000
# step_1 = 0
# while step_1 < 156:
# predictions = mon_sess.run(top_k_op)
# print("%d eval acc: %f" % (step, eval_acc))
# true_count += np.sum(predictions)
# step_1 += 1
#
# # Compute precision @ 1.
# eval_acc = true_count / 10000
# print("%d eval acc: %f" % (step, eval_acc))
# f.write("eval_acc>>%.5f\n" % eval_acc)
# f.flush()
#
def main(argv=None): # pylint: disable=unused-argument
cifar10.maybe_download_and_extract()
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
train()
if __name__ == '__main__':
tf.app.run()